
MATH 110, Linear Algebra, Fall 2012

Solutions to Homework #10.

Section 5.2.

3 (f). Let β = {A1, A2, A3, A4} be given by

A1 =

(
1 0
0 0

)
, A2 =

(
0 1
1 0

)
, A3 =

(
0 1
−1 0

)
, A4 =

(
0 0
0 1

)
.

Note that T (A1) = A1, T (A2) = A2, T (A3) = −A3, and T (A4) = A4. Thus every element of β is
an eigenvector for T , so by Theorem 5.4 we will have shown that T is diagonalizable once we show
that β is a basis for M2×2(R). Since dimM2×2(R) = 4, it suffices to show that β is a spanning set.
Observe that (

a b
c d

)
= aA1 +

1

2
(b+ c)A2 +

1

2
(b− c)A3 + dA4.

Thus β spans M2×2(R), and T is diagonalizable.
Alternatively, one could let γ be the standard basis for M2×2(R) and obtain

[T ]γ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

One can now find that the characteristic polynomial of T is (t−1)3(t+1), and show that dimE1 = 3
by solving ([T ]γ − I)x = 0.

7. The characteristic polynomial of A is

det

(
1− t 4

2 3− t

)
= t2 − 4t− 5 = (t− 5)(t+ 1).

The eigenvalues of A are −1 and 5. Solving (A+ I)x = 0 gives

x = c(−2, 1), c ∈ R.

Similarly, solving (A− 5I)x = 0 gives

x = c(1, 1), c ∈ R.

Thus (
−2 1
1 1

)−1(
1 4
2 3

)(
−2 1
1 1

)
=

(
−1 0
0 5

)
,

and

A =

(
−2 1
1 1

)(
−1 0
0 5

)(
−2 1
1 1

)−1
.
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We now have

An =

(
−2 1
1 1

)(
(−1)n 0

0 5n

)(
−2 1
1 1

)−1
(1)

= −1

3

(
−2 1
1 1

)(
(−1)n 0

0 5n

)(
1 −1
−1 −2

)
(2)

=
1

3

(
2(−1)n + 5n −2(−1)n + 2 · 5n
−(−1)n + 5n (−1)n + 2 · 5n

)
. (3)

12. (a) Let ET,λ be the eigenspace of T corresponding to λ, and let ET−1,λ−1 be the eigenspace
of T−1 corresponding to λ−1. We show that these subspaces are equal by showing that they are
contained in each other.

Suppose x ∈ ET,λ. Then T (x) = λx, and applying T−1 to both sides gives x = λT−1(x). Since
T is invertible, 0 is not an eigenvalue of T and consequently λ 6= 0. Thus dividing both sides by λ
gives T−1(x) = λ−1x, and so x ∈ ET−1,λ−1 .

Conversely, suppose x ∈ ET−1,λ−1 . Then T−1(x) = λ−1x, and applying T to both sides gives
x = λ−1T (x). Multiplying both sides by λ gives T (x) = λx, and thus x ∈ ET,λ and ET,λ = ET−1,λ−1 .

(b) Suppose T is diagonalizable. Then there is a basis β for V such that

[T ]β =

λ1 0
. . .

0 λn

 .

Since T is invertible, λj 6= 0. Then we have

[T−1]β = ([T ]β)−1 =

λ
−1
1 0

. . .

0 λ−1n

 .

Since this matrix is diagonal, T−1 is diagonalizable.

13. (a) Let

A =

(
1 1
0 2

)
.

Then the eigenvalues of A are 1 and 2 and the eigenspaces are 1-dimensional. One can check that
the first standard basis vector is a basis for the eigenspace of A corresponding to 1. However, the
first standard basis vector is not an eigenvector for

At =

(
1 0
1 2

)
.

(b) Recall that Eλ = dim Null(A − λI) and similarly E′λ = dim Null(At − λI). By the dimension
theorem,

dim Null(A− λI) = n− rank(A− λI), dim Null(At − λI) = n− rank(At − λI).
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Since (A− λI)t = At − λI, and rankB = rankBt for all matrices B, we have

rank(A− λI) = rank(At − λI)

and thus
dim Null(A− λI) = dim Null(At − λI).

(c) Recall from the problem description that A and At have the same eigenvalues with the same
multiplicities. Let mλ be the multiplicity of λ as an eigenvalue of A (and as an eigenvalue of
At). Suppose that A is diagonalizable. Then by 5.9, the characterististic polynomial of A (and
thus of At) splits. If λj are the eigenvalues of A, then Theorem 5.9 says dim(Eλ) = mλ. But
dimE′λ = dimEλ = mλ, so by Theorem 5.9, At is diagonalizable.

18. (a) Note that if D1 and D2 are diagonal matrices, then D1D2 = D2D1. Using that fact and
Theorem 2.11, we get

[TU ]β = [T ]β[U ]β = [U ]β[T ]β = [UT ]β.

By Theorem 2.20, we can conclude from [TU ]β = [UT ]β that TU = UT .

(b) Let Q be a matrix such that Q−1AQ and Q−1BQ are diagonal. As noted above, this means
that these matrices commute. Then

Q−1ABQ = (Q−1AQ)(Q−1BQ) = (Q−1BQ)(Q−1AQ) = Q−1BAQ.

Multiplying the above by Q on the left and Q−1 on the right gives AB = BA.

Section 5.4.

3. (a) Since T (0) ∈ {0}, the zero subspace is invariant. Since T (V ) ⊆ V by definition, V is also
invariant.

(b) If x ∈ N(T ), then T (x) = 0 ∈ N(T ), so T (N(T )) ⊆ N(T ). For all x ∈ V , T (x) ∈ R(T ) by
definition. Thus this holds if x ∈ R(T ), and so T (R(T )) ⊆ R(T ).

(c) If x ∈ Eλ, then T (x) = λx ∈ Eλ since Eλ is a subspace. Thus T (Eλ) ⊆ Eλ.

6. (a) We have T (1, 0, 0, 0) = (1, 0, 1, 1), and then T (1, 0, 1, 1) = (1,−1, 2, 2). Applying T again we
get T (1,−1, 2, 2) = (0,−3, 3, 3). Row reducing

1 1 1
0 0 −1
0 1 2
0 1 2

 


1 0 0
0 1 0
0 0 1
0 0 0

 ,

we can see that {e1, T (e1), T
2(e1)} is linearly independent. However

0(1, 0, 0, 0)− 3(1, 0, 1, 1) + 3(1,−1, 2, 2) = (0,−3, 3, 3),
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so T 3(e1) ∈ span{e1, T (e1), T
2(e1)}. Thus {(1, 0, 0, 0), (1, 0, 1, 1), (1,−1, 2, 2)} is a basis for the T -

cyclic subspace generated by (1, 0, 0, 0).

18. (a) If a0 6= 0, then f(0) = a0 6= 0 so 0 is not an eigenvalue of A. Thus A is invertible. Con-
versely, if A is invertible, then f(0) 6= 0. But f(0) = a0, so a0 6= 0.

(b) By the Cayley-Hamilton Theorem, we have

(−1)nAn + an−1A
n−1 + · · ·+ a1A+ a0I = 0.

Sine a0 6= 0, we can subtract a0I from both sides and divide by −a0 to get

−a−10

(
(−1)nAn + an−1A

n−1 + · · ·+ a1A
)

= I.

Factoring out an A gives

I = −a−10

(
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1I
)
A.

Since A is square, we have

A−1 = −a−10

(
(−1)nAn−1 + an−1A

n−2 + · · ·+ a1I
)
.

(c) The characteristic polynomial of A is f(t) = (1− t)(2− t)(−1− t) = −t3 + 2t2 + t− 2. Since 0
is not an eigenvalue of A, it is invertible. By part (b),

A−1 =
1

2
(−A2 + 2A+ I) =

1

2

2 −2 −4
0 1 3
0 0 −2

 .

19. We proceed by induction on k. If k = 1, then A = (−a0), and det(A − tI) = −a0 − t =
(−1)1(a0 + t1).

Now assume the result for k, and we will prove it for k + 1. We have

det(A− tI) = −t det


0 · · · 0 −a1
1 · · · 0 −a2
...

...
...

0 · · · 0 −ak−1
0 · · · 1 −ak

+ (−1)k+2(−a0) det


1 −t · · · 0
0 1 · · · 0
...

...
...

0 0 · · · −t
0 0 · · · 1

 .

Note that the factor (−1)k+2 arises since −a0 is in the (1, k + 1) position in the matrix, and that
(−1)k+2(−a0) = (−1)k+1a0. We can compute the determinant of the first matrix above by the
induction hypothesis, and the second matrix has determinant 1. Then

det(A− tI) = −t(−1)k(a1 + a2t+ · · ·+ akt
k−1 + tk) + (−1)k+1a0

= (−1)k+1(a1t+ a2t
2 + · · ·+ akt

k + tk+1) + (−1)k+1a0

= (−1)k+1(a0 + a1t+ · · ·+ akt
k + tk+1).
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42. If n = 1, then A = (1) and the characteristic polynomial is t− 1. We now assume n > 1.
Observe that the columns of A are identical, so their span is just span(1, 1, 1, 1), which has

dimension 1. Thus rankA = 1, so dim NullA = n − 1 by the dimension theorem. That is, 0 is an
eigenvalue and dimE0 = n− 1. Also, note that

A

1
...
1

 =

n...
n


so (1, . . . , 1) is an eigenvector with eigenvalue n. If mλ is the multiplicity of λ, then by Theorem
5.7 we have 1 ≤ dim(Eλ) ≤ mλ. Thus m0 ≥ n − 1 and mn ≥ 1. However, the sum of the
multiplicities of the eigenvalues can be at most the degree of the characteristic polynomial, which
is n. Thus we must have m0 = n − 1 and mn = 1, and A cannot have any other eigenvalues as
otherwise the multiplicities would sum to greater than n. Thus the characteristic polynomial of A
is (−1)ntn−1(t− n).
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