Solutions to Homework \#12.

Section 6.3

2. (b) Take $y=(1,-2)$. Then for $z=\left(z_{1}, z_{2}\right)$, we have $\langle z, y\rangle=z_{1}-2 z_{2}=g\left(z_{1}, z_{2}\right)$.
3. Take $V=\mathbb{R}^{2}$ with the standard inner product and

$$
T=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)
$$

Then

$$
T^{*}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

So $N(T)=\operatorname{span}\{(1,0)\}$ is not equal to $N\left(T^{*}\right)=\operatorname{span}\{(0,1)\}$.
8. Suppose T is invertible and let $\left(T^{-1}\right)^{*}$ denote the adjoint of the inverse.

Then we calculate $\left(T^{-1}\right)^{*} T^{*}=\left(T T^{-1}\right)^{*}=(I d)^{*}=I d$. Thus $\left(T^{-1}\right)^{*}$ is the inverse of T^{*} or in other words $\left(T^{-1}\right)^{*}=\left(T^{*}\right)^{-1}$.
12. (a) For any $x, y \in V$, we have $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$.

If $x \in N(T)$, then for any $y \in V$, we have $0=\langle 0, y\rangle=\left\langle x, T^{*} y\right\rangle$ and so $x \in R\left(T^{*}\right)^{\perp}$. Thus $N(T) \subset R\left(T^{*}\right)^{\perp}$.

If $x \in R\left(T^{*}\right)^{\perp}$, then for any $y \in V$, we have $0=\left\langle x, T^{*} y\right\rangle=\langle T x, y\rangle$ and so $T x=0$ and hence $x \in N(T)$. Thus $R\left(T^{*}\right)^{\perp} \subset N(T)$.
(b) Since V is finite-dimensional, all of its subspaces $W \subset V$ are finite-dimensional, hence we may apply Exercise 13 (c) of Section 6.2 to see $\left(W^{\perp}\right)^{\perp}=W$.

Applying this to the identity of part (a), we obtain $N(T)^{\perp}=\left(R\left(T^{*}\right)^{\perp}\right)^{\perp}=R\left(T^{*}\right)$.
Section 6.4
2. (a) Writing T as a matrix, we have

$$
T=\left(\begin{array}{cc}
2 & -2 \\
-2 & 5
\end{array}\right)
$$

Thus T is real and symmetric so self-adjoint and thus normal with an orthonormal basis of eigenvectors.

Its characteristic polynomial is $\operatorname{chi}_{T}(t)=(2-t)(5-t)-4=t^{2}-7 t+6=(t-1)(t-6)$ and so its eigenvalues are 1,6 .

The corresponding orthonormal eigenvectors are $\frac{1}{\sqrt{5}}(2,1)$ and $\frac{1}{\sqrt{5}}(1,-2)$.
3. Let us take

$$
T=\left(\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right)
$$

Then T is symmetric so self-adjoint hence normal.
Let us choose the basis

$$
\beta=\{(1,0),(1,1)\}
$$

Then with respect to β, the matrix of T takes the form

$$
[T]_{\beta}=\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)
$$

Now this is a real matrix so its adjoint is its transpose

$$
[T]_{\beta}^{*}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)
$$

And we can check that it is not normal

$$
\begin{aligned}
& {[T]_{\beta}[T]_{\beta}^{*}=\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)=\left(\begin{array}{cc}
2 & -2 \\
-2 & 4
\end{array}\right)} \\
& {[T]_{\beta}^{*}[T]_{\beta}=\left(\begin{array}{cc}
1 & 0 \\
-1 & 2
\end{array}\right)\left(\begin{array}{cc}
1 & -1 \\
0 & 2
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & 5
\end{array}\right)}
\end{aligned}
$$

6. (a)

$$
\begin{gathered}
T_{1}^{*}=\frac{1}{2}\left(T^{*}+\left(T^{*}\right)^{*}\right)=\frac{1}{2}\left(T+T^{*}\right)=T_{1} \\
T_{2}^{*}=\frac{1}{-2 i}\left(T^{*}-\left(T^{*}\right)^{*}\right)=\frac{1}{2 i}\left(T-T^{*}\right)=T_{2} \\
T_{1}+i T_{2}=\frac{1}{2}\left(T+T^{*}\right)+i \frac{1}{2 i}\left(T-T^{*}\right)=T
\end{gathered}
$$

(b) If $T=U_{1}+i U_{2}$ with $U_{1}=U_{1}^{*}, U_{2}=U_{2}^{*}$, then

$$
\begin{gathered}
T_{1}=\frac{1}{2}\left(T+T^{*}\right)=\frac{1}{2}\left(\left(U_{1}+i U_{2}\right)+\left(U_{1}^{*}-i U_{2}^{*}\right)\right)=\frac{1}{2}\left(\left(U_{1}+i U_{2}\right)+\left(U_{1}-i U_{2}\right)\right)=U_{1} \\
T_{2}=\frac{1}{2 i}\left(T-T^{*}\right)=\frac{1}{2 i}\left(\left(U_{1}+i U_{2}\right)-\left(U_{1}^{*}-i U_{2}^{*}\right)\right)=\frac{1}{2 i}\left(\left(U_{1}+i U_{2}\right)-\left(U_{1}-i U_{2}\right)\right)=U_{2}
\end{gathered}
$$

(c) T is normal
$\Longleftrightarrow T T^{*}=T^{*} T$
$\Longleftrightarrow\left(T_{1}+i T_{2}\right)\left(T_{1}+i T_{2}\right)^{*}=\left(T_{1}+i T_{2}\right)^{*}\left(T_{1}+i T_{2}\right)$ (substituting from part (a))
$\Longleftrightarrow\left(T_{1}+i T_{2}\right)\left(T_{1}-i T_{2}\right)=\left(T_{1}-i T_{2}\right)\left(T_{1}+i T_{2}\right)$ (using T_{1}, T_{2} self-adjoint as proved in part (a))
$\Longleftrightarrow T_{1} T_{1}+i T_{2} T_{1}-i T_{1} T_{2}+T_{2} T_{2}=T_{1} T_{1}-i T_{2} T_{1}+i T_{1} T_{2}+T_{2} T_{2}$ (multiplying out)
$\Longleftrightarrow T_{1} T_{2}=T_{2} T_{1}$ (simplifying algebraically)
9. T normal means $T T^{*}=T^{*} T$. If $x \in N(T)$ then $T T^{*} x=T^{*} T x=0$ so $T^{*} x \in N(T)$.

But by Exercise 12 of Section 6.3, we know $T^{*} x \in R\left(T^{*}\right)=N(T)^{\perp}$.
Thus $T^{*} x \in N(T) \cap N(T)^{\perp}=\{0\}$ so $T^{*} x=0$ and hence $x \in N\left(T^{*}\right)$.
Thus we have $N(T) \subset N\left(T^{*}\right)$.
Applying the same argument to T^{*} (and using the fact $\left(T^{*}\right)^{*}=T$) we see $N\left(T^{*}\right) \subset N(T)$.
Thus we have proved $N(T)=N\left(T^{*}\right)$.
Now taking orthogonal complements and using Exercise 12 of Section 6.3 again, we have $R\left(T^{*}\right)=N(T)^{\perp}=N\left(T^{*}\right)^{\perp}=R(T)$.

