Solutions to Homework \#6.

Section 3.1.

12. We will prove the assertion by induction on the number of rows m.

For $m=1$ there is nothing to prove.
Suppose we know the assertion for $m-1$ and would like to prove it for m. Let ℓ be the index of the first column of A that has a nonzero entry so that $A_{i, \ell^{\prime}}=0$ for any i and any $\ell^{\prime}<\ell$. Let k be an index such that $A_{k, \ell} \neq 0$. By a row exchange, we may assume $k=1$ so that $A_{1, \ell} \neq 0$.

Let B be the $(m-1) \times n$ matrix obtained from A by deleting its first row. Then by induction we can arrange using elementary row operations of types 1 and 3 that B is upper triangular. But then we see that the same operations applied to A with the first row undeleted make it upper triangular.

Section 3.2.
3. The rank of A is zero if and only if the span of the columns of A is zero if and only if all of the columns are zero or in other words A is the zero matrix.
4. We list sequences of matrices obtained by applying elementary operations.
(a)

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 & 0 & -1 & 2 \\
1 & 1 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 & 0 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
0 & -2 & -3 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 1 & 1 & 2 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow \\
& \left(\begin{array}{cccc}
1 & 0 & 1 & 2 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 2 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 3 / 2 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

Rank $=2$.
(b)

$$
\left(\begin{array}{cc}
2 & 1 \\
-1 & 2 \\
2 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cc}
2 & 1 \\
-1 & 2 \\
0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{cc}
2 & 1 \\
0 & 5 / 2 \\
0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ll}
2 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 1 \\
0 & 1 \\
0 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right)
$$

Rank $=2$.
5. (a)

$$
\begin{gathered}
\left(\begin{array}{cc|cc}
2 & 1 & 1 & 0 \\
-1 & 2 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cc|cc}
1 & 1 / 2 & 1 / 2 & 0 \\
-1 & 2 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cc|cc}
1 & 1 / 2 & 1 / 2 & 0 \\
0 & 5 / 2 & 1 / 2 & 1
\end{array}\right) \rightarrow \\
\left(\begin{array}{cc|cc}
1 & 1 / 2 & 1 / 2 & 0 \\
0 & 1 & 1 / 5 & 2 / 5
\end{array}\right) \rightarrow\left(\begin{array}{cc|cc}
1 & 0 & 2 / 5 & -1 / 5 \\
0 & 1 & 1 / 5 & 2 / 5
\end{array}\right)
\end{gathered}
$$

Rank $=2$, inverse above at right.
(b)

$$
\left(\begin{array}{ll|ll}
1 & 2 & 1 & 0 \\
2 & 4 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ll|cc}
1 & 2 & 1 & 0 \\
0 & 0 & -2 & 1
\end{array}\right)
$$

Rank $=1$, not invertible.
(c)

$$
\left(\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
1 & 3 & 4 & 0 & 1 & 0 \\
2 & 3 & -1 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 3 & -1 & 1 & 0 \\
0 & -1 & -3 & -2 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc|ccc}
1 & 2 & 1 & 1 & 0 & 0 \\
0 & 1 & 3 & -1 & 1 & 0 \\
0 & 0 & 0 & -3 & 1 & 1
\end{array}\right)
$$

Rank $=2$, not invertible.
7. Elementary operations:

$$
\begin{gathered}
\left(\begin{array}{lll}
1 & 2 & 1 \\
1 & 0 & 1 \\
1 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -2 & 0 \\
1 & 1 & 2
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -2 & 0 \\
0 & -1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right) \rightarrow \\
\end{gathered}
$$

Corresponding product of elementary matrices:

$$
\begin{gathered}
\left(\begin{array}{ccc}
1 & 2 & 1 \\
0 & -2 & 0 \\
1 & 1 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 1
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
\end{gathered}
$$

6. (a) $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R}), T(f(x))=f^{\prime \prime}(x)+2 f^{\prime}(x)-f(x)$.

With respect to standard basis $\beta=\left\{1, x, x^{2}\right\}, T$ takes the matrix form

$$
T=\left(\begin{array}{ccc}
-1 & 2 & 2 \\
0 & -1 & 4 \\
0 & 0 & -1
\end{array}\right)
$$

It is invertible with inverse

$$
T^{-1}=\left(\begin{array}{ccc}
-1 & 2 & -10 \\
0 & -1 & -4 \\
0 & 0 & -1
\end{array}\right)
$$

(b) $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R}), T(f(x))=(x+1) f^{\prime}(x)$.

Observe that the null space $N(T)$ is non-zero, containing constant polynomials $p(x)=a$, so T is not invertible.
14. (a) $w \in R(T+U)$ means $w=(T+U)(v)=T(v)+U(v)$, for some $v \in V$. But $T(v) \in R(T)$ and $U(v) \in R(U)$ so $R(U+V) \subset R(U)+R(V)$.
(b) We've seen that for subspaces $W_{1}, W_{2} \subset W$, if $\operatorname{dim} W$ is finite, then $\operatorname{dim}\left(W_{1}+W_{2}\right) \leq$ $\operatorname{dim} W_{1}+\operatorname{dim} W_{2}$. Thus by part (a), we have $\operatorname{rk}(T+U)=\operatorname{dim} R(T+U) \leq \operatorname{dim}(R(T)+R(U)) \leq$ $\operatorname{dim} R(T)+\operatorname{dim} R(U)=r k(T)+r k(U)$.
(c) Rank and sum of linear transformations agrees with rank and sum of representing matrices, so this follows from part (b).
17. If $B \in M_{3 \times 1}(F), C \in M_{1 \times 3}(F)$, then $r k(B C) \leq r k(B) \leq 1$.

Conversely, suppose $A \in M_{3 \times 3}(F)$ with $r k(A)=1$. Let v be a nonzero vector in and hence a basis for the range $R(A)$. This provides an isomorphism $R(A) \simeq F$ such that v corresponds to 1 . Thus we have factored A as a composition $F^{3} \rightarrow F \rightarrow F^{3}$. Let $C \in M_{1 \times 3}(F)$ be the first map and $B \in M_{3 \times 1}(F)$ be the second.

