
MATH 110, Linear Algebra, Fall 2012

Solutions to Homework #5.

Section 2.4.

2.
(a) Not invertible, as the Lemma on p.101 says that if T : V → W is invertible and V and W are
finite-dimensional, then dimV = dimW .
(b) Not invertible, as in (a).
(c) Invertible. If β = {e1, e2, e3} is the standard basis for R3, then

[T ]β = ( [T (e1)]β | T (e2)β | [T (e3)]β ) =

3 0 −2
0 1 0
3 4 0

 .

Theorem 2.18 says that T is invertible if and only if [T ]β is invertible, and one can row reduce [T ]β
to see that it is, indeed, invertible.
(d) Not invertible, as in (a).
(e) Not invertible, as in (a).
(f) Invertible. First we show N(T ) = {0}. Suppose

A =

(
a b
c d

)
∈ N(T ).

Then

T (A) =

(
a+ b a
c c+ d

)
=

(
0 0
0 0

)
.

Looking at the top right and bottom left entries gives a = 0 and c = 0, and then the other two
entries yield 0 = a + b = b and 0 = c + d = d. Thus A = 0, and N(T ) = {0}. By the Dimension
Theorem, rank(T ) = dimM2×2(R) − dimN(T ) = 4, so R(T ) = M2×2(R). Thus we have shown
that T is one-to-one and onto, and hence invertible.

3. Theorem 2.19 says that a pair of finite-dimensional vector spaces over the same field are iso-
morphic if and only if they have the same dimension. Thus the vector spaces in (b) and (c) are
isomorphic, and the ones in (a) and (d) are not. To do (d), one could recall that the dimension
of traceless n × n matrices is n2 − 1, or just note that V is a subspace of M2×2(R) but not all of
M2×2(R), so we must have dimV < 4.

5. By definition, we have AA−1 = A−1A = I. Taking transposes of these equations, and remem-
bering that (AB)t = BtAt, we get (A−1)tAt = At(A−1)t = I. Thus the definition of inverse says
that At is invertible and (At)−1 = (A−1)t.

6. Multiplying both sides of AB = 0 on the left by A−1 yields B = A−10 = 0.

Section 2.5.

2. Recall (p.112) that if β = {x1, . . . , xn} and β′ = {x′1, . . . , x′n} then the jth column of the change-
of-coordinates matrix from β′ to β is [x′j ]β.
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(a) Since (a1, a2) = a1e1 +a2e2, we have [x′1]β = (a1, a2). The second column is similar, and we get
the resulting change of coordinate matrix (

a1 b1
a2 b2

)
.

(b) Since (0, 10) = 4(−1, 3) + 2(2,−1) and (5, 0) = (−1, 3) + 3(2,−1) we have [x′1]β = (4, 2) and
[x′2]β = (1, 3). Thus we get the change of coordinate matrix(

4 1
2 3

)
.

(c) This could be solved by solving a linear system of equations as in (b), but we’ll use a different
method. From part (a), the change of coordinate matrix from β to β′ (that is, in the opposite
direction) is (

2 −1
5 −3

)
.

By the remark on the top of p.112, the change of coordinates in the opposite direction is given by
the inverse matrix, so we get an answer of(

2 −1
5 −3

)−1
=

(
3 −1
5 −2

)
.

(d) Solving (2, 1) = a(−4, 3) + b(2,−1) yields a = 2, b = 5, so [x′1]β = (2, 5). Similarly, we have
(−4, 1) = −(−4, 3)− 4(2,−1) so [x′2]β = (−1,−4). Thus the desired change of coordinates matrix
is (

2 −1
5 −4

)
.

7.
(a) The idea is to find the matrix for T with respect to a basis for which this matrix is particularly
simple. From there, we can use change of basis to find the matrix for T with respect to the standard
basis, which will allow us to write a formula for T .

Since (1,m) is on the axis of reflection, we want T (1,m) = (1,m). The perpendicular line L′ is
the line y = −m−1x, so (−m, 1) is on this line. The image of that point under the reflection will
be (m,−1), so we want T (−m, 1) = (m,−1). Thus if we let β′ = {(1,m), (−m, 1)} then

[T ]β′ =

(
1 0
0 −1

)
.

If β is the standard basis for R2, then by Exercise 2(a) the matrix that transforms β′ coordinates
into β coordinates is

Q =

(
1 −m
m 1

)
.

By Theorem 2.23, we have

[T ]β = Q[T ]β′Q−1 =

(
1 −m
m 1

)(
1 0
0 −1

)( 1
1+m2

m
1+m2

−m
1+m2

1
1+m2

)
=

1

1 +m2

(
1−m2 2m

2m m2 − 1

)
.
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Since β is the standard basis, Theorem 2.15 says that T is multiplication by [T ]β. Thus

T (a, b) = [T ]β

(
a
b

)
=

1

1 +m2

(
(1−m2)a+ 2bm
2am+ (m2 − 1)b

)
.

(b) Let L and L′ be as in part (a). We take for granted that R2 = L ⊕ L′, so that it makes sense
to talk about the projection of L along L′. Recall that every x ∈ R2 can be written uniquely
as x = x1 + x2 with x1 ∈ L and x2 ∈ L′, and that T (x) = x1. Thus since (1,m) ∈ L we have
T (1,m) = (1,m), and since (−m, 1) ∈ L′ we have T (−m, 1) = 0. Thus if β′ is as before, we have

[T ]β′ =

(
1 0
0 0

)
.

We are in exactly the same position as in part (a), with a slightly different [T ]β′ . Proceeding as
before, we compute

[T ]β = Q[T ]β′Q−1 =
1

1 +m2

(
1 m
m m2

)
.

Using the reasoning from before, we get

T (a, b) =
1

1 +m2

(
a+ bm

am+ bm2

)
.

Section 2.6.

3.
(a) If β∗ = {f1, f2, f3}, the definition of dual basis says that

1 = f1(e1 + e3) = f1(e1) + f1(e3)

0 = f1(e1 + 2e2 + e3) = f1(e1) + 2f1(e2) + f1(e3)

0 = f1(e3).

So we have 1
0
0

 =

1 0 1
1 2 1
0 0 1

f1(e1)f1(e2)
f1(e3)

 .

Solving this matrix equation gives

f1(e1) = 1, f1(e2) = −1

2
, f1(e3) = 0,

so that

f1(x, y, z) = f1(xe1 + ye2 + ze3) = x− 1

2
y.

Proceeding as before, we get

0 = f2(e1 + e3) = f2(e1) + f2(e3)

1 = f2(e1 + 2e2 + e3) = f2(e1) + 2f2(e2) + f2(e3)

0 = f2(e3),
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or 0
1
0

 =

1 0 1
1 2 1
0 0 1

f2(e1)f2(e2)
f2(e3)

 .

Solving this system gives

f2(e1) = 0, f2(e2) =
1

2
, f2(e3) = 0.

Hence f2(x, y, z) = 1
2y.

To find f3, we proceed as before, and solve0
0
1

 =

1 0 1
1 2 1
0 0 1

f3(e1)f3(e2)
f3(e3)

 .

This yields
f3(e1) = −1, f3(e2) = 0, f3(e3) = 1,

or f3(x, y, z) = z − x. Thus the dual basis β∗ = {f1, f2, f3} for the functions fj defined above.

(b) As before, suppose β∗ = {f1, f2, f3}. Then we have

1 = f1(1), 0 = f1(x), 0 = f1(x
2)

Thus f1(ax
2 + bx+ c) = c. Similarly,

0 = f2(1), 1 = f2(x), 0 = f2(x
2)

so f2(ax
2 + bx+ c) = b. Repeating, we get f3(ax

3 + bx+ c) = a.

9. First suppose that T is linear, and we will prove that there exist f1, . . . , fm ∈ (Fn)∗ such that
T (x) = (f1(x), . . . , fm(x)). Following the hint, let {e1, . . . , em} be the standard basis for Fm and
let {g1, . . . , gm} be its dual basis. That is, gi ∈ (Fm)∗ and

gi(ej) = δij =

{
1 i = j
0 i 6= j

As the hint instructs, we define fi(x) = gi(T (x)) ∈ (Fn)∗. We must now prove that f1, . . . , fm have
the required property.

Given x ∈ Fn, we can write

T (x) = (c1, . . . , cm) = c1e1 + · · ·+ cmem

for some coefficients cj ∈ F . We then have

fi(x) = gi(T (x)) = gi(c1e1 + · · ·+ cmem) = ci

by the linearity of gi and the definition of dual basis. Thus

(f1(x), . . . , fm(x)) = (c1, . . . , cm) = T (x).
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Since x was arbitrary, we have shown that T (x) = (f1(x), . . . , fm(x)) for all x ∈ Fn.

We must now prove the opposite direction. That is, assume that T : Fn → Fm is a function
with the property that there exist f1, . . . , fm ∈ (Fn)∗ such that T (x) = (f1(x), . . . , fm(x)) for all
x ∈ Fn. We will now show that T is linear. By the linearity of the fi, we have for x, y ∈ Fn and
c ∈ F

T (x+ cy) = (f1(x+ cy), . . . , fm(x+ cy))

= (f1(x) + cf1(y), . . . , fm(x) + cfm(y))

= (f1(x), . . . , fm(x)) + c(f1(y), . . . , fm(y))

= T (x) + cT (y).

Thus T is linear.

19. Following the hint, we expect to use Exercise 34 of Section 2.1. Since this was not previously
completed on homework, we state the exercise as a lemma now, and then prove it at the end of the
exercise.

Lemma (Exercise 2.1.34). Let V and W be vector spaces over a common field F , and let β be
a basis for V . Then for every function f : β → W there exists a unique linear transformation
T : V →W such that T (x) = f(x) for all x ∈ β.

Let β be a basis for W . By assumption W ⊂ V but W 6= V , so we may choose some element
x0 ∈ V with x0 6∈ W . Since x0 6∈ spanβ, we have that {x0} ∪ β is linearly independent. We can
now extend {x0} ∪ β to a basis β′ of V by the corollary to Theorem 1.13. Define f : β′ → F by

f(x) =

{
1 x = x0
0 x 6= x0.

In particular, f(x) = 0 for x ∈ β. By the Lemma above, there exists a linear transformation
T : V → F (i.e. T ∈ V ∗) such that T (x) = f(x) for x ∈ β. Since any x ∈ W can be written as
c1x1 + · · · cnxn with xj ∈ β, we have

T (x) = c1f(x1) + · · · cnf(xn) = 0

for x ∈W . But T (x0) = 1, so T 6= 0. Thus T is the linear functional we wished to construct (called
f in the problem description - the f here is a function, but not a linear one).

Proof of lemma. Define T as follows. For x ∈ V , there exists a unique subset {x1, . . . , xn} ⊂ β and
unique non-zero scalars c1, . . . cn such that x = c1x1 + · · · + cnxn. (The fact that the scalars are
required to be non-zero lets us choose unique basis vectors xj). Define

T (x) = c1f(x1) + · · · cnf(xn).

We then have T (x) = x for all x ∈ β, but we must check linearity and uniqueness.
We defined T (x) in terms of a particular representation of x in terms of basis vectors that have

non-zero coefficients, but we now prove the fact that if we have any representation

x = c1x1 + · · ·+ cnxn
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with xj ∈ β, then we have
T (x) = c1f(x1) + · · ·+ cnf(xn).

We will need that fact to prove that T is linear.
So suppose {x′1, . . . , x′m} is another subset of β such that there are coefficients c′i ∈ F such that

x = c′1x
′
1 + · · ·+ c′mx

′
m.

By the uniqueness of the representation of x, we must have m ≥ n, and we can reorder {x′1, . . . , x′m}
so that x′j = xj and c′j = cj for 1 ≤ j ≤ n, and cj = 0 for j > n. Thus

T (x) = c1f(x1) + · · ·+ cnf(xn) = c′1f(x′1) + · · ·+ cmf(x′m).

To show that T is linear, suppose x, y ∈ V and a ∈ F . Then we can write

x = c1x1 + · · ·+ cnxn, y = d1y1 + · · ·+ dmym

for xi, yj ∈ β and ci, dj ∈ F . Let

{z1, . . . , z`} = {x1, . . . , xn} ∪ {y1, . . . , ym}.

Then we can write
x = c′1z1 + · · ·+ c′`z`, y = d′1z1 + · · ·+ d′`z`

by defining new coefficients to be zero, if necessary. Then by the preceding remark we can calculate

T (x+ ay) = T ((c′1 + ad′1)z
′
1 + · · ·+ (c′` + ad′`)z`)

= (c′1 + ad′1)f(z1) + · · ·+ (c′` + ad′`)f(z`)

= (c′1f(z1) + · · ·+ c′`f(z`)) + a(d′1f(z1) + · · · d′`f(z`))

= T (x) + dT (y)

Thus T is linear. To prove uniqueness, suppose T ′ is another linear transformation with the
given property. Then (T − T ′)(x) = 0 for all x ∈ β. Since every element of V can be written as a
linear combination of elements of β, it follows that T − T ′ = 0.

20.
(a) First suppose that T is onto. We we to show that T t is one-to-one, so supose T t(f) = 0 for
some f ∈W ∗. We wish to show that f = 0. Unpacking the definition, T t(f) = 0 implies that f ◦T
is the zero linear functional in V ∗. That is, f(T (x)) = 0 for every x ∈ V . But for y ∈ W , we can
write y = T (x) for some x ∈ V . Then f(y) = f(T (x)) = 0. Since y was arbitrary, f(y) = 0 for all
y ∈W . Thus f = 0 ∈W ∗, as desired.

We now need to show that if T t is one-to-one then T is onto. Suppose to a contradiction that
R(T ) 6= W . Then by Exercise 19, there is some f ∈ W ∗ such that f(x) = 0 for all x ∈ R(T ), but
f 6= 0. Let g = (T t)(f) ∈ V ∗. Then for x ∈ V , we have g(x) = f(T (x)) = 0 since T (x) ∈ R(T ).
But x was arbitrary, so g is the zero linear functional. Thus (T t)(f) = 0, but f 6= 0 by an earlier
assumption. This contradicts the fact that T t was assumed to be one-to-one. (For those who are
interested, this proof was actually a proof by contraposition, not a proof by contradiction, for what
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that’s worth).

(b) Suppose that T t is onto, and suppose x0 ∈ V and T (x0) = 0. We must show that x0 = 0.
Suppose to a contradiction that x0 6= 0. Then by the corollary to Theorem 1.13 we can choose a
basis β for V with x0 ∈ β. Define the function φ : β → F by

φ(x) =

{
1 x = x0
0 x 6= x0.

By Exercise 19, there exists a non-zero f ∈ V ∗ such that f(x) = φ(x) for x ∈ β. Since T t is onto,
there is some g ∈ W ∗ such that (T t)(g) = f . That is, g(T (x)) = f(x) for all x ∈ V . Now, if x ∈ β
and x 6= x0, then φ(x) = 0 so

f(x) = g(T (x)) = g(φ(x)) = g(0) = 0.

On the other hand
f(x0) = g(T (x0)) = 0

since we assumed T (x0) = 0. But we have proven that f(x) = 0 for every x ∈ β, and since β is a
basis for V we can conclude that f = 0. But this contradicts the assumption that f 6= 0, so we
must have had that x0 = 0 and T is one-to-one.

Now suppose that T is one-to-one, and we will show that T t is onto. Let g ∈ V ∗, and we will
show there exists f ∈ W ∗ with (T t)(f) = g. That is, we must find f with f(T (x)) = g(x) for all
x ∈ V . We know how to define f on R(T ), but to define f on all of W it will help to have the
following lemma (as before, the proof is at the end of the problem).

Lemma. If W1 ⊆W is a subspace, then there exists a subspace W2 of V for which W = W1⊕W2.

Let W2 be a subspace of W for which W = R(T ) ⊕ W2. Given w ∈ W , we can write it
uniquely as w1 + w2 where w1 ∈ R(T ) and w2 ∈ W2. Since T is one-to-one, given y ∈ R(T ) there
exists a unique x ∈ V with T (x) = y. Thus given w ∈ W , write it as w1 + w2 as above, and let
f(w) = g(T (x)), where x ∈ V is the unique element with T (x) = w1. We now have g(x) = f(T (x))
for all x ∈ V , and f = (T t)(g) once we show that f is linear.

Given c ∈ F and w ∈ W , we have f(cw) = f(cw1 + cw2) where we have decomposed w as
above. Then if x is the unique element of V with T (x) = w1, we have T (cx) = cw1, so

f(cw) = g(cx) = cg(x) = cf(w).

Now if w,w′ ∈ W decompose as w1 + w2 and w′1 + w′2 respectively, and we have unique x, x′ with
T (x) = w1 and T (x′) = w′1, then T (x+ x′) = w1 + w′. Thus, the definitions tell us

f(w + w′) = f((w1 + w′1) + (w2 + w′2)) = g(x+ x′) = g(x) + g(x′) = f(w1 + w2) + f(w′1 + w′2).

Proof of lemma. This was Exercise 1.6.34(a), except we have not assumed thatW is finite-dimensional.
However, the proof is exactly the same as the exercise, but one must use the corollary of Theo-
rem 1.13 from Section 1.7 to extend linearly independent sets to bases for infinite dimensional
spaces.
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