MATH 254 A: PROBLEM SET 6

MARTIN OLSSON

Due Wed Oct 22
(1) Here is another proof of quadratic reciprocity (the exercise consists of filling in the details). Let p and q be distinct odd primes.
(a) Assume $p \equiv 1(\bmod 4)$, and q arbitrary. Then

$$
\begin{array}{rlr}
\left(\frac{p}{q}\right)=1 & \leftrightarrow & x^{2}-x+\frac{1-p}{4} \equiv 0 \quad(\bmod q) \text { has a solution } \\
& \leftrightarrow & q \text { splits in } \mathbb{Q}(\sqrt{p})=\mathbb{Q}\left(\frac{1+\sqrt{p}}{2}\right) \\
& \leftrightarrow & \\
& \leftrightarrow & q \equiv a^{2} \quad(\bmod p) \text { has a solution } \\
& \leftrightarrow & \\
& \left(\frac{q}{p}\right)=1 .
\end{array}
$$

Here $\sigma_{q}: \mathbb{Q}\left(\omega_{p}\right) \rightarrow \mathbb{Q}\left(\omega_{p}\right)$ is the automorphism induced by $\omega_{p} \mapsto \omega_{p}^{q}$.
(b) Imitating part (a), show that if both p and q are congruent to $3 \bmod 4$, then $(p / q)=$ $-(q / p)$.
(c) Summarize the above with the law of quadratic reciprocity

$$
(p / q)=(-1)^{\frac{(p-1)(q-1)}{4}}(q / p) .
$$

(2) Let $\widehat{\mathbb{Z}}$ denote $\varliminf_{\longleftarrow} \varlimsup_{n} \mathbb{Z} /(n)$. A Dirichlet character is a continuous homomorphism χ : $\widehat{\mathbb{Z}}^{*} \rightarrow \mathbb{C}^{*}$, where \mathbb{C}^{*} is given the discrete topology.
(a) Show that any χ factors through the projection $\widehat{\mathbb{Z}}^{*} \rightarrow \mathbb{Z} /(n)^{*}$ for some n, and that conversely for any homomorphism $\chi: \mathbb{Z} /(n)^{*} \rightarrow \mathbb{C}^{*}$ the composite

$$
\widehat{\mathbb{Z}}^{*} \longrightarrow \mathbb{Z} /(n)^{*} \xrightarrow{\chi} \mathbb{C}^{*}
$$

is a Dirichlet character (i.e. continuous).
(b) Show that if $\chi: \widehat{\mathbb{Z}}^{*} \rightarrow \mathbb{C}^{*}$ is a Dirichlet character, then there exists a unique positive integer f_{χ} such that χ factors through an inclusion $\left(\mathbb{Z} /\left(f_{\chi}\right)\right)^{*} \hookrightarrow \mathbb{C}^{*}$. The integer f_{χ} is called the conductor of χ.
(c) Show that the set of Dirichlet characters form a group \mathcal{G} in a natural way.
(d) Let $\overline{\mathbb{Q}} \subset \mathbb{C}$ be the algebraic closure of \mathbb{Q} in \mathbb{C}. Let $\mathbb{Q}^{\text {cycl }} \subset \overline{\mathbb{Q}}$ denote the compositum of the extensions $\mathbb{Q}\left(\omega_{n}\right)$, as n varies. Show that there is a natural isomorphism

$$
\operatorname{Gal}\left(\mathbb{Q}^{\mathrm{cycl}} / \mathbb{Q}\right) \simeq \widehat{\mathbb{Z}}^{*}
$$

(e) If χ is a Dirichlet character, let $L_{\chi} \subset \mathbb{Q}^{\text {cycl }}$ denote the fixed field of the kernel $K_{\chi} \subset \widehat{\mathbb{Z}}^{*}$. Describe the ramification of a prime p in L_{χ} in terms of the character χ.

