Sample Midterm 2 Solutions, Math 1A

1. Let $p \neq 0$. Show by implicit differentiation that the tangent line to the curve

$$
x^{p}+y^{p}=1, x>0, y>0
$$

at the point $\left(x_{0}, y_{0}\right)$ is given by the equation $x_{0}^{p-1} x+y_{0}^{p-1} y=1$. Show that the x-intercept a and y-intercept b of the tangent line satisfy $a^{p /(1-p)}+b^{p /(1-p)}=1$ if $p \neq 1$.
Solution: Implicitly differentiate, using the power and chain rules:

$$
\frac{d}{d x}\left(x^{p}+y^{p}\right)=p x^{p-1}+p y^{p-1} y^{\prime}=\frac{d}{d x}(1)=0 .
$$

Solving for y^{\prime}, we get $y^{\prime}=-(x / y)^{p-1}$. We plug in the point $\left(x_{0}, y_{0}\right)$ such that $x_{0}^{p}+y_{0}^{p}=1$ into the point-slope formula for the tangent line:

$$
y-y_{0}=-\left(x_{0} / y_{0}\right)^{p-1}\left(x-x_{0}\right) .
$$

Multiplying by y_{0}^{p-1} and putting the constants to one side, we obtain

$$
y_{0}^{p-1} y+x_{0}^{p-1} x=y_{0}^{p}+x_{0}^{p}=1 .
$$

Setting x and $y=0$, we see that the intercepts are $(a, b)=\left(x_{0}^{1-p}, y_{0}^{1-p}\right)$. Then we see that

$$
a^{p /(1-p)}+b^{p /(1-p)}=\left(x_{0}^{1-p}\right)^{p /(1-p)}+\left(y_{0}^{1-p}\right)^{p /(1-p)}=x_{0}^{p}+y_{0}^{p}=1 .
$$

2. A ladder 10 ft . long leans against a vertical wall. If the bottom of the ladder slides away from the base of the wall at a speed of $2 \mathrm{ft} . / \mathrm{s}$., how fast is the angle between the ladder and the wall changing when the bottom of the ladder is 6 ft . from the base of the wall?
Solution: Let α be the angle between the ladder and the wall, let $x f$. be the distance from the base of the ladder and the wall, and let $t s$. be the time. The given information implies that $\frac{d x}{d t}=2$. Then $\sin (\alpha)=x / 10$, so $\alpha=\arcsin (x / 10)$. Then we differentiate using the chain rule:

$$
\frac{d \alpha}{d t}=\frac{d}{d t} \arcsin (x / 10)=\frac{1}{\sqrt{1-(x / 10)^{2}}} \frac{d x}{d t} \frac{1}{10}=\frac{2}{\sqrt{10^{2}-x^{2}}} .
$$

When $x=6$, we have

$$
\frac{d \alpha}{d t} \mathrm{rad} / \mathrm{s} .=\frac{2}{\sqrt{10^{2}-6^{2}}} \mathrm{rad} / \mathrm{s} .=\frac{1}{4} \mathrm{rad} / \mathrm{s} .
$$

3. Prove that $\ln (x) \leq x-1$ for $x>0$.

Solution: Note that we have equality at $\ln (1)=1-1=0$.
We compute $(\ln (x))^{\prime}=1 / x,(\ln (x))^{\prime \prime}=-1 / x^{2}$, for $x>0$. Then the tangent line to $\ln (x)$ at $x=1$ is $y=x-1$. Since $(\ln (x))^{\prime \prime}=-1 / x^{2}<0$ for all $x>0$, the function is concave down on this interval. Therefore, the graph $y=\ln (x)$ lies below the tangent line by the concavity test, so $\ln (x) \leq x-1$.
4. Let

$$
g(x)= \begin{cases}e^{-1 / x}, & x>0 \tag{1}\\ 0, & x \leq 0\end{cases}
$$

Show that g is differentiable and $g^{\prime}(0)=0$.
Solution: For $x>0, g$ is obtained as a composition of differentiable functions, and therefore is differentiable by the chain rule. For $x<0, g$ is constant, so is differentiable with derivative 0 . So we need only show that $h^{\prime}(0)=0$. We have

$$
\begin{gathered}
\lim _{h \rightarrow 0^{-}} \frac{g(h)-g(0)}{h}=\lim _{h \rightarrow 0^{-}} \frac{0-0}{h}=0 . \\
\lim _{h \rightarrow 0^{+}} g(h)=\lim _{h \rightarrow 0^{+}} \frac{e^{-1 / h}-0}{h} .
\end{gathered}
$$

This second limit is indeterminate of the form $0 / 0$. Let $u=1 / h$, then

$$
\lim _{h \rightarrow 0^{+}} \frac{e^{-1 / h}}{h}=\lim _{u \rightarrow \infty} \frac{e^{-u}}{1 / u}=\lim _{u \rightarrow \infty} \frac{u}{e^{u}} .
$$

This limit is indeterminate of the form ∞ / ∞, so we compute

$$
\lim _{u \rightarrow \infty} \frac{d u / d u}{d\left(e^{u}\right) / d u}=\lim _{u \rightarrow \infty} \frac{1}{e^{u}}=1 / \infty=0=\lim _{h \rightarrow 0^{+}} \frac{g(h)-g(0)}{h}
$$

by l'Hospital's rule.
Thus, both limits agree, so we have $h^{\prime}(0)=0$.
5. Bismuth-210 has a half-life of 5.0 days. A sample of Bismuth has a mass of 128 mg .
(a) Find a formula for the mass remaining after t days.
(b) Find the mass remaining after 30 days.
(c) When is the mass reduced to $1 m g$?

Solution:

(a) The mass is given by $M(t)=128 * 2^{-t / 5}$.
(b) $M(30)=128 * 2^{-30 / 5}=128 / 2^{6}=2$.
(c) $M(35)=128 * 2^{-35 / 5}=1$.
6. Find the maxima and minima of $y=x^{3}-3 x+1$ on the interval $[0,3]$.

Solution: We compute the critical points of $x^{3}-3 x+1$ by computing the derivative and setting it equal to zero.

$$
\frac{d}{d x}\left(x^{3}-3 x+1\right)=3 x^{2}-3=3(x-1)(x+1)=0 .
$$

The solutions of this equation are ± 1. Then $y(1)=-1, y(-1)=3$. Plugging in the endpoints, $y(0)=1, y(3)=19$. So the maximum is 19 , and the minimum is -1 , by the Closed Interval Method.
7. Find the intervals on which f is increasing and decreasing, find the intervals of concavity and the inflection points, for the function $f(x)=\left(x^{2}+4 x+5\right) e^{-x}$.
Solution: Using the product rule, power rule, and chain rule, we have

$$
f^{\prime}(x)=\left(x^{2}+4 x+5\right)\left(-e^{-x}\right)+(2 x+4) e^{-x}=-\left(x^{2}+2 x+1\right) e^{-x}=-(x+1)^{2} e^{-x} .
$$

Then we have $f^{\prime}(x) \leq 0$, with equality only if $x=-1$. Thus, $f(x)$ is decreasing for all x.
To determine the concavity, we compute $f^{\prime \prime}(x)=-2(x+1) e^{-x}-(x+1)^{2}\left(-e^{-x}\right)=\left(x^{2}-1\right) e^{-x}$. Then since $e^{-x}>0$ for all $x, f^{\prime \prime}(x)>0$ for $x^{2}-1>0$, and $f^{\prime \prime}(x)<0$ for $x^{2}-1<0$. So f is concave up for $|x|>1$, and f is concave down for $|x|<1$ by the Concavity Test. The inflection points are $x= \pm 1$ since the concavity changes at these points.
8. Find

$$
\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)}{\sin (x)}
$$

or prove that the limit doesn't exist.
Solution: We have $\lim _{x \rightarrow 0} \frac{x}{\sin (x)}=\lim _{x \rightarrow 0} 1 / \frac{\sin (x)}{x}=1$ by one of the limits from Chapter 1 (or one may use l'Hospital's rule). Also, $|x \sin (1 / x)| \leq|x|$ for $x \neq 0$, and thus by the squeeze theorem we have

$$
0=\lim _{x \rightarrow 0}-|x| \leq \lim _{x \rightarrow 0} x \sin (1 / x) \leq \lim _{x \rightarrow 0}|x|=0 .
$$

Thus, $\lim _{x \rightarrow 0} \frac{x}{\sin (x)} \lim _{x \rightarrow 0} x \sin (1 / x)=1 \times 0=0=\lim _{x \rightarrow 0} \frac{x^{2} \sin (1 / x)}{\sin (x)}$ by the product formula for computing limits.

