NOTES ON SIMPLE LIE ALGEBRAS AND LIE GROUPS. MATH 261A

These notes are intended to clarify some aspects of simple Lie groups
and Lie algebras.

A Lie algebra g over the field K is simple if there is no non-trivial
K-ideal and dimg > 1. Equivalently, the adjoint representation ad :
g — gl(g) is irreducible (and non-zero).

Lemma 0.1. Let G be a connected matriz Lie group, with (real) Lie
algebra g, and H < G a connected analytic subgroup with Lie algebra
h <g. Then H<1G < b is an ideal of g.

Proof. Suppose b is an ideal of g. Then we may restrict ad : g — gl(h).
So for X € g, Y € b, ad%(Y) € bh. Thus, e"*(Y) € h. Then
eXe¥e ™ = exp(Ad.x(Y)) = exp(e®™(Y)) € exp(h). So exp(g) nor-
malizes exp(h). Since G = |J,-oexp(9)", H = |J,~oexp(h)", we see
that G normalizes H.

Conversely, suppose that G normalizes H. Then G acts on H by
conjugation. For g € G, the derivative of this map is Ad, : T.H —
T.H = bh. Then for X € g, Ad.x : h — h. Taking the derivative at
t =0, we see that adx : h — b, so b is an ideal (see Proposition 2.24).
]

Lemma 0.2. s1(2;C) is simple.

Proof. As mentioned in class, one can follow the classification of di-
mension 3, rank 3 Lie algebras to prove this. One may also identify ad
with the irreducible 3-dimensional representation of s[(2;C) following
the proof of Theorem 4.9. Here’s a direct argument.

We've seen that s[(2; C) has structure

[H,X]=2X, [H,Y]=-2Y, [X,Y] =H.

Suppose 0 # b < sl(2;C) is an ideal. Let 0 # Z € h. Let Z =
aX + Y +~vH. We compute ad%Z = [H, [H, Z]] = [H,2aX —28Y] =
4aX +40Y. Then Z — %Lad%{Z =~vH €.



2 NOTES ON SIMPLE LIE ALGEBRAS AND LIE GROUPS. MATH 261A

If v # 0, then H € §. Then [X,H] = —2X € §,[V,H] = 2Y € b,
and we see h = sl(2; C).

If v =0, then [X,Z] = BH,[Y,Z] = —aH. So in some case (since
Z #0), we see that H € h, and thus h =s((2;C) O

Definition 0.3. A simple Lie group is a connected non-abelian Lie
group G which does not have nontrivial connected (analytic) normal
Lie subgroups.

Note: Under this definition, the one-dimensional Lie group is not
considered to be simple.

The above Lemma implies that G is a simple Lie group if and only
if g is a simple Lie algebra over R.

The following theorem may be proven by first classifying simple Lie
algebras, and then proving that each associated Lie group is a simple
group (modulo its center). This theorem does not usually appear in
courses in Lie theory, but we include it here.

Theorem 0.4. If G is a connected Lie group, such that g is a simple
(real) Lie algebra, then any normal subgroup K <1 G must be discrete.

Remark: In particular, G/Z(G) is a simple group.

Proof. Let K < G be an arbitrary subgroup. We want to weaken
the notion of a Lie algebra for a subgroup, as defined in Definition
3.11. Suppose e € M C K is (a germ of) a smooth submanifold. Let
T.M C g =T.G. Choose M to be maximal dimensional.

Claim: T,M is independent of M. If My, My C K are two maximal
dimensional submanifolds near e such that T, M; # T.Ms, then there
is a vector X € T,M\T,M,. Let C' C M; be a one-dimensional curve
tangent to X. Then m : X x My — K, where m is the multiplication
on G gives a submanifold near e of dimension 1 + dimM>, since m, :
T.G x T.G — T.,G is given by m.(X,Y) = X + Y (this follows from
Baker-Campbell-Hausdorff). This contradicts that Ms was maximal.

Remark: One may show that 7. M is a Lie subalgebra of g.

Let M C K be such a maximal germ of a submanifold near e. Since
K <G, for g € G, gMg! C K is a maximal dimensional germ
of a submanifold near e, and therefore T.M = T.(gMg~'). Thus,
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Ady(T.M) =T,M. For X € g, Ad.x(T.M) = T, M. Taking deriva-
tives at t = 0, we see that adx : T,M — T,M. Thus, T, M is an ideal of
g,s0 T.M =0org. If T.M = g, then M must contain a neighborhood
of e € G, and thus K = G. We want to show that T, M # 0.

The closure K is a closed normal subgroup of G, and is therefore
a Lie subgroup. Either K is discrete, and therefore K = K, so K
was discrete, or K = @, since by the above Lemma G has no non-
trivial connected normal Lie subgroups. For k € K, consider the map
Y 0 G — K, given by v(g) = k~tg tkg. Since G is non-abelian, and
K is dense in GG, we may find k € K such that Ady-: : g — g is not the
identity. Choose X € g such that Ad,-1 X # X. We have

d d
% o = (Ek—le—thetX)‘tZO
= (kY (=X)e ke + ke ™ ke X))o = —Adj1 X + X # 0.
Thus, 11, (e'*) gives a submanifold of K near e, and therefore dimT, M >
0. O

Exercise: Let g be a complex Lie algebra. Then g is simple over
C & it is simple over R.

Proposition 0.5. If § is a simple algebra over R, then either hc is
simple, or b admits a complex vector space structure, and hc = H D h.

Proof. As a vector space he = h ®@r C = § + th. Suppose &€ C fhc is a
complex ideal. For 0 # k € ¢, let k = hy 4+ iho, h; € h. If hy = 0, we
see that h C &, and therefore £ = he. Similarly if A; = 0. Otherwise,
for all 0 # hq + thy € €, hqy # 0 # hs. Since b is simple, for any h; € b,
there exists k = hy + tho, such that hg = 0 < h; = 0. Thus, £ is
the graph of a real vector space isomorphism J : §h — h. Moreover,
—i(h + iJ(h)) = J(h) — ih, so we see that J> = —I. The map J
also preserves the bracket on b, since [hy + iJ(h1), ho] = [h1, ho] +
i[J(h1), ha] = [h1,hs] + iJ][h1,hy] € € Thus, J induces a complex
structure on b, and he X EPE=HhPh. O

Thus, in order to classify simple Lie algebras, it suffices to classify
simple complex Lie algebras and their real forms.



