
MATH 110, Linear Algebra, Fall 2012

Solution to Final Exam
1. The determinant of an n × n matrix is (−1)n times the product of the eigenvalues, each

occurring with the appropriate multiplicity. In this case, we get a determinant of −1 · 22 · 3 = −12.

2. (a) A has two eigenvalues ±1
2 . The eigenvectors for 1

2 are spanned by v1 =
(

2 − 1
)
, wile

the eigenvectors for −1
2 are spanned by v2 =

(
1 − 1

)
.

(b) Notice that v = v1−v2. Then Anv = Anv1−Anv2 = (12)nv1−(−1
2)nv2 = (12)n(v1−(−1)nv2).

As n grows large, the length of this vector goes to zero, because the length of v1 − (−1)nv2 can
take on only two values, while the factor (12)n goes to zero.

3. (a) The fact that T 2 = T implies that T satisfies the polynomial t2 − t. The minimal
polynomial mT (t) of T must then divide this polynomial, so the only possible roots of the minimal
polynomial are 0 and 1, hence these are the only possible eigenvalues.

(b) By the above observations, mT (t) divides t2− t, which has distinct linear factors. So mT (t)
has distinct linear factors. By a theorem from class, this implies diagonalizability.

4. (a) Pick u,w ∈ V , and c ∈ R. Then φv(cu + w) = 〈v, cu + w〉 = c〈v, u〉 + 〈v, w〉 =
cφv(u) + φv(w), so φv is linear. We used here various properties of a (real) inner product.

(b) To show Φ is linear, pick u, v ∈ V and c ∈ R. Then Φ(cu+ v) is the functional φcu+v which
acts on a vector w by φcu+v(w) = 〈cu+v, w〉. But we compute that 〈cu+v, w〉 = c〈u,w〉+ 〈v, w〉 =
cφu(w) + φv(w), and this latter is just the functional cΦ(u) + Φ(v) applied to the vector w. So Φ
is linear. We already know from class that dimV = dimV ∗, so to check that Φ is an isomorphism,
it suffices to check injectivity. So suppose v ∈ N(Φ), which means that φv is the zero map on V .
Then 〈v, w〉 = 0 for all vectors w ∈ V , which means v itself is the zero vector. Thus Φ has trivial
nullspace, hence is injective, hence an isomorphism.

5. (a) S is linearly independent if
∑n

i=1 civi = 0 (for some ci ∈ R and vi ∈ S) implies that
c1 = · · · = cn = 0. S is an orthonormal set if for any two distinct vectors u, v ∈ S, we have
〈v, w〉 = δij ,i.e., it’s 0 if i 6= j and 1 if i = j.

(b) Suppose
∑n

i=1 civi = 0 for some ci ∈ R and vi ∈ S. Then for each j = 1, . . . , n, we compute

0 = 〈
n∑

i=1

civi, vj〉 =
n∑

i=1

ci〈vi, vj〉 = cj〈vj , vj〉,

since all the terms 〈vi, vj〉 when i 6= j are zero. But vj 6= 0 (because its length is one), so this
implies cj = 0. Since j was arbitrary amongst 1, . . . , n, this shows the independence.

6. (a) For a complex vector space, the diagonalizable operators are the normal ones. T is
normal, because it’s even self-adjoint: T ∗ = (S∗S)∗ = S∗S = T . We’ve seen that self-adjoint
implies normal.

(b) Suppose λ is an eigenvalue of T (T has eigenvalues, since V is complex), and v an eigenvector
for λ. Then compute

λ‖v‖2 = 〈λv, v〉 = 〈T (v), v〉 = 〈S∗S(v), v〉 = 〈S(v), S(v)〉 = ‖S(v)‖2.

Since ‖v‖2 and ‖S(v)‖2 are both non-negative reals, so is λ.
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7. Let f(t) = tn+ . . .+a1t+a0 be the characteristic polynomial of A (after possibly multiplying
by −1 to remove the coefficient of tn. By the Cayley-Hamilton theorem, A satisfies this polyno-
mial. Moving An to one side, we have An = −an−1A

n−1 − · · · − a1A − a0I, so An is in the span
of I, A, . . . , An−1. This also shows that the span of I, A, . . . , An−1 is A-invariant, so for any power
Ak (with possibly k > n), we have Ak ∈ span{I, A, . . . , An−1}. Thus W itself can be spanned by
these n matrices, so its dimension is at most n.

8. (a) The polynomial 1 already has length one in this inner product. We replace x by the

normalization of x− (
∫ 1
0 1 ·xdx)1 = x−1/2. This polynomial has length

√∫ 1
0 (x− 1

2)2dx =
√

1/12,

so the normalized vector is
√

12(x − 1/2). Thus our orthonormal basis is {1,
√

12(x − 1/2)}. Let
us denote this orthonormal basis by p1(x) = 1, p2(x) =

√
12(x− 1/2).

(b) Define T by sending p1 to e1, and p2 to e2 (here e1, e2 comprise the standard basis for R2).
By a theorem from class, this defines a unique linear map, which is an isomorphism since it sends a
basis for P1(R) to a basis for R2. To check the equality on the inner products, note that it suffices
to check that it holds when f and g are basis vectors, since the inner product is linear in both slots.
But 〈pi, pj〉 = δij since they form an orthonormal basis, and 〈T (pi), T (pj)〉 = 〈ei, ej〉 = δij since
e1, e2 are an orthonormal basis for R2.

9. Since dimN(A − 2I) = 1 but the algebraic multiplicity of the eigenvalue 2 is two, we must
have dimN(A− 2I)2 = 2, so the eigenvalue 2 has a 2× 2 Jordan block associated with it. For the
eigenvalue 3, there are two independent eigenvectors and the algebraic multiplicity is also two, so
we get two 1× 1 Jordan blocks for the eigenvalue 3. For the eigenvalue 4, there is one independent
eigenvector, so one cycle, which must therefore have length 3, so we get a 3 × 3 Jordan block for
this eigenvalue. Thus a Jordan canonical form for A is given by the matrix

2 1 0 0 0 0 0
0 2 0 0 0 0 0
0 0 3 0 0 0 0
0 0 0 3 0 0 0
0 0 0 0 4 1 0
0 0 0 0 0 4 1
0 0 0 0 0 0 4


.

10. The matrix has one eigenvalue, 0, so one generalized eigenspace, which is three dimensional.
Observe that here A− λI is just A. To find a Jordan basis, we need a vector v which is in N(A3)
(which is all of C3), but not in N(A2). But N(A2) is the span of e2, e3, so take v to be e1. Then the
next vector in our cycle is Ae1 = (0, 1, 1), and the final vector in the cycle is A(0, 1, 1) = e3 (note
it’s an eigenvector, of course). Thus our Jordan basis is {(0, 0, 1), (0, 1, 1), (1, 0, 0)}. Since there is
only one eigenvalue, with only one cycle, we don’t need to compute anything to know that 0 1 0

0 0 1
0 0 0


is the Jordan form for A.


