EXERCISES PERTAINING TO LECTURE 2

MARTIN OLSSON

Exercise 2.1. Let k be an algebraically closed field and let X/k be a rational surface. Show that if Y/k is a second surface and $D(X) \simeq D(Y)$ then Y is also rational.

Exercise 2.2. Let X be a smooth genus 1 curve over a field k, let d be an integer, and assume that there exists a universal sheaf \mathcal{P}_d on $X \times \operatorname{Pic}_X^d$. Calculate

$$\Phi^{\mathcal{P}_d}(\mathfrak{O}_X) \in D(\operatorname{Pic}^d_X).$$

Exercise 2.3. Let X be a smooth projective variety over a field k and let

$$\rho^1:\Omega^1_X\to \mathscr{H}^{-1}(\mathrm{L}\Delta^*\Delta_*\mathfrak{G}_X)$$

be the isomorphism defined in lecture. Explain how to define the induced map

$$\rho^i: \Omega^i_X \to \mathcal{H}^{-i}(\mathrm{L}\Delta^*\Delta_* \mathbb{G}_X)$$

and show that this map is an isomorphism.

Exercise 2.4. Let X and Y be smooth projective varieties over k and let $\Phi : D(X) \to D(Y)$ be an equivalence. Assume that Φ is given by a sheaf P on $X \times Y$ and furthermore that the induced map

$$A^*(X)_{\text{num}} \to A^*(Y)_{\text{num}}$$

preserves the codimension filtration (here we consider Chow groups modulo numerical equivalence and tensored with \mathbf{Q}). Show that Φ is given by a line bundle on the graph of birational isomorphism between X and Y.