Math 110

Solutions to Homework 4

$1 \quad 2.3 \# 2$

a) Let $A=\left(\begin{array}{cc}1 & 3 \\ 2 & -1\end{array}\right), B=\left(\begin{array}{ccc}1 & 0 & -3 \\ 4 & 1 & 2\end{array}\right), C=\left(\begin{array}{ccc}1 & 1 & 4 \\ -1 & -2 & 0\end{array}\right)$ and $D=\left(\begin{array}{c}2 \\ -2 \\ 3\end{array}\right)$. Then

$$
\begin{aligned}
A(2 B+3 C) & =\left(\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right)\left[2\left(\begin{array}{ccc}
1 & 0 & -3 \\
4 & 1 & 2
\end{array}\right)+3\left(\begin{array}{ccc}
1 & 1 & 4 \\
-1 & -2 & 0
\end{array}\right)\right] \\
& =\left(\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right)\left[\left(\begin{array}{ccc}
2 & 0 & -6 \\
8 & 2 & 4
\end{array}\right)+\left(\begin{array}{ccc}
3 & 3 & 12 \\
-3 & -6 & 0
\end{array}\right)\right] \\
& =\left(\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right)\left(\begin{array}{ccc}
5 & 3 & 6 \\
5 & -4 & 4
\end{array}\right) \\
& =\left(\begin{array}{ccc}
20 & -9 & 18 \\
5 & 10 & 8
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
(A B) D & =\left[\left(\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & -3 \\
4 & 1 & 2
\end{array}\right)\right]\left(\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right) \\
& =\left(\begin{array}{ccc}
13 & 3 & 3 \\
-2 & -1 & -8
\end{array}\right)\left(\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right) \\
& =\binom{29}{-26}
\end{aligned}
$$

and

$$
\begin{aligned}
A(B D) & =\left(\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right)\left[\left(\begin{array}{ccc}
1 & 0 & -3 \\
4 & 1 & 2
\end{array}\right)\left(\begin{array}{c}
2 \\
-2 \\
3
\end{array}\right)\right] \\
& =\left(\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right)\binom{-7}{12} \\
& =\binom{29}{-26}
\end{aligned}
$$

b) Let $A=\left(\begin{array}{cc}2 & 5 \\ -3 & 1 \\ 4 & 2\end{array}\right), B=\left(\begin{array}{ccc}3 & -2 & 0 \\ 1 & -1 & 4 \\ 5 & 5 & 3\end{array}\right)$, and $C=\left(\begin{array}{lll}4 & 0 & 3\end{array}\right)$.

Then

$$
A^{t}=\left(\begin{array}{ccc}
2 & -3 & 4 \\
5 & 1 & 2
\end{array}\right)
$$

and

$$
\begin{aligned}
A^{t} B & =\left(\begin{array}{ccc}
2 & -3 & 4 \\
5 & 1 & 2
\end{array}\right)\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & -1 & 4 \\
5 & 5 & 3
\end{array}\right) \\
& =\left(\begin{array}{ccc}
23 & 19 & 0 \\
26 & -1 & 10
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
B C^{t} & =\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & -1 & 4 \\
5 & 5 & 3
\end{array}\right)\left(\begin{array}{l}
4 \\
0 \\
3
\end{array}\right) \\
& =\left(\begin{array}{l}
12 \\
16 \\
29
\end{array}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
C B & =\left(\begin{array}{lll}
4 & 0 & 3
\end{array}\right)\left(\begin{array}{ccc}
3 & -2 & 0 \\
1 & -1 & 4 \\
5 & 5 & 3
\end{array}\right) \\
& =\left(\begin{array}{lll}
27 & 7 & 9
\end{array}\right)
\end{aligned}
$$

and, finally,

$$
\begin{aligned}
C A & =\left(\begin{array}{lll}
4 & 0 & 3
\end{array}\right)\left(\begin{array}{cc}
2 & 5 \\
-3 & 1 \\
4 & 2
\end{array}\right) \\
& =\left(\begin{array}{ll}
20 & 26
\end{array}\right)
\end{aligned}
$$

$2 \quad 2.3$ \# 12

Let V, W, and Z be vector spaces, and let $T: V \rightarrow W$ and $U: W \rightarrow Z$ be linear transformations.
a) Suppose $U T$ is one-to-one. Notice that $N(T) \subseteq N(U T)$, since if $v \in N(T)$ then $U T(v)=U(0)=0$. Applying Theorem 2.4 twice, we see first that $N(U T)=(0)$ (implying $N(T)=(0)$), and second that T is one-to-one.

On the other hand, U does not need to be one-to-one. For example if $V=(0), W \neq(0)$ and $U=x \mapsto 0$.
b) Suppose $U T$ is onto, i.e. $R(U T)=Z$. Notice that $R(U) \supseteq R(U T)$ since every vector of the form $U T(v)$ is already of the form $U w$, where $w=T(v)$. Then we have $Z \supseteq R(U) \supseteq R(U T)=Z$ so that $R(U)=Z$ and U is onto.
T need not be onto. Let $V, Z=(0)$ and $W \neq 0$.
Here's a less trivial counterexample as requested in a) and b). Consider $\mathbf{R} \xrightarrow{T} \mathbf{R}^{2} \xrightarrow{U} \mathbf{R}$ by $T(a)=(a, 0)$ and $U(a, b)=a$. The composition $U T$ is just the identity map which is an isomorphism (a linear transformation which is both one-to-one and onto). Still, U is not one-to-one and T is not onto.

$3 \quad 2.3$ \# 13

Let A, B be $n \times n$ matrices. As we have seen before we can define a linear map $\operatorname{tr}: M_{n \times n}(\mathbf{F}) \rightarrow \mathbf{F}$ by sending a matrix A to $\sum_{i=1}^{n} A_{i i} \in \mathbf{F}$. Recall that the $i j$-th coordinate of $A B$ is $\sum_{k=1}^{n} A_{i k} B_{k j}$.

Then we have

$$
\begin{aligned}
\operatorname{tr}(A B) & =\sum_{i=1}^{n}(A B)_{i i} \\
& =\sum_{i=1}^{n} \sum_{k=1}^{n} A_{i k} B_{k i} \\
& =\sum_{k=1}^{n} \sum_{i=1}^{n} B_{k i} A_{i k} \\
& =\sum_{k=1}^{n}(B A)_{k k} \\
& =\operatorname{tr}(B A)
\end{aligned}
$$

and since $A_{i i}^{t}=A_{i i}$ the traces $\operatorname{tr}(A)=\sum A_{i i}=\sum A_{i i}^{t}=\operatorname{tr}\left(A^{t}\right)$ agree.

