Solutions to Homework \#2.
Section 1.5.
3. Denote the 5 vectors by v_{1}, \ldots, v_{5} and note that $v_{1}+v_{2}+v_{3}-v_{5}=v_{4}$.
9. Say $\{u, v\}$ is linearly dependent. Then there exist nonzero elements $a, b \in F$ such that $a u+b v=0$. This then yields $u=\left(-b a^{-1}\right) v$.

Assume u is a multiple of v. Then for some nonzero $c \in F$ we have $u=c v$. This implies that $u+(-c) v=0$ so the two vectors are linearly dependent.
11. First note that any two vectors v, w from the span of S look like

$$
\begin{aligned}
v & =a_{1} u_{1}+\ldots a_{n} u_{n} \\
w & =b_{1} u_{1}+\ldots b_{n} u_{n}
\end{aligned}
$$

for some $a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{n} \in \mathbb{Z}_{2}$. Since S consists of linearly independent vectors the two vectors v, w are equal if and only if $a_{1}=b_{1}, \ldots, a_{n}=b_{n}$. Therefore, the span of S has the same cardinality as the set $\left\{\left(a_{1}, \ldots, a_{n}\right) \mid a_{1}, \ldots, a_{n} \in \mathbb{Z}_{2}\right\}$. Since we work with \mathbb{Z}_{2} the only elements of our field are $\{0,1\}$. As a result there are exactly 2^{n} vectors in the span of S.
13. (a) Say $\{u, v\}$ is linearly independent and assume $a(u+v)+b(u-v)=0$ for some $a, b \in F$. Then $(a+b) u+(a-b) v=0$. By the linear independence of u, v we need

$$
\begin{aligned}
& a+b=0 \\
& a-b=0 .
\end{aligned}
$$

Adding the two equations we get $2 a=0$ which implies $a=0$ (since the characteristic of F is not $2)$. This then yields $b=0$.

Say $\{u+v, u-v\}$ is linearly independent. Assume $c u+d v=0$ for some $c, d \in F$. Note that $u=\frac{1}{2}(u+v+u-v), v=\frac{1}{2}(u+v-(u-v))$ (2 has an inverse because the characteristic is not 2). Then $c u+d v=0$ becomes $c \frac{1}{2}(u+v+u-v)+d \frac{1}{2}(u+v-(u-v))=0$ and by independence and multiplication by 2

$$
\begin{aligned}
& c+d=0 \\
& c-d=0 .
\end{aligned}
$$

which yields $c=d=0$ just like above.
(b) For this the argument is similar to part (a) above, where one notes that

$$
\begin{aligned}
u & =\frac{1}{2}(u+v+u+w-(v+w)) \\
v & =\frac{1}{2}(u+v+v+w-(u+w)) \\
w & =\frac{1}{2}(u+w+v+w-(u+v))
\end{aligned}
$$

Section 1.6.

3. No, the dimension of P_{3} is 4 so it cannot be spanned by 3 vectors.
4. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ be the canonical basis for F^{4}. We can write

$$
\begin{aligned}
e_{1} & =u_{1}-u_{2} \\
e_{2} & =u_{2}-u_{3} \\
e_{3} & =u_{3}-u_{4} \\
e_{4} & =u_{4} .
\end{aligned}
$$

Therefore, an arbitrary vector (a, b, c, d) in F^{4} can be written as

$$
a e_{1}+b e_{2}+c e_{3}+d e_{4}=a u_{1}+(-a+b) u_{2}+(-b+c) u_{3}+(-c+d) u_{4} .
$$

13. Subtracting the two equations yields $x_{1}-x_{2}=0$ so $x_{1}=x_{2}$. Then, any of the two equations implies $x_{1}=x_{2}=x_{3}$. A basis of the subspace of solutions therefore is $(1,1,1)$.
14. For $i>j$ let $A_{i j}$ be the $n \times n$ matrix which has a +1 on row i, column j, and a -1 on row j, column i. These matrices are clearly linearly independent and they span the set of skew-symmetric matrices. There are $\left(n^{2}-n\right) / 2$ such matrices so this number is also the dimension of W.
15. (a) V has finite dimension n and is spanned by S. There exists a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of V. Since V is the span of S every element from $\left\{v_{1}, \ldots, v_{n}\right\}$ is a finite linear combination of vectors from S. Thus, there exists $\tilde{S} \subset S, \tilde{S}$ finite such that $\left\{v_{1}, \ldots, v_{n}\right\} \subset \operatorname{span}(\tilde{S})$. As a result $V=\operatorname{span}(\tilde{S})$. By theorem 1.9 from the book a subset of \tilde{S} (and thus a subset of S) is a basis for V.
(b) By part (a) S contains a basis of V. A basis of V has exactly n elements so we are done.
16. $\operatorname{dim}\left(P_{n}\right)=n+1$. Note that $\left\{f \in P_{n}(\mathbb{R}): f(a)=0\right\}=\left\{(x-a) g \mid g \in P_{n-1}\right\}$. This subset can therefore be identified with P_{n-1} so the dimension is n.
17. (a) Following the hint, let $\left\{u_{1}, \ldots, u_{k}\right\}$ be a basis for $W_{1} \cap W_{2}$ and extend it to a basis $\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{m}\right\}$ for W_{1} and to a basis $\left\{u_{1}, \ldots, u_{k}, w_{1}, \ldots, w_{p}\right\}$ for W_{2}. Then, a basis for $W_{1}+W_{2}$ will be $\left\{u_{1}, \ldots, u_{k}, v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{p}\right\}$. As a result

$$
\begin{aligned}
\operatorname{dim}\left(W_{1} \cap W_{2}\right) & =k \\
\operatorname{dim}\left(W_{1}\right) & =k+m \\
\operatorname{dim}\left(W_{2}\right) & =k+p \\
\operatorname{dim}\left(W_{1}+W_{2}\right) & =k+m+p
\end{aligned}
$$

Therefore, $\operatorname{dim}\left(W_{1} \cap W_{2}=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)\right.$.
(b) Say $V=W_{1} \oplus W_{2}$. Then $W_{1} \cap W_{2}=\{0\}$ so $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=0$ and the formula from part (a) yields $\operatorname{dim}(V)=\operatorname{dim}\left(W_{1} \cap W_{2}=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-\operatorname{dim}\left(W_{1} \cap W_{2}\right)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)-0=\right.$ $\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$.

Say $\operatorname{dim}(V)=\operatorname{dim}\left(W_{1}\right)+\operatorname{dim}\left(W_{2}\right)$. This implies, by the above formula, that $\operatorname{dim}\left(W_{1} \cap W_{2}\right)=0$ so $W_{1} \cap W_{2}=\{0\}$ and $V=W_{1} \oplus W_{2}$.
34. (a) Let $\left\{v_{1}, \ldots, v_{m}\right\}$ be a basis for W_{1}. If $V=W_{1}$ set $W_{2}=\{0\}$. Otherwise, extend the basis of W_{1} to a basis $\left\{v_{1}, \ldots, v_{m}, w_{1}, \ldots, w_{n}\right\}$ of V. Let $W_{2}=\operatorname{span}\left\{w_{1}, \ldots, w_{n}\right\}$. It is then immediate that $V=W_{1} \oplus W_{2}$.
(b) $W_{1}=\left\{\left(0, a_{2}\right) \mid a_{2} \in \mathbb{R}\right\}$ and $W_{2}=\left\{\left(a_{2} / 2, a_{2}\right) \mid a_{2} \in \mathbb{R}\right\}$.

