Solutions to Homework \#11.
Section 6.1
4. (a) We are left to check some of the defining properties of an inner product. Namely,

$$
\begin{aligned}
\langle c A, B\rangle & =\operatorname{Tr}\left(B^{*} c A\right) \\
& =c \operatorname{Tr}\left(B^{*} A\right) \\
& =c\langle A, B\rangle
\end{aligned}
$$

and

$$
\begin{aligned}
\overline{\langle B, A\rangle} & =\overline{\operatorname{Tr}\left(A^{*} B\right)} \\
& =\operatorname{Tr}\left(\overline{A^{*} B}\right) \\
& \left.=\operatorname{Tr}\left(\overline{A^{*} B}\right)^{T}\right) \\
& =\operatorname{Tr}\left(\overline{B^{*}}\left(A^{*}\right)^{*}\right) \\
& =\operatorname{Tr}\left(B^{*} A\right) \\
& =\langle A, B\rangle .
\end{aligned}
$$

8. (a) In $\langle(a, b),(c, d)\rangle=a c-b d$ set $a=c=0$ and $b=d=1$ to get $\langle(0,1),(0,1)\rangle=-1<0$ which contradicts the positivity property of inner products.
9. (a) Let the basis be $\beta=\left\{z_{1}, \ldots, z_{n}\right\}$. We know that $\left\langle x, z_{i}\right\rangle=0$ for $i=1, \ldots, n$. Since β is a basis, there exists scalars α_{i} such that $x=\sum \alpha_{i} z_{i}$. Then using the properties of an inner product

$$
\begin{aligned}
\langle x, x\rangle & =\left\langle x, \sum \alpha_{i} z_{i}\right\rangle \\
& =\sum \bar{\alpha}_{i}\left\langle x, z_{i}\right\rangle \\
& =0
\end{aligned}
$$

Therefore, $x=0$.
(b) We note that $\left\langle x-y, z_{i}\right\rangle=0$ and we apply the result from part (a) to get that $x-y=0$.
11. The equality follows easily from

$$
\begin{aligned}
\langle x+y, x+y\rangle & =\langle x, x+y\rangle+\langle y, x+y\rangle \\
& =\langle x, x\rangle+\langle x, y\rangle+\langle y, x\rangle+\langle y, y\rangle
\end{aligned}
$$

and

$$
\langle x-y, x-y\rangle=\langle x, x\rangle+\langle x,-y\rangle+\langle-y, x\rangle+\langle-y,-y\rangle .
$$

12. First note that by orthogonality $\left\langle v_{i}, \sum_{j} \alpha_{j} v_{j}\right\rangle=\sum_{j} \bar{\alpha}_{j}\left\langle v_{i}, v_{j}\right\rangle=\bar{\alpha}_{i}\left\langle v_{i}, v_{i}\right\rangle$ since $\left\langle v_{i}, v_{j}\right\rangle=0$ if $i \neq j$. Using this

$$
\begin{aligned}
\left\langle\sum_{i} a_{i} v_{i}, \sum_{j} \alpha_{j} v_{j}\right\rangle & =\sum_{i} \alpha_{i}\left\langle v_{i}, \sum_{j} \alpha_{j} v_{j}\right\rangle \\
& =\sum_{i} \alpha_{i} \bar{\alpha}_{i}\left\langle v_{i}, v_{i}\right\rangle
\end{aligned}
$$

Section 6.2

2. (b) $w_{1}=(1,1,1), w_{2}=(0,1,1), w_{3}=(0,0,1)$. First we need to use the Gram-Schmidt process from Theorem 6.4 to get an orthogonal basis $\left\{v_{1}, v_{2}, v_{3}\right\}$. For this we set $v_{1}=w_{1}$ and then compute

$$
\begin{aligned}
& v_{2}=w_{2}-\frac{\left\langle w_{2}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1} \\
& v_{3}=w_{3}-\frac{\left\langle w_{3}, v_{2}\right\rangle}{\left\langle v_{2}, v_{2}\right\rangle} v_{2}-\frac{\left\langle w_{3}, v_{1}\right\rangle}{\left\langle v_{1}, v_{1}\right\rangle} v_{1}
\end{aligned}
$$

Finally, we normalize the vectors to get an orthonormal basis $\left(\frac{\sqrt{3}}{3}(1,1,1), \frac{\sqrt{6}}{6}(-2,1,1), \frac{\sqrt{2}}{2}(0,-1,1)\right)$. Then the fourier coefficients will be $\frac{2 \sqrt{3}}{3},-\frac{\sqrt{6}}{6}, \frac{\sqrt{2}}{2}$.
6. By Theorem 6.6 there exists $u \in W, y \in W^{\perp}$ such that $x=u+y$. Note that $y \neq 0$ since we know $x \notin W$. Thus,

$$
\begin{aligned}
\langle x, y\rangle & =\langle u+y, y\rangle \\
& =\langle u, y\rangle+\langle y, y\rangle \\
& =\langle y, y\rangle \\
& >0 .
\end{aligned}
$$

13. (a) Pick $u \in S^{\perp}$. By the definition of the orthogonal complement we have $\langle u, s\rangle=0 \forall s \in S$. In particular, since $S_{0} \subset S$, we have $\langle u, s\rangle=0 \forall s \in S_{0}$. This means that $u \in S_{0}^{\perp}$.
(b) Let $u \in S$. Then for any $s \in S^{\perp}$ we have $\langle u, s\rangle=0$. But this is exactly what it means to be in the orthogonal complement of S^{\perp}. Thus, $s \in\left(S^{\perp}\right)^{\perp}$.
(c) By (b) $W \subset\left(W^{\perp}\right)^{\perp}$. We need to prove equality. Suppose that $W \neq\left(W^{\perp}\right)^{\perp}$. Then there exists $x \in\left(W^{\perp}\right)^{\perp}$ such that $x \notin W$. By Exercise 6 there exists $y \in V$ such that $y \in W^{\perp}$ and $\langle x, y\rangle \neq 0$. But this contradicts the fact that $x \in\left(W^{\perp}\right)^{\perp}$.
(d) By Theorem 6.6 we have $v=W+W^{\perp}$. We just need to show $W \cap W^{\perp}=\{0\}$. Say $w \in W \cap W^{\perp}$. Then $\langle w, w\rangle=0$ since we have the inner product of something from W with something from W^{\perp}. This implies that $w=0$.
14. First note that if $y=\alpha, z=\beta$ are free variables then we can write that $x=-3 \alpha+2 \beta$. This gives us the basis $(-3,1,0),(2,0,1)$ for W. Now we use Gram-Schmidt on this basis to get $v_{1}=\frac{1}{\sqrt{10}}(-310)$ and $v_{2}=\frac{5}{7}(1 / 5,3 / 5,1)$. Therefore, the projection of u on W will be

$$
\left\langle u, v_{1}\right\rangle v_{1}+\left\langle u, v_{2}\right\rangle v_{2}=\frac{1}{14}(29,17,40) .
$$

