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Solutions to Homework #11.

Section 6.1

4. (a) We are left to check some of the defining properties of an inner product. Namely,

〈cA,B〉 = Tr(B∗cA)

= cTr(B∗A)

= c〈A,B〉

and

〈B,A〉 = Tr(A∗B)

= Tr(A∗B)

= Tr((A∗B)T )

= Tr(B∗(A∗)∗)

= Tr(B∗A)

= 〈A,B〉.

8. (a) In 〈(a, b), (c, d)〉 = ac− bd set a = c = 0 and b = d = 1 to get 〈(0, 1), (0, 1)〉 = −1 < 0 which
contradicts the positivity property of inner products.

9. (a) Let the basis be β = {z1, . . . , zn}. We know that 〈x, zi〉 = 0 for i = 1, . . . , n. Since β is a
basis, there exists scalars αi such that x =

∑
αizi. Then using the properties of an inner product

〈x, x〉 = 〈x,
∑

αizi〉

=
∑

αi〈x, zi〉
= 0

Therefore, x = 0.
(b) We note that 〈x− y, zi〉 = 0 and we apply the result from part (a) to get that x− y = 0.

11. The equality follows easily from

〈x+ y, x+ y〉 = 〈x, x+ y〉+ 〈y, x+ y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉

and

〈x− y, x− y〉 = 〈x, x〉+ 〈x,−y〉+ 〈−y, x〉+ 〈−y,−y〉.

12. First note that by orthogonality 〈vi,
∑

j αjvj〉 =
∑

j ᾱj〈vi, vj〉 = ᾱi〈vi, vi〉 since 〈vi, vj〉 = 0 if
i 6= j. Using this

〈
∑
i

aivi,
∑
j

αjvj〉 =
∑
i

αi〈vi,
∑
j

αjvj〉

=
∑
i

αiᾱi〈vi, vi〉.
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Section 6.2

2. (b) w1 = (1, 1, 1), w2 = (0, 1, 1), w3 = (0, 0, 1). First we need to use the Gram-Schmidt process
from Theorem 6.4 to get an orthogonal basis {v1, v2, v3}. For this we set v1 = w1 and then compute

v2 = w2 −
〈w2, v1〉
〈v1, v1〉

v1

v3 = w3 −
〈w3, v2〉
〈v2, v2〉

v2 −
〈w3, v1〉
〈v1, v1〉

v1

Finally, we normalize the vectors to get an orthonormal basis (
√
3
3 (1, 1, 1),

√
6
6 (−2, 1, 1),

√
2
2 (0,−1, 1)).

Then the fourier coefficients will be 2
√
3

3 ,−
√
6
6 ,
√
2
2 .

6. By Theorem 6.6 there exists u ∈ W, y ∈ W⊥ such that x = u + y. Note that y 6= 0 since we
know x /∈W . Thus,

〈x, y〉 = 〈u+ y, y〉
= 〈u, y〉+ 〈y, y〉
= 〈y, y〉
> 0.

13. (a) Pick u ∈ S⊥. By the definition of the orthogonal complement we have 〈u, s〉 = 0 ∀s ∈ S.
In particular, since S0 ⊂ S, we have 〈u, s〉 = 0 ∀s ∈ S0. This means that u ∈ S⊥0 .

(b) Let u ∈ S. Then for any s ∈ S⊥ we have 〈u, s〉 = 0. But this is exactly what it means to
be in the orthogonal complement of S⊥. Thus, s ∈ (S⊥)⊥.

(c) By (b) W ⊂ (W⊥)⊥. We need to prove equality. Suppose that W 6= (W⊥)⊥. Then there
exists x ∈ (W⊥)⊥ such that x /∈ W . By Exercise 6 there exists y ∈ V such that y ∈ W⊥ and
〈x, y〉 6= 0. But this contradicts the fact that x ∈ (W⊥)⊥.

(d) By Theorem 6.6 we have v = W + W⊥. We just need to show W ∩ W⊥ = {0}. Say
w ∈ W ∩ W⊥. Then 〈w,w〉 = 0 since we have the inner product of something from W with
something from W⊥. This implies that w = 0.

12. First note that if y = α, z = β are free variables then we can write that x = −3α + 2β.
This gives us the basis (−3, 1, 0), (2, 0, 1) for W . Now we use Gram-Schmidt on this basis to get
v1 = 1√

10
(−310) and v2 = 5

7(1/5, 3/5, 1). Therefore, the projection of u on W will be

〈u, v1〉v1 + 〈u, v2〉v2 =
1

14
(29, 17, 40).
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