Solutions to Homework \#1.
Section 1.2.
6.

$$
M=\left(\begin{array}{llll}
4 & 2 & 1 & 3 \\
5 & 1 & 1 & 4 \\
3 & 1 & 2 & 6
\end{array}\right)
$$

By definition $(2 M)_{i j}=2 M_{i j}$ so

$$
2 M=\left(\begin{array}{cccc}
8 & 4 & 2 & 6 \\
10 & 2 & 2 & 8 \\
6 & 2 & 4 & 12
\end{array}\right)
$$

The matrix $2 M-A$ records the goods sold during the June sale.

$$
2 M-A=\left(\begin{array}{cccc}
8 & 4 & 2 & 6 \\
10 & 2 & 2 & 8 \\
6 & 2 & 4 & 12
\end{array}\right)-\left(\begin{array}{cccc}
5 & 3 & 1 & 2 \\
6 & 2 & 1 & 5 \\
1 & 0 & 3 & 3
\end{array}\right)=\left(\begin{array}{llll}
3 & 1 & 1 & 4 \\
4 & 0 & 1 & 3 \\
5 & 2 & 1 & 9
\end{array}\right)
$$

The total number of suites of all types sold is the sum of all entries

$$
\sum_{i, j}(2 M-A)_{i j}=34
$$

16. Yes. The axioms are satisfied for all elements of \mathbb{R} and hence in particular for all elements of \mathbb{Q}. (In fact, more generally, for any vector space V over a field F, if another field F^{\prime} sits inside F compatibly with its field operations, then V is tautologically a vector space over F^{\prime} as well.)
17. We must check Z satisfies axioms (VS1)-(VS8) using the fact that V, W satisfy them. (Be sure you understand the justification for each equality in the lines below.)
$(\mathrm{VS} 1)\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right)=\left(v_{2}+v_{1}, w_{2}+w_{1}\right)=\left(v_{2}, w_{2}\right)+\left(w_{1}, v_{1}\right)$.
(VS2) $\left(\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)\right)+\left(v_{3}, w_{3}\right)=\left(v_{1}+v_{2}, w_{1}+w_{2}\right)+\left(v_{3}, w_{3}\right)=\left(\left(v_{1}+v_{2}\right)+v_{3},\left(w_{1}+w_{2}\right)+\right.$ $\left.w_{3}\right)=\left(v_{1}+\left(v_{2}+v_{3}\right), w_{1}+\left(w_{2}+w_{3}\right)\right)=\left(v_{1}, w_{1}\right)+\left(v_{2}+v_{3}, w_{2}+w_{3}\right)=\left(v_{1}, w_{1}\right)+\left(\left(v_{2}, w_{2}\right)+\left(v_{3}, w_{3}\right)\right)$
(V3) Take $0=(0,0)$. Then $(v, w)+(0,0)=(v+0, w+0)=(v, w)$.
(V4) Given (v, w), use $(-v,-w)$. Then $(v, w)+(-v,-w)=(v+(-v), w+(-w))=(0,0)$.
(V5) $1(v, w)=(1 v, 1 w)=(v, w)$.
(V6) $(a b)(v, w)=((a b) v,(a b) w)=(a(b v), a(b w))=a(b v, b w)=a(b(v, w))$.
(V7) $a\left(\left(v_{1}, w_{1}\right)+\left(v_{2}, w_{2}\right)\right)=a\left(v_{1}+v_{2}, w_{1}, w_{2}\right)=\left(a\left(v_{1}+v_{2}\right), a\left(w_{1}+w_{2}\right)\right)=\left(a v_{1}+a v_{2}, a w_{1}+\right.$ $\left.a w_{2}\right)=\left(a v_{1}, a w_{1}\right)+\left(a v_{2}, a w_{2}\right)=a\left(v_{1}, w_{1}\right)+a\left(v_{2}, w_{2}\right)$.
(V8) $(a+b)(v, w)=((a+b) v,(a+b) w)=(a v+b v, a w+b w)=(a v, a w)+(b v, b w)=a(v, w)+$ $b(v, w)$.

Section 1.3.
8. (a) Yes. The equations are linear: the addition or scaling of solutions is still a solution.
(b) No. For example, 0 is not contained in W_{2}.
(c) Yes. The equation is linear: the addition or scaling of solutions is still a solution.
(d) Yes. The equation is linear: the addition or scaling of solutions is still a solution.
(e) No. For example, 0 is not contained in W_{5}.
(f) No. While W_{6} is preserved by scaling, it is not preserved by addition. For example, $v=$ $(1, \sqrt{5 / 3}, 0)$ and $w=(0, \sqrt{2}, 1)$ are solutions, but $v+w=(1, \sqrt{5 / 3}+\sqrt{2}, 1)$ is not.
9. $W_{1} \cap W_{3}=\{0\}$.
$W_{1} \cap W_{4}=W_{1}$ which is the line $\{(3 t, t,-t) \mid t \in \mathbb{R}\}$.
$W_{3} \cap W_{4}$ is the line $\{(11 t, 3 t,-t) \mid t \in \mathbb{R}\}$.
19. Suppose $W_{1} \subset W_{2}$. Then $W_{1} \cup W_{2}=W_{2}$ and so $W_{1} \cup W_{2}$ is a subspace since W_{2} is a subspace. Similarly, suppose $W_{2} \subset W_{1}$. Then $W_{1} \cup W_{2}=W_{1}$ and so $W_{1} \cup W_{2}$ is a subspace since W_{1} is a subspace.

Conversely, suppose $W_{1} \cup W_{2}$ is a subspace. Suppose also that $W_{1} \not \subset W_{2}, W_{2} \not \subset W_{1}$, so there are vectors $w_{1} \in W_{1}, w_{2} \in W_{2}$ such that $w_{1} \notin W_{2}, w_{2} \notin W_{1}$. Then $W_{1} \cup W_{2}$ must contain $w_{1}+w_{2}$ since it is a subspace and contains each of w_{1} and w_{2}. But then $w_{1}+w_{2}$ must be in W_{1} or W_{2} since it is in their union. If $w_{1}+w_{2} \in W_{1}$, then $w_{2}=\left(w_{1}+w_{2}\right)-w_{1} \in W_{1}$ since W_{1} is a subspace. But this contradicts our assumption that $w_{2} \notin W_{1}$. Similarly, if $w_{1}+w_{2} \in W_{2}$, then $w_{1}=\left(w_{1}+w_{2}\right)-w_{2} \in W_{2}$ since W_{2} is a subspace. But this contradicts our assumption that $w_{1} \notin W_{2}$. Thus either $W_{1} \subset W_{2}$ or $W_{2} \subset W_{1}$.
23. (a) We will verify the three conditions of Theorem 1.3.
(i) Since W_{1} and W_{2} are subspaces, 0 is in W_{1} and W_{2}, thus $0=0+0 \in W_{1}+W_{2}$
(ii) Given $v_{1}, w_{1} \in W_{1}, v_{2}, w_{2} \in W_{2}$, consider $v_{1}+v_{2}, w_{1}+w_{2} \in W_{1}+W_{2}$. Then we have $\left(v_{1}+v_{2}\right)+\left(w_{1}+w_{2}\right)=\left(v_{1}+w_{1}\right)+\left(v_{2}+w_{2}\right) \in W_{1}+W_{2}$ since $v_{1}+w_{1} \in W_{1}, v_{2}+w_{2} \in W_{2}$.
(iii) Given $w_{1} \in W_{1}, w_{2} \in W_{2}$, consider $w_{1}+w_{2} \in W_{1}+W_{2}$. Then for any $a \in F$, we have $a\left(w_{1}+w_{2}\right)=\left(a w_{1}\right)+\left(a w_{2}\right) \in W_{1}+W_{2}$.
(b) $W_{1} \subset W_{1}+W_{2}$ since $0 \in W_{2}$ and so $w_{1}+0 \in W_{1}+W_{2}$ for any $w_{1} \in W_{1}$. Similarly, $W_{2} \subset W_{1}+W_{2}$ since $0 \in W_{1}$ and so $0+w_{2} \in W_{1}+W_{2}$ for any $w_{2} \in W_{2}$.
29. We must show $W_{1}+W_{2}=M_{n \times n}(F)$ and $W_{1} \cap W_{2}=\{0\}$.

Given $A \in M_{n \times n}(F)$, let $A_{u}, A_{d}, A_{\ell} \in M_{n \times n}(F)$ denote its respective strictly upper triangular, diagonal, and strictly lower triangular parts. To be more precise, their entries are given by

$$
\left(A_{u}\right)_{i j}=\left\{\begin{array}{ll}
A_{i j} & \text { if } i<j \\
0 & \text { if } i \geq j
\end{array} \quad\left(A_{d}\right)_{i j}=\left\{\begin{array}{ll}
A_{i j} & \text { if } i=j \\
0 & \text { if } i \neq j
\end{array} \quad\left(A_{\ell}\right)_{i j}= \begin{cases}A_{i j} & \text { if } i>j \\
0 & \text { if } i \leq j\end{cases}\right.\right.
$$

Thus we have $A=A_{u}+A_{d}+A_{\ell}$ and $\left(A^{t}\right)_{u}=\left(A_{\ell}\right)^{t},\left(A^{t}\right)_{d}=A_{d},\left(A^{t}\right)_{\ell}=\left(A_{u}\right)^{t}$.
Observe that W_{1} contains $A_{u}^{t}+A_{d}+A_{u}$. Observe that W_{2} contains A_{ℓ} and A_{u}^{t}, hence also the difference $A_{\ell}-A_{u}^{t}$. Since $A=\left(A_{u}^{t}+A_{d}+A_{u}\right)+\left(A_{\ell}-A_{u}^{t}\right)$, we see that $W_{1}+W_{2}=M_{n \times n}(F)$.

On the other hand, if $A \in W_{1} \cap W_{2}$, then $A=A_{\ell}, A_{d}=0, A_{u}=0$, but also $A=A^{t}$ so $\left(A_{\ell}\right)^{t}=A_{u}=0$. Thus $A=0$ and so $W_{1} \cap W_{2}=\{0\}$.

Note: the book's assumption that char $F \neq 2$ is a red herring and is not needed!
30. Suppose $V=W_{1} \oplus W_{2}$. Let $v \in V$. Since $V=W_{1}+W_{2}$, there exist $w_{1} \in W_{1}, w_{2} \in W_{2}$ such that $v=w_{1}+w_{2}$. Suppose there were another $w_{1}^{\prime} \in W_{1}, w_{2}^{\prime} \in W_{2}$ such that $v=w_{1}^{\prime}+w_{2}^{\prime}$. Then we have $w_{1}+w_{2}=v=w_{1}^{\prime}+w_{2}^{\prime}$ and so $w_{1}-w_{1}^{\prime}=w_{2}^{\prime}-w_{2}$. But since $W_{1} \cap W_{2}=\{0\}$, we have $w_{1}-w_{1}^{\prime}=0=w_{2}^{\prime}-w_{2}$ and so $w_{1}=w_{1}^{\prime}, w_{2}=w_{2}^{\prime}$.

Conversely, suppose for each $v \in V$, there exist unique $w_{1} \in W_{1}, w_{2} \in W_{2}$ such that $v=w_{1}+w_{2}$. Then we immediately have $V=W_{1}+W_{2}$. Now suppose $w \in W_{1} \cap W_{2}$. Then we can write $w=w+0$ or alternatively $w=0+w$. Thus we must have $w=0$ and so $W_{1} \cap W_{2}=\{0\}$.

Section 1.4.
5. (a) Yes: $(2,-1,1)=(1,0,2)-(-1,1,1)$.
(b) No.
(c) No.
(d) Yes: $(2,-1,1,-3)=2(1,0,1,-1)-(0,1,1,1)$.
(e) Yes: $-x^{3}+2 x^{2}+3 x+3=-1\left(x^{3}+x^{2}+x+1\right)+3\left(x^{2}+x+1\right)+(x+1)$.
(f) No.
(g) Yes:

$$
\left(\begin{array}{cc}
1 & 2 \\
-3 & 4
\end{array}\right)=3\left(\begin{array}{cc}
1 & 0 \\
-1 & 0
\end{array}\right)+4\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)+-2\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right)
$$

(h) No.
15. Suppose $v \in \operatorname{span}\left(S_{1} \cap S_{2}\right)$, so $v=a_{1} v_{1}+\cdots+a_{k} v_{k}$, for vectors $v_{1}, \ldots, v_{k} \in S_{1} \cap S_{2}$ and scalars $a_{1}, \ldots, a_{k} \in F$. Then clearly $v_{1}, \ldots, v_{k} \in S_{1}$ so $v \in \operatorname{span}\left(S_{1}\right)$, and similarly, $v_{1}, \ldots, v_{k} \in S_{2}$ so $v \in \operatorname{span}\left(S_{2}\right)$. Thus $v \in \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$.

Example when $\operatorname{span}\left(S_{1} \cap S_{2}\right)=\operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$: take $V=S_{1}=S_{2}$.
Example when $\operatorname{span}\left(S_{1} \cap S_{2}\right) \neq \operatorname{span}\left(S_{1}\right) \cap \operatorname{span}\left(S_{2}\right)$: take $V=\mathbb{R}, S_{1}=\{1\}, S_{2}=\{2\}$.
Additional problem: Prove that every field F contains either the field of rational numbers \mathbb{Q} or a finite field $\mathbb{F}_{p}=\mathbb{Z} / p \mathbb{Z}$ for a prime p.

Solution: Take the smallest subset of F containing 0,1 and closed under addition, multiplication, and forming additive and multiplicative inverses. Some notation used in the following argument to justify the above strategy: Given a positive integer m, we will write $[m] \in F$ for the sum of m copies $1+\cdots+1$ of the multiplicative unit $1 \in F$. We will also write $[-m] \in F$ for the additive inverse $-[m]$.

Suppose first that char $F=0$ so that $[n] \neq 0$ for any $n>0$. Consider all elements of the form $[m][n]^{-1} \in F$, for integers m, n with $n \neq 0$. From the field axioms, we see that they form a subset closed under addition, multiplication and forming additive and multiplicative inverses. We claim such elements are distinct whenever the corresponding rational numbers are distinct and hence form a copy of \mathbb{Q}. From the field axioms, it suffices to see that any $[m][n]^{-1} \in F$ equal to 0 is in fact of the form $[0][n]^{-1}$. But if $[m][n]^{-1}=0$ then $[m]=[m][n]^{-1}[n]=0$ so $[m]=0$ so $m=0$ since $\operatorname{char} F=0$.

Now if char $F \neq 0$, then we have seen it is equal to some prime p. Consider the p elements of the form $[m] \in F$, for integers m. From the field axioms, we see that they form a field and in fact a copy of \mathbb{F}_{p}.

