MATH 254 A: PROBLEM SET 7

MARTIN OLSSON

Due Wed Nov 7
(1) Let $K=\mathbb{Q}(\alpha)$, where α satisfies $\alpha^{5}-\alpha+1=0$.
(a) Prove that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$.
(b) Using the Minkowski bound, show that the class number h_{K} of K is 1 .
(2) Let $K=\mathbb{Q}(\sqrt{d})$ where d is a square free integer.
(a) Show that \mathcal{O}_{K} is a PID when $d=2,3,5,13,-1,-2,-3,-7$.
(b) Show that \mathcal{O}_{K} is a PID when $d=21,29,-11,-19$.
(c) Show that \mathcal{O}_{K} is also a PID when $d=6,7,33$.
(3) Let A be a Dedekind domain with fraction field K, and let $\operatorname{Pic}(A)$ denote the set of projective modules over A of rank 1 (the rank of a projective module M is defined to be the dimension of the K-vector space $M \otimes_{A} K$.
(a) Show that if M and N are projective modules of rank 1 , then $M \otimes_{A} N$ is also projective of rank 1. Conclude that tensor product gives $\operatorname{Pic}(A)$ the structure of an abelian group.
(b) Show that if $\mathfrak{b} \subset K$ is a fractional ideal, then \mathfrak{b} is a projective A-module of rank 1 . Prove that the induced map

$$
\{\text { frac. ideals of } A\} \rightarrow \operatorname{Pic}(A)
$$

defines a group isomorphism $\mathrm{Cl}(A) \simeq \operatorname{Pic}(A)$.

