MATH 254 A: PROBLEM SET 4

MARTIN OLSSON

Due Wed Oct 1
(1) Let K be a number field, and let $p \in \mathbb{Z}$ be a prime. Show that there is a natural isomorphism

$$
K \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \simeq \prod_{\mathfrak{p}} K_{\mathfrak{p}},
$$

where on the right the product is taken over primes $\mathfrak{p} \subset \mathcal{O}_{K}$ and $K_{\mathfrak{p}}$ denotes the \mathfrak{p}-adic completion of K.
(2) Let K be a field, and let $Z \subset K$ be the image of the unique map $Z \rightarrow K$. Let $|\cdot|$ be an absolute value on K. Show that $\mid \cdot$ is non-archimedian if and only if $|\cdot|$ is bounded on Z. Hint: Show that if δ is a number such that $|m|<\delta$ for all $m \in Z$, then for any $a, b \in K$ we have

$$
|(a+b)|^{n}<\delta(n+1) \max |a|,|b|
$$

Deduce that if K is a field of positive characteristic, then any absolute value on K is non-archimedian.
(3) Let a be an integer such that $a \equiv 1(\bmod 8)$. Show that a is a square in \mathbb{Q}_{2}.
(4) Let $|\cdot|$ be an absolute value on \mathbb{Q}. Show that \mid is equivalent to one of the standard absolute values as follows.

Case 1: There exists an integer $n \in \mathbb{Z}$ such that $n>1$ by $|n| \leq 1$.
In this case show that for any integer m we have

$$
|m|<\left(1+\frac{\log m}{\log n}\right) n
$$

by writing

$$
m=a_{0}+a_{1} n+\cdots+a_{r} n^{r}, \quad 0 \leq a_{i} \leq n-1, \quad r \leq \frac{\log m}{\log n} .
$$

Applying this with m^{t} deduce that for every positive integer t we have

$$
|m|<\left(1+t \frac{\log m}{\log n}\right)^{1 / t} n^{1 / t}
$$

and therefore $|m| \leq 1$ for all $m \in \mathbb{Z}$. From this deduce that $|\cdot|$ is equivalent to $|\cdot|_{p}$ for some prime p.

Case 2: $|n|>1$ for all $n>1$.
Let $n, m>1$ be positive integers. By an argument similar to the one in case 1 , show that

$$
|m| \leq n^{1 / t}\left(1+t \frac{\log m}{\underset{1}{\log n}}\right)^{1 / t}|n|^{(\log m) /(\log n)}
$$

for all positive integers t. Deduce from this that

$$
|m|^{1 / \log m}=|n|^{1 / \log n}=e^{c}
$$

for some positive real number c, and then use this to show that $|\cdot|$ is equivalent to the ordinary absolute value.

