
NOTES ON SIMPLE LIE ALGEBRAS AND LIE GROUPS. MATH 261A

These notes are intended to clarify some aspects of simple Lie groups
and Lie algebras.

A Lie algebra g over the field K is simple if there is no non-trivial
K-ideal and dimg > 1. Equivalently, the adjoint representation ad :
g→ gl(g) is irreducible (and non-zero).

Lemma 0.1. Let G be a connected matrix Lie group, with (real) Lie
algebra g, and H < G a connected analytic subgroup with Lie algebra
h < g. Then H �G⇔ h is an ideal of g.

Proof. Suppose h is an ideal of g. Then we may restrict ad : g→ gl(h).
So for X ∈ g, Y ∈ h, adn

X(Y ) ∈ h. Thus, eadX(Y ) ∈ h. Then
eXeY e−X = exp(AdeX(Y )) = exp(eadX(Y )) ∈ exp(h). So exp(g) nor-
malizes exp(h). Since G =

⋃
n≥0 exp(g)n, H =

⋃
n≥0 exp(h)n, we see

that G normalizes H.
Conversely, suppose that G normalizes H. Then G acts on H by

conjugation. For g ∈ G, the derivative of this map is Adg : TeH →
TeH = h. Then for X ∈ g, AdetX : h → h. Taking the derivative at
t = 0, we see that adX : h→ h, so h is an ideal (see Proposition 2.24).
2

Lemma 0.2. sl(2; C) is simple.

Proof. As mentioned in class, one can follow the classification of di-
mension 3, rank 3 Lie algebras to prove this. One may also identify ad
with the irreducible 3-dimensional representation of sl(2; C) following
the proof of Theorem 4.9. Here’s a direct argument.

We’ve seen that sl(2; C) has structure

[H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H.

Suppose 0 6= h < sl(2; C) is an ideal. Let 0 6= Z ∈ h. Let Z =
αX +βY +γH. We compute ad2

HZ = [H, [H,Z]] = [H, 2αX− 2βY ] =
4αX + 4βY . Then Z − 1

4ad
2
HZ = γH ∈ h.
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If γ 6= 0, then H ∈ H. Then [X,H] = −2X ∈ h, [Y,H] = 2Y ∈ h,
and we see h = sl(2; C).

If γ = 0, then [X,Z] = βH, [Y, Z] = −αH. So in some case (since
Z 6= 0), we see that H ∈ h, and thus h = sl(2; C) 2

Definition 0.3. A simple Lie group is a connected non-abelian Lie
group G which does not have nontrivial connected (analytic) normal
Lie subgroups.

Note: Under this definition, the one-dimensional Lie group is not
considered to be simple.

The above Lemma implies that G is a simple Lie group if and only
if g is a simple Lie algebra over R.

The following theorem may be proven by first classifying simple Lie
algebras, and then proving that each associated Lie group is a simple
group (modulo its center). This theorem does not usually appear in
courses in Lie theory, but we include it here.

Theorem 0.4. If G is a connected Lie group, such that g is a simple
(real) Lie algebra, then any normal subgroup K �G must be discrete.

Remark: In particular, G/Z(G) is a simple group.

Proof. Let K < G be an arbitrary subgroup. We want to weaken
the notion of a Lie algebra for a subgroup, as defined in Definition
3.11. Suppose e ∈ M ⊂ K is (a germ of) a smooth submanifold. Let
TeM ⊂ g = TeG. Choose M to be maximal dimensional.

Claim: TeM is independent of M . If M1,M2 ⊂ K are two maximal
dimensional submanifolds near e such that TeM1 6= TeM2, then there
is a vector X ∈ TeM1\TeM2. Let C ⊂ M1 be a one-dimensional curve
tangent to X. Then m : X ×M2 → K, where m is the multiplication
on G gives a submanifold near e of dimension 1 + dimM2, since m∗ :
TeG × TeG → TeG is given by m∗(X, Y ) = X + Y (this follows from
Baker-Campbell-Hausdorff). This contradicts that M2 was maximal.

Remark: One may show that TeM is a Lie subalgebra of g.
Let M ⊂ K be such a maximal germ of a submanifold near e. Since

K � G, for g ∈ G, gMg−1 ⊂ K is a maximal dimensional germ
of a submanifold near e, and therefore TeM = Te(gMg−1). Thus,
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Adg(TeM) = TeM . For X ∈ g, AdetX(TeM) = TeM . Taking deriva-
tives at t = 0, we see that adX : TeM → TeM . Thus, TeM is an ideal of
g, so TeM = 0 or g. If TeM = g, then M must contain a neighborhood
of e ∈ G, and thus K = G. We want to show that TeM 6= 0.

The closure K is a closed normal subgroup of G, and is therefore
a Lie subgroup. Either K is discrete, and therefore K = K, so K
was discrete, or K = G, since by the above Lemma G has no non-
trivial connected normal Lie subgroups. For k ∈ K, consider the map
ψk : G → K, given by ψk(g) = k−1g−1kg. Since G is non-abelian, and
K is dense in G, we may find k ∈ K such that Adk−1 : g→ g is not the
identity. Choose X ∈ g such that Adk−1X 6= X. We have

dψk

dt
|t=0 = (

d

dt
k−1e−tXketX)|t=0

= (k−1(−X)e−tXketX + k−1e−tXketXX)|t=0 = −Adk−1X +X 6= 0.

Thus, ψk(etX) gives a submanifold ofK near e, and therefore dimTeM >
0. 2

Exercise: Let g be a complex Lie algebra. Then g is simple over
C⇔ it is simple over R.

Proposition 0.5. If h is a simple algebra over R, then either hC is
simple, or h admits a complex vector space structure, and hC ∼= h⊕ h.

Proof. As a vector space hC ∼= h ⊗R C = h + ih. Suppose k ⊂ hC is a
complex ideal. For 0 6= k ∈ k, let k = h1 + ih2, hi ∈ h. If h2 = 0, we
see that h ⊂ k, and therefore k = hC. Similarly if h1 = 0. Otherwise,
for all 0 6= h1 + ih2 ∈ k, h1 6= 0 6= h2. Since h is simple, for any h1 ∈ h,
there exists k = h1 + ih2, such that h2 = 0 ⇔ h1 = 0. Thus, k is
the graph of a real vector space isomorphism J : h → h. Moreover,
−i(h + iJ(h)) = J(h) − ih, so we see that J2 = −I. The map J
also preserves the bracket on h, since [h1 + iJ(h1), h2] = [h1, h2] +
i[J(h1), h2] = [h1, h2] + iJ [h1, h2] ∈ k. Thus, J induces a complex
structure on h, and hC ∼= k⊕ k ∼= h⊕ h. 2

Thus, in order to classify simple Lie algebras, it suffices to classify
simple complex Lie algebras and their real forms.


