MATH 110, Linear Algebra, Fall 2012

Solutions to Homework #10.
Section 5.2.

3 (f). Let 8 ={A1, As, Az, A4} be given by

10 0 1 0 1 0 0
Sl ) (I R S R

Note that T(A;) = Ay, T(Az) = Ay, T(A3) = —As, and T(A4) = Ay4. Thus every element of f is
an eigenvector for T', so by Theorem 5.4 we will have shown that T is diagonalizable once we show
that 8 is a basis for Max2(R). Since dim May2(R) = 4, it suffices to show that § is a spanning set.
Observe that

b 1 1
(Z d) :aA]_+§(b+C)A2+§(b—C)A3+dA4

Thus (8 spans May2(R), and T is diagonalizable.
Alternatively, one could let v be the standard basis for Ma,2(R) and obtain

[T]w =

o O O
O = O O
O O = O
_ o O O

One can now find that the characteristic polynomial of T'is (t—1)3(¢+1), and show that dim F; = 3
by solving ([T, — I)z = 0.

7. The characteristic polynomial of A is

1—t 4\ L
det( ) 3_t>_t—4t—5_(t 5)(t +1).

The eigenvalues of A are —1 and 5. Solving (A + I)z = 0 gives
x=c(-2,1), ceR.
Similarly, solving (A — 5I)z = 0 gives

zr=c(l,1), ceR.
) G-
=E)EHE

Thus

and
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(Y DY
- _% <—12 D <(_3)n 591> <—11 :;) 2)

1 <2(—1)"+5" —2(—1)”+2-5n)

3\ (=) 45" (=) +2-5"

We now have

12. (a) Let Bz be the eigenspace of T' corresponding to A, and let Ep-1 y-1 be the eigenspace
of T~1 corresponding to A™!. We show that these subspaces are equal by showing that they are
contained in each other.

Suppose * € Er . Then T(z) = Az, and applying 7! to both sides gives x = AT ~!(z). Since
T is invertible, 0 is not an eigenvalue of T and consequently A # 0. Thus dividing both sides by A
gives T 1(z) = A1z, and so © € Ep-1 5-1.

Conversely, suppose € Ep-1 y-1. Then T~Y(x) = A 'z, and applying 7 to both sides gives
@ = A"'T(x). Multiplying both sides by A gives T'(x) = Az, and thus z € Ep ) and Epy = Ep-1 5-1.

(b) Suppose T is diagonalizable. Then there is a basis § for V' such that
A1 0
[T]s = -
0 An
Since T is invertible, A\; # 0. Then we have
At 0
[T~ = (T]p)~" = '

Since this matrix is diagonal, 7~ is diagonalizable.

11
A= (O 2) .
Then the eigenvalues of A are 1 and 2 and the eigenspaces are 1-dimensional. One can check that

the first standard basis vector is a basis for the eigenspace of A corresponding to 1. However, the
first standard basis vector is not an eigenvector for

, (10
A_<1 2).

(b) Recall that E\ = dimNull(A — AJ) and similarly F} = dim Null(A* — AI). By the dimension
theorem,

dim Null(A — AI) = n —rank(A — ), dim Null(A" — A\I) = n — rank(A" — \I).

13. (a) Let
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Since (A — M)t = A® — X\, and rank B = rank B! for all matrices B, we have
rank(A — A\I) = rank(A" — \I)
and thus
dim Null(A — A\I) = dim Null(A" — \I).

(c) Recall from the problem description that A and A’ have the same eigenvalues with the same
multiplicities. Let m) be the multiplicity of A as an eigenvalue of A (and as an eigenvalue of
AY). Suppose that A is diagonalizable. Then by 5.9, the characterististic polynomial of A (and
thus of A') splits. If \; are the eigenvalues of A, then Theorem 5.9 says dim(E,) = m,. But
dim F = dim E)\ = m,, so by Theorem 5.9, A is diagonalizable.

18. (a) Note that if D; and Dy are diagonal matrices, then D1 Dy = DyD;. Using that fact and
Theorem 2.11, we get
[TUlg = [T]5[U]s = [Ulg[T)s = [UT]s.

By Theorem 2.20, we can conclude from [TU]z = [UT]g that TU = UT.

(b) Let @ be a matrix such that Q' AQ and Q~!BQ are diagonal. As noted above, this means
that these matrices commute. Then

Q™'ABQ = (Q7'AQ)(Q7'BQ) = (Q7'BQ)(Q™'AQ) = Q7' BAQ.
Multiplying the above by Q on the left and Q! on the right gives AB = BA.

Section 5.4.

3. (a) Since T'(0) € {0}, the zero subspace is invariant. Since T'(V)) C V by definition, V is also
invariant.

(b) If 2 € N(T), then T(z) = 0 € N(T), so T(N(T))

C N(T). For all z € V, T(x) € R(T) by
definition. Thus this holds if x € R(T'), and so T(R(T)) C R

(T).

(c) If z € E\, then T'(x) = Az € E), since E) is a subspace. Thus T(E)) C E).

6. (a) We have 7'(1,0,0,0) = (1,0,1,1), and then 7°(1,0,1,1) = (1,—1,2,2). Applying T again we
get T'(1,—-1,2,2) = (0,-3,3,3). Row reducing

11 1 1 00
0 0 -1 010
A
01 2 00 1}
01 2 0 00

we can see that {e1,T(e1),T?(e1)} is linearly independent. However

0(1,0,0,0) — 3(1,0,1,1) + 3(1, —1,2,2) = (0, —3,3,3),
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so T3(e1) € span{ey,T(e1), T%(e1)}. Thus {(1,0,0,0),(1,0,1,1),(1,—1,2,2)} is a basis for the T-
cyclic subspace generated by (1,0,0,0).

18. (a) If ag # 0, then f(0) = ag # 0 so 0 is not an eigenvalue of A. Thus A is invertible. Con-
versely, if A is invertible, then f(0) # 0. But f(0) = ag, so ag # 0.

(b) By the Cayley-Hamilton Theorem, we have
(—1)"A™ + a, 1 A" 4 a1 A+ agl =0.
Sine ag # 0, we can subtract agl from both sides and divide by —ag to get
—agt (-1)"A" + ap_1 A"+ ayA) =1
Factoring out an A gives
I= —aal ((—1)"A"_1 +ap 1 AV 2+ all) A.
Since A is square, we have
A = —agt ()" A ap g AR ).

(c) The characteristic polynomial of A is f(t) = (1 —t)(2 —t)(—=1—t) = —t3 + 2t +¢ — 2. Since 0
is not an eigenvalue of A, it is invertible. By part (b),

2 —2 —4

1 1
A*1:§(—A2+2A+I):§ 0 1 3
0 0 -2

19. We proceed by induction on k. If &k = 1, then A = (—ap), and det(A — tI) = —ag — t =
(=1)'(ao +t).
Now assume the result for k£, and we will prove it for £ + 1. We have

0 - 0 —a 1 —t -~ 0
1 -~ 0 —ap 0 1 - 0
det(A — tI) = —tdet | : : : + (=1)**2(—ag) det :
0 - 0 —agp_1 0 0 - —t
0 - 1 —ay 00 - 1

Note that the factor (—1)**+2 arises since —aq is in the (1,% + 1) position in the matrix, and that
(=1)F*2(—ap) = (=1)¥*lay. We can compute the determinant of the first matrix above by the
induction hypothesis, and the second matrix has determinant 1. Then
det(A —tI) = —t(=1)*(a1 + agt + - - - + apt* 1 + %) + (=1)F g
= (=DM N art + agt? + -+ apt® + 7T 4 (—1)Fag
= (=DM ag 4 art + - + apt® + tFTL).
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42. If n =1, then A = (1) and the characteristic polynomial is ¢ — 1. We now assume n > 1.

Observe that the columns of A are identical, so their span is just span(1,1,1,1), which has
dimension 1. Thus rank A = 1, so dimNull A = n — 1 by the dimension theorem. That is, 0 is an
eigenvalue and dim Fy = n — 1. Also, note that

1 n
A =1:
1 n
so (1,...,1) is an eigenvector with eigenvalue n. If my is the multiplicity of A, then by Theorem

5.7 we have 1 < dim(E)) < my. Thus my > n — 1 and m,, > 1. However, the sum of the
multiplicities of the eigenvalues can be at most the degree of the characteristic polynomial, which
is n. Thus we must have mg = n — 1 and m, = 1, and A cannot have any other eigenvalues as

otherwise the multiplicities would sum to greater than n. Thus the characteristic polynomial of A
is (—=1)"t" "t —n).




