
MATH 110, Linear Algebra, Fall 2012

Solutions to Homework #12.

Section 6.3

2. (b) Take y = (1,−2). Then for z = (z1, z2), we have 〈z, y〉 = z1 − 2z2 = g(z1, z2).

7. Take V = R2 with the standard inner product and

T =

(
0 1
0 0

)
Then

T ∗ =

(
0 0
1 0

)
So N(T ) = span{(1, 0)} is not equal to N(T ∗) = span{(0, 1)}.

8. Suppose T is invertible and let (T−1)∗ denote the adjoint of the inverse.
Then we calculate (T−1)∗T ∗ = (TT−1)∗ = (Id)∗ = Id. Thus (T−1)∗ is the inverse of T ∗ or in

other words (T−1)∗ = (T ∗)−1.

12. (a) For any x, y ∈ V , we have 〈Tx, y〉 = 〈x, T ∗y〉.
If x ∈ N(T ), then for any y ∈ V , we have 0 = 〈0, y〉 = 〈x, T ∗y〉 and so x ∈ R(T ∗)⊥. Thus

N(T ) ⊂ R(T ∗)⊥.
If x ∈ R(T ∗)⊥, then for any y ∈ V , we have 0 = 〈x, T ∗y〉 = 〈Tx, y〉 and so Tx = 0 and hence

x ∈ N(T ). Thus R(T ∗)⊥ ⊂ N(T ).
(b) Since V is finite-dimensional, all of its subspaces W ⊂ V are finite-dimensional, hence we

may apply Exercise 13 (c) of Section 6.2 to see (W⊥)⊥ = W .
Applying this to the identity of part (a), we obtain N(T )⊥ = (R(T ∗)⊥)⊥ = R(T ∗).

Section 6.4

2. (a) Writing T as a matrix, we have

T =

(
2 −2
−2 5

)
Thus T is real and symmetric so self-adjoint and thus normal with an orthonormal basis of

eigenvectors.
Its characteristic polynomial is chiT (t) = (2− t)(5− t)− 4 = t2 − 7t+ 6 = (t− 1)(t− 6) and so

its eigenvalues are 1, 6.
The corresponding orthonormal eigenvectors are 1√

5
(2, 1) and 1√

5
(1,−2).

3. Let us take

T =

(
1 0
0 2

)
Then T is symmetric so self-adjoint hence normal.

Let us choose the basis
β = {(1, 0), (1, 1)}
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Then with respect to β, the matrix of T takes the form

[T ]β =

(
1 −1
0 2

)
Now this is a real matrix so its adjoint is its transpose

[T ]∗β =

(
1 0
−1 2

)
And we can check that it is not normal

[T ]β[T ]∗β =

(
1 −1
0 2

)(
1 0
−1 2

)
=

(
2 −2
−2 4

)

[T ]∗β[T ]β =

(
1 0
−1 2

)(
1 −1
0 2

)
=

(
1 −1
−1 5

)

6. (a)

T ∗1 =
1

2
(T ∗ + (T ∗)∗) =

1

2
(T + T ∗) = T1

T ∗2 =
1

−2i
(T ∗ − (T ∗)∗) =

1

2i
(T − T ∗) = T2

T1 + iT2 =
1

2
(T + T ∗) + i

1

2i
(T − T ∗) = T

(b) If T = U1 + iU2 with U1 = U∗1 , U2 = U∗2 , then

T1 =
1

2
(T + T ∗) =

1

2
((U1 + iU2) + (U∗1 − iU∗2 )) =

1

2
((U1 + iU2) + (U1 − iU2)) = U1

T2 =
1

2i
(T − T ∗) =

1

2i
((U1 + iU2)− (U∗1 − iU∗2 )) =

1

2i
((U1 + iU2)− (U1 − iU2)) = U2

(c) T is normal
⇐⇒ TT ∗ = T ∗T
⇐⇒ (T1 + iT2)(T1 + iT2)

∗ = (T1 + iT2)
∗(T1 + iT2) (substituting from part (a))

⇐⇒ (T1 + iT2)(T1− iT2) = (T1− iT2)(T1 + iT2) (using T1, T2 self-adjoint as proved in part (a))
⇐⇒ T1T1 + iT2T1 − iT1T2 + T2T2 = T1T1 − iT2T1 + iT1T2 + T2T2 (multiplying out)
⇐⇒ T1T2 = T2T1 (simplifying algebraically)

9. T normal means TT ∗ = T ∗T . If x ∈ N(T ) then TT ∗x = T ∗Tx = 0 so T ∗x ∈ N(T ).
But by Exercise 12 of Section 6.3, we know T ∗x ∈ R(T ∗) = N(T )⊥.
Thus T ∗x ∈ N(T ) ∩N(T )⊥ = {0} so T ∗x = 0 and hence x ∈ N(T ∗).
Thus we have N(T ) ⊂ N(T ∗).
Applying the same argument to T ∗ (and using the fact (T ∗)∗ = T ) we see N(T ∗) ⊂ N(T ).
Thus we have proved N(T ) = N(T ∗).
Now taking orthogonal complements and using Exercise 12 of Section 6.3 again, we have

R(T ∗) = N(T )⊥ = N(T ∗)⊥ = R(T ).
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