Solutions to Homework \#13.

Section 7.1

1. (a) T (b) F (c) T (d) T (e) F (f) F (g) T (h) T

3a. To find the eigenvalues of T, set $T(f)=\lambda f$, which gives $f^{\prime}=(2-\lambda) f$. Thus $2-\lambda$ must be an eigenvalue of the derivative operator, whose only eigenvalue is 0 (because the derivative reduces the degree of a polynomial by one). So the only eigenvalue of T is $\lambda=2$, hence the characteristic polynomial is $-(t-2)^{3}$. Then $T-2 I$ is the operator $f \mapsto-f^{\prime}$, whose nullspace is one-dimensional, spanned by the constant polynomial $1 .(T-2 I)^{2}$ is the operator which sends $f \mapsto f^{\prime \prime}$, whose nullspace is 2-D (spanned by $1, x$), and $(T-2 I)^{2}$ is the operator $f \mapsto-f^{\prime \prime \prime}$, which is the zero map on $P_{2}(\mathbb{R})$. To find our cycle, pick something which is not in the nullspace of $(T-2 I)^{2}$, say x^{2}. Then the next vector in the cycle is $-2 x$, and the third vector 2 . In terms of this basis $\left\{2,-2 x, x^{2}\right\}$, the matrix for T is

$$
\left(\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right)
$$

13. By Thm 7.8, $V=K_{\lambda_{1}} \oplus \cdots \oplus K_{\lambda_{k}}$ (proof omitted). For each $i=1, \ldots, k$, choose a basis β_{i} which is a union of cycles of generalized eigenvectors for $T_{K_{\lambda_{i}}}$. Then $J_{i}=\left[T_{K_{\lambda_{i}}}\right]_{\beta_{i}}$ is a Jordan form for $T_{K_{\lambda_{i}}}$. But also, setting $\beta=\bigcup_{i=1}^{k} \beta_{i}$, we see that β is a basis for V consisting of cycles of generalized eigenvectors for T, so $[T]_{\beta}$ is a Jordan form for T, and since $\beta=\bigcup_{i=1}^{k} \beta_{i},[T]_{\beta}=J_{1} \oplus \cdots \oplus J_{k}$.

Section 7.2

1. (a) T (b) T F (d) T (e) T (f) F (g) F (h) T

4a. By example 5 , we know that $A=Q J_{A} Q^{-1}$, where $J_{A}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right)$. The columns of Q will be cycles from the generalized eigenspaces for A. for $\lambda=1$, we just have a cycle of length one, i.e., and eigenvector, say $(1,2,1)$. For $\lambda=2$ we have the cycle $(1,2,0)$ and $(A-2 I)(1,2,0)=(1,1,-1)$. So we may take Q to be the matrix

$$
\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 2 \\
1 & -1 & 0
\end{array}\right)
$$

5a. The matrix of T with respect to this basis is

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 2 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

For $\lambda=1$, we produce the cycle $e_{3}, 2 e_{2}, 2 e_{1}$. For $\lambda=2$, we have just the one eigenvector e_{4}. Converting back to the original basis, we get the Jordan canonical basis $\left\{2 e^{t}, 2 t e^{t}, t^{2} e^{t}, e^{2 t}\right\}$, with

Jordan form

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right)
$$

6. Since the Jordan canonical form is determined by the dimensions of the spaces $N\left((A-\lambda)^{k}\right)$, it will be enough to show that these dimensions agree for A and A^{T}. But this is clear since $(A-\lambda I)^{T}=A^{T}-\lambda I$ and taking the transpose commutes with taking powers, so (using the fact that the ranks of B and B^{T} are equal, for any square matrix B)

$$
\operatorname{rank}\left(A^{T}-\lambda I\right)^{r}=\operatorname{rank}\left((A-\lambda I)^{T}\right)^{r}=\operatorname{rank}(A-\lambda I)^{r}
$$

Section 7.3

1. (a) F (b) T (c) F (d) T (e) T (f) F (g) F (h) T (i) T

2d. This matrix has the sole eigenvalue 2 , with one-dimensional eigenspace. This implies that its Jordan form consists of a single block, so the minimal polynomial is $(t-2)^{3}$. This is because, for each eigenvalue λ, the factor $(t-\lambda)$ occurs in the minimal polynomial with multiplicity equal to the length of the largest Jordan block associated to λ (in this case, three).
5. We know that the minimal polynomial $p(t)$ of T must divide the polynomial $t^{3}-2 t^{2}+1=t(t-1)^{2}$. Since T is diagonalizable, $p(t)$ must factor into distinct linear factors. Thus the only possibilities are

1. $p(t)=t$
2. $p(t)=t-1$
3. $p(t)=t(t-1)$

All three possibilites are realized. In fact, in the first case, T must have the sole eigenvalue $\lambda=0$, hence is similar to the zero map, hence is equal to the zero map (because if $Q A Q^{-1}=0$, then we get $A=0$). Similarly, in case $2, T$ is the identity map. Finally, in case $3, T$ is similar to the map given by the matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right)$.

