
MATH 110, Linear Algebra, Fall 2012

Solutions to Homework #3.

Section 2.1.

6. The map T is linear because if A = (aij) and B = (bij), then the trace of A+B = (aij + bij) is

n∑
i=1

(aii + bii) =
n∑
i=1

aii +
n∑
i=1

bii = tr(A) + tr(B)

and the trace of cA = (caij), where c ∈ F , is
∑n

i=1 caii = c
∑n

i=1 aii.
Since the codomain F is one-dimensional, the range can only be either the zero space or all of

F . It’s not the zero space since there are matrices with nonzero trace. So R(T ) is F , with basis
any nonzero element of F .

Now we consider the null space N(T ). We use the standard basis {Eij} for the space of n× n
matrices1. Thus any matrix A = (aij) can be written as A =

∑n
i,j=1 aijE

ij . Each of the Eij , where

i 6= j, has trace zero, so is in N(T ). Also, the matrices E11 − Eii, where i = 2, . . . , n is in N(T ).
We claim that this set, namely

β = {Eij | i 6= j} ∪ {E11 − Eii | i = 2, . . . , n}

is a basis for N(T ). To see why they form an independent set, note that the two subsets are each
independent; their union is independent because their spans intersect in the zero space (the first set
generates only matrices with zeroes on the diagonal, while the second set generates only matrices
with zeroes off the diagonal). To see why β spans2 N(T ), let A = (aij) ∈ N(T ), so

∑n
i=1 aii = 0.

Then
A =

∑
i 6=j

aijE
ij − a22(E11 − E22)− a33(E11 − E33)− . . .− ann(E11 − Enn)

Note that the terms on the right give the correct coefficient (namely a11) for E11 since a11 =
−
∑n

i=2 aii. Thus β spans N(T ). Since there are n2 − 1 vectors in β, the nulltiy of T is n2 − 1, so
the dimension theorem reads: n2 = (n2 − 1) + 1, which is true!

Finally, T is onto since R(T ) is all of F , but T is not one-to-one unless n = 1 since for n > 1 it
has nontrivial nullspace.

11. Since {(1, 1), (2, 3)} is a basis for R2, theorem 2.6 says that there is a uniques linear map
R2 → R3 sending (1, 1) to (1, 0, 2) and (2, 3) to (1,−1, 4). To compute T (8, 11), we write (8, 11) in
terms of the above basis, namely (8, 11) = 2 · (1, 1) + 3 · (2, 3), so

T (8, 11) = T (2 · (1, 1) + 3 · (2, 3)) = 2 · T (1, 1) + 3 · T (2, 3) = 2 · (1, 0, 2) + 3 · (1,−1, 4) = (5,−3, 16)

12. No, there is no such T : if there were, we would have

T (−2, 0,−6) = −2 · T (1, 0, 3) = −2 · (1, 1) = (−2,−2),

1See example 3 of section 1.6 in your text for the definition of Eij .
2If we use the dimension theorem, then we don’t need to check this: since the range is one-dimensional, and the

domain n2-dimensional, we know N(T ) is (n2 − 1)-dimensional; β contains n2 − 1 independent vectors, so it must be
a basis for N(T ). But since we’re supposed to be checking the dimension theorem directly, we can’t use this shortcut.
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which is impossible since we were given that T (−2, 0,−6) = (2, 1).

20. To show that T (V1) is a subspace of W , we let w1, w2 ∈ T (V1), and c ∈ F . Then w1 = T (v1)
and w2 = T (v2), for some v1, v2 ∈ V1, so w1+w2 = T (v1)+T (v2) = T (v1+v2) by linearity of T . But
v1+v2 ∈ V1 since V1 is a subspace of V , so this shows w1+w2 ∈ T (V1). Next, cw1 = cT (v1) = T (cv1),
and cv1 ∈ V1 since V1 is a subspcace, so cw1 ∈ T (V1). Finally the zero vector (of W ) is in T (V1)
since we can write 0W = T (0V ).

Next let U = {x ∈ V |T (x) ∈ W1}. To show U is a subspace of V , pick any u1, u2 ∈ U and
any c ∈ F . To see that u1 + u2 ∈ U , we must check that T (u1 + u2) ∈ W1. This is true, because
T (u1 + u2) = T (u1) + T (u2) by linearity, and this is in W1 since T (u1) and T (u2) are both in W1

and W1 is closed under addition. Similarly, T (cu1) = cT (u1), which is in W1 because u1 ∈ U ,
so T (u1) ∈ W1, and W1 is closed under addition. Finally, the zero vector (of V ) is in U because
T (0V ) = 0W ∈W1 since W1 is a subspace.

22. Given any linear map T : R3 → R, we have to find real numbers a, b, c such that for any
vector (x, y, z) in R3, we have T (x, y, z) = ax + by + cz. To do this, we let {e1, e2, e3} be the
standard basis for R3, and set a = T (e1), b = T (e2), and c = T (e3). Then given any vector (x, y, z),
we can write it as (x, y, z) = xe1 + ye2 + ze3, then compute

T (x, y, z) = T (xe1 + ye2 + ze3) = xT (e1) + yT (e2) + zT (e3) = ax+ by + cz.

More generally, given any linear map T : Fn → F, we use the standard basis e1, . . . , en for Fn

and set ai = T (ei) for i = 1, . . . , n. A similar computation to the above gives

T (x1, . . . , xn) = a1x1 + · · ·+ anxn.

Even more generally, suppose now that we are given any linear map T : Fn → Fm. Let
{e1, . . . , en} be the standard basis for the domain Fn, and {f1, . . . , fm} be the standard basis
for the codomain Fm. Now for each j from 1 to n, F (ej) is some vector in Fm, hence it can be
written as a linear combination of the fis. So there are scalars a1j , a2j , . . . , amj such that

T (ej) = a1jf1 + a2jf2 + · · · amjfm =
m∑
i=1

aijfi

Doing this for each i = 1, . . . , n, we get mn scalars aij , where i goes from 1 to m and j goes
from 1 to n. Putting these numbers into an m × n matrix A = (aij), we have, for any vector
x = (x1, x2, . . . , xn) in Fn, that T (x) = Ax. Here’s a proof:

T (x) = T

 n∑
j=1

xjej

 =
n∑
j=1

xjT (ej) =
n∑
j=1

xj

(
m∑
i=1

aijfi

)
=

m∑
i=1

 n∑
j=1

xjaij

 fi

If you write this out as a column vector, it’s just
a11x1 + a12x2 + · · ·+ a1nxn
a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 ,
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and this is exactly what you get when you multiply Ax.

24. (a) T (a, b) = b. (b) Any vector (x, y) can be written as (0, y − x) + (x, x), where (0, y − x)
is on the y-axis and (x, x) is on the line L. Therefore T (x, y) = (0, y − x).

35. (a) We only need to check that N(T ) ∩ R(T ) is the zero space. For this we use the
dimension theorem (which is why we need the finite-dimensionality hypothesis). It says that
dimV = dimN(T ) + dimR(T ). But V = R(T ) +N(T ), and we proved on the last HW that

dim(N(T ) +R(T )) = dimN(T ) + dimN(T )− dim(N(T ) ∩R(T )),

so dim(N(T ) ∩R(T )) must be zero, hence the intersectin is the zero subspace.
(b) Here we just need to show that N(T ) +R(T ) = V . By finite dimensionality, the dimension

theorem applies and tells us that dimV = dimN(T )+dimR(T ). By the formula from HW2 used in
(a), and the hypothesis that N(T )∩R(T ) = {0}, we get dimN(T )+dimR(T ) = dim(N(T )+R(T )).
Thus the subspace N(T ) +R(T ) has the same dimension as V , so it must be all of V .

Section 2.2

2b.

(
2 3 −1
1 0 1

)
.

6. The main idea of this proof is to use as many parentheses as possible. The zero element is
T0, defined by T0(v) = 0W for all v ∈ V . Now we check the axioms. Throughout, S, T, U will stand
for three arbitrary transformations V → W , and a, b ∈ F will stand for arbitrary scalars. Note
that to check an identity holds between transformations, one has to apply the transformations on
both sides to an arbitrary vector in V . So throughout, v will stand for an arbitrary vector in V .
Let us begin:

(VS1) (S + T )(v) = S(v) + T (v) = T (v) +S(v) = (T +S)(v). The first and third equalities are
from the definition of addition of transformations; the second is from commutativity of addition in
W .

(VS2)
(
(S+T ) +U

)
(v) = (S+T )(v) +U(v) = (S(v) +T (v)) +U(v) = S(v) + ((T (v) +U(v)) =

S(v) + (T + U)(v) =
(
S + (T + U)

)
(v). The third equality uses associativity of addition in W ; all

others are from the definition of addition of linear maps.
(VS3) To check that T0 is the additive identity, we compute T+T0, for arbitrary T : (T+T0)(v) =

T (v) + T0(v) = T (v) + 0W = T (v).
(VS4) Given T , its inverse is −T , defined by (−T )(v) = −(T (v)), where the minus sign on

the right means additive inverse in W . Then we check that (T + (−T ))(v) = T (v) + (−T )(v) =
T (v)− T (v) = 0W , as desired.

(VS5) (1 ·T )(v) = 1 · (T (v)), where on the right it means scalar multiplication in W , giving just
T (v), as desired.

(VS6) ((ab)T )(v) = (ab)(T (v)) = a(bT (v)), using VS6 forW , and this is the same as a((bT )(v)) =
(a(bT ))(v).

(VS7) (a(S + T ))(v) = a((S + T )(v)) = a(S(v) + T (v)) = aS(v) + aT (v), using VS7 for W .
This is then equal to (aS + aT )(v), as desired.

(VS8) ((a+ b)T )(v) = (a+ b)T (v) = aT (v) + bT (v) = (aT + bT )(v), by VS8 for W ; this shows
that (a+ b)T = aT + bT .
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8. To make sure you understand the question, let’s write out clearly what this map T is. Let
our basis be β = {v1, . . . , vn}. Then given any vector x ∈ V , we can write it as c1v1 + · · · + cnvn.
Then all T does is take these n scalars c1, . . . , cn and put them into a column vector, and that’s
something in Fn. This column vector is denoted [x]β for short. In other words,

T (x) =

 c1
...
cn

 = [x]β

Now we prove this is linear. Let x, y ∈ V . Then we can write them as

x = a1v1 + · · ·+ anvn, y = b1v1 + · · ·+ bnvn

so

T (x+ y) = T ((a1 + b1)v1 + · · ·+ (an + bn)vn)

=

 a1 + b1
...

an + bn

 =

 a1
...
an

+

 b1
...
bn


= [x]β + [y]β = T (x) + T (y).

Now let c ∈ F be any scalar, and we have T (cx) =

 ca1
...
can

 = c

 a1
...
an

 = cT (x). Thus T is

linear.
12. Note that for the question to make sense, we need to assume that V = W ⊕W ′ (this is

implicit in saying that T is a projection operator). Let {w1, . . . , wk} be an (ordered) basis for W
and {v1, . . . , vl} be an (oredered) basis for W ′. Then β = {w1, . . . , wk, v1, . . . , vl} is an ordered
basis for V since V = W ⊕W ′. To compute the matrix [T ]β, we need to evaluate T on each of
these basis vectors, and express the results as linear combinations of the elements of β. We have
T (wi) = wi for i = 1, . . . , k, and T (vi) = 0 for i = 1, . . . , l. Thus the matrix of T with respect to
the basis β is 

1 0 · · · · · · · · · 0
. . . 0 · · · · · ·

...
0 · · · 1 0 · · · 0
0 · · · 0 0 · · · 0

...
...

 ,

In other words, it is the block matrix

(
I 0
0 0

)
, where I is the k × k identity matrix. This is a

diagonal matrix.

16. Let n be the common dimension of V and W . First pick any basis at all for N(T ), call it
{v1, . . . , vk}. Now extend this to a basis β = {v1, . . . , vk, vk+1, . . . , vn} for V . For j = k + 1, . . . , n,
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set wj = T (vj). Then these wj are independent; here’s why. Suppose for contradiction that they’re
not; then some linear combination

∑n
j=k+1 cjwj is zero, so we have

0 =
n∑

j=k+1

cjT (vj) = T (
n∑

j=k+1

cjvj),

so
∑n

j=k+1 cjvj ∈ N(T ). Therefore
∑n

j=k+1 cjvj can be written as a linear combination of v1, . . . , vk.
This violates the independence of {v1, . . . , vn}. Therefore since {wk+1, . . . , wn} is an independent
set, it can be extended to a basis γ = {w1, . . . , wk, wk+1, . . . , wn} for W . By a similar analysis to

that of the previous problem, we find that the matrix [T ]γβ is the block-diagonal matrix

(
0 0
0 I

)
,

where here I stands for the (n− k)× (n− k) identity matrix.
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