Solution to Final Exam

1. The determinant of an $n \times n$ matrix is $(-1)^{n}$ times the product of the eigenvalues, each occurring with the appropriate multiplicity. In this case, we get a determinant of $-1 \cdot 2^{2} \cdot 3=-12$.
2. (a) A has two eigenvalues $\pm \frac{1}{2}$. The eigenvectors for $\frac{1}{2}$ are spanned by $v_{1}=(2-1)$, wile the eigenvectors for $-\frac{1}{2}$ are spanned by $v_{2}=(1-1)$.
(b) Notice that $v=v_{1}-v_{2}$. Then $A^{n} v=A^{n} v_{1}-A^{n} v_{2}=\left(\frac{1}{2}\right)^{n} v_{1}-\left(-\frac{1}{2}\right)^{n} v_{2}=\left(\frac{1}{2}\right)^{n}\left(v_{1}-(-1)^{n} v_{2}\right)$. As n grows large, the length of this vector goes to zero, because the length of $v_{1}-(-1)^{n} v_{2}$ can take on only two values, while the factor $\left(\frac{1}{2}\right)^{n}$ goes to zero.
3. (a) The fact that $T^{2}=T$ implies that T satisfies the polynomial $t^{2}-t$. The minimal polynomial $m_{T}(t)$ of T must then divide this polynomial, so the only possible roots of the minimal polynomial are 0 and 1 , hence these are the only possible eigenvalues.
(b) By the above observations, $m_{T}(t)$ divides $t^{2}-t$, which has distinct linear factors. So $m_{T}(t)$ has distinct linear factors. By a theorem from class, this implies diagonalizability.
4. (a) Pick $u, w \in V$, and $c \in \mathbb{R}$. Then $\phi_{v}(c u+w)=\langle v, c u+w\rangle=c\langle v, u\rangle+\langle v, w\rangle=$ $c \phi_{v}(u)+\phi_{v}(w)$, so ϕ_{v} is linear. We used here various properties of a (real) inner product.
(b) To show Φ is linear, pick $u, v \in V$ and $c \in \mathbb{R}$. Then $\Phi(c u+v)$ is the functional $\phi_{c u+v}$ which acts on a vector w by $\phi_{c u+v}(w)=\langle c u+v, w\rangle$. But we compute that $\langle c u+v, w\rangle=c\langle u, w\rangle+\langle v, w\rangle=$ $c \phi_{u}(w)+\phi_{v}(w)$, and this latter is just the functional $c \Phi(u)+\Phi(v)$ applied to the vector w. So Φ is linear. We already know from class that $\operatorname{dim} V=\operatorname{dim} V^{*}$, so to check that Φ is an isomorphism, it suffices to check injectivity. So suppose $v \in N(\Phi)$, which means that ϕ_{v} is the zero map on V. Then $\langle v, w\rangle=0$ for all vectors $w \in V$, which means v itself is the zero vector. Thus Φ has trivial nullspace, hence is injective, hence an isomorphism.
5. (a) S is linearly independent if $\sum_{i=1}^{n} c_{i} v_{i}=0$ (for some $c_{i} \in \mathbb{R}$ and $v_{i} \in S$) implies that $c_{1}=\cdots=c_{n}=0 . S$ is an orthonormal set if for any two distinct vectors $u, v \in S$, we have $\langle v, w\rangle=\delta_{i j}$,i.e., it's 0 if $i \neq j$ and 1 if $i=j$.
(b) Suppose $\sum_{i=1}^{n} c_{i} v_{i}=0$ for some $c_{i} \in \mathbb{R}$ and $v_{i} \in S$. Then for each $j=1, \ldots, n$, we compute

$$
0=\left\langle\sum_{i=1}^{n} c_{i} v_{i}, v_{j}\right\rangle=\sum_{i=1}^{n} c_{i}\left\langle v_{i}, v_{j}\right\rangle=c_{j}\left\langle v_{j}, v_{j}\right\rangle,
$$

since all the terms $\left\langle v_{i}, v_{j}\right\rangle$ when $i \neq j$ are zero. But $v_{j} \neq 0$ (because its length is one), so this implies $c_{j}=0$. Since j was arbitrary amongst $1, \ldots, n$, this shows the independence.
6. (a) For a complex vector space, the diagonalizable operators are the normal ones. T is normal, because it's even self-adjoint: $T^{*}=\left(S^{*} S\right)^{*}=S^{*} S=T$. We've seen that self-adjoint implies normal.
(b) Suppose λ is an eigenvalue of T (T has eigenvalues, since V is complex), and v an eigenvector for λ. Then compute

$$
\lambda\|v\|^{2}=\langle\lambda v, v\rangle=\langle T(v), v\rangle=\left\langle S^{*} S(v), v\right\rangle=\langle S(v), S(v)\rangle=\|S(v)\|^{2} .
$$

Since $\|v\|^{2}$ and $\|S(v)\|^{2}$ are both non-negative reals, so is λ.
7. Let $f(t)=t^{n}+\ldots+a_{1} t+a_{0}$ be the characteristic polynomial of A (after possibly multiplying by -1 to remove the coefficient of t^{n}. By the Cayley-Hamilton theorem, A satisfies this polynomial. Moving A^{n} to one side, we have $A^{n}=-a_{n-1} A^{n-1}-\cdots-a_{1} A-a_{0} I$, so A^{n} is in the span of I, A, \ldots, A^{n-1}. This also shows that the span of I, A, \ldots, A^{n-1} is A-invariant, so for any power A^{k} (with possibly $k>n$), we have $A^{k} \in \operatorname{span}\left\{I, A, \ldots, A^{n-1}\right\}$. Thus W itself can be spanned by these n matrices, so its dimension is at most n.
8. (a) The polynomial 1 already has length one in this inner product. We replace x by the normalization of $x-\left(\int_{0}^{1} 1 \cdot x d x\right) 1=x-1 / 2$. This polynomial has length $\sqrt{\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2} d x}=\sqrt{1 / 12}$, so the normalized vector is $\sqrt{12}(x-1 / 2)$. Thus our orthonormal basis is $\{1, \sqrt{12}(x-1 / 2)\}$. Let us denote this orthonormal basis by $p_{1}(x)=1, p_{2}(x)=\sqrt{12}(x-1 / 2)$.
(b) Define T by sending p_{1} to e_{1}, and p_{2} to e_{2} (here e_{1}, e_{2} comprise the standard basis for \mathbb{R}^{2}). By a theorem from class, this defines a unique linear map, which is an isomorphism since it sends a basis for $P_{1}(\mathbb{R})$ to a basis for \mathbb{R}^{2}. To check the equality on the inner products, note that it suffices to check that it holds when f and g are basis vectors, since the inner product is linear in both slots. But $\left\langle p_{i}, p_{j}\right\rangle=\delta_{i j}$ since they form an orthonormal basis, and $\left\langle T\left(p_{i}\right), T\left(p_{j}\right)\right\rangle=\left\langle e_{i}, e_{j}\right\rangle=\delta_{i j}$ since e_{1}, e_{2} are an orthonormal basis for \mathbb{R}^{2}.
9. Since $\operatorname{dim} N(A-2 I)=1$ but the algebraic multiplicity of the eigenvalue 2 is two, we must have $\operatorname{dim} N(A-2 I)^{2}=2$, so the eigenvalue 2 has a 2×2 Jordan block associated with it. For the eigenvalue 3 , there are two independent eigenvectors and the algebraic multiplicity is also two, so we get two 1×1 Jordan blocks for the eigenvalue 3 . For the eigenvalue 4 , there is one independent eigenvector, so one cycle, which must therefore have length 3 , so we get a 3×3 Jordan block for this eigenvalue. Thus a Jordan canonical form for A is given by the matrix

$$
\left(\begin{array}{lllllll}
2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 4
\end{array}\right) .
$$

10. The matrix has one eigenvalue, 0 , so one generalized eigenspace, which is three dimensional. Observe that here $A-\lambda I$ is just A. To find a Jordan basis, we need a vector v which is in $N\left(A^{3}\right)$ (which is all of \mathbb{C}^{3}), but not in $N\left(A^{2}\right)$. But $N\left(A^{2}\right)$ is the span of e_{2}, e_{3}, so take v to be e_{1}. Then the next vector in our cycle is $A e_{1}=(0,1,1)$, and the final vector in the cycle is $A(0,1,1)=e_{3}$ (note it's an eigenvector, of course). Thus our Jordan basis is $\{(0,0,1),(0,1,1),(1,0,0)\}$. Since there is only one eigenvalue, with only one cycle, we don't need to compute anything to know that

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

is the Jordan form for A.

