MATH 254 A: PROBLEM SET 5

MARTIN OLSSON

Due Wed Oct 15
(1) Let G be a finite group and let $\chi: G \rightarrow \mathbb{C}^{*}$ be a homomorphism. Show that

$$
\sum_{g \in G} \chi(g)
$$

is zero unless $\chi(g)=1$ for all g in which case the sum is equal to the order of G.
(2) Define the n-th cyclotomic polynomial $\Phi_{n}(X)$ to be the irreducible polynomial of a primitive n-th root of unity ζ_{n}, so

$$
\Phi_{n}(X)=\prod_{(j, n)=1}\left(X-\zeta_{n}^{j}\right)
$$

(a) Show that

$$
X^{n}-1=\prod_{d \mid n} \Phi_{d}(X)
$$

(b) Suppose p is a prime not dividing n. Show that p divides $\Phi_{n}(a)$ for some integer $a \in \mathbb{Z}$ if and only if $p \equiv 1(\bmod n)$.
(c) Show that for any integer $n \geq 1$ there are infinitely many primes p with $p \equiv 1(\bmod n)$ (hint: Suppose there are only finitely many p_{1}, \ldots, p_{r}, set $M=n p_{1} \cdots p_{r}$ and consider $\Phi_{n}(N M)$ for N large).
(3) Let p be an odd prime, and let ζ_{p} be a primitive p-th root of unity.
(a) Show that $\mathbb{Q}\left(\zeta_{p}\right)$ contains a quadratic subfield.
(b) Using what we know about ramification in quadratic fields, show that this quadratic subfield must be $\mathbb{Q}(\sqrt{-p})$ if $p \equiv 3(\bmod 4)$ and $\mathbb{Q}(\sqrt{p})$ if $p \equiv 1(\bmod 4)$.
(4) Let ζ_{n} be a primitive n-th root of unity. Show that the only roots of unity in $\mathbb{Q}\left(\zeta_{n}\right)$ are those of the form $\pm \zeta_{n}^{j}$.

