
Final Solutions, Math 1A, section 1

Wednesday, December 17, 2008, 12:30 pm - 3:30 pm

1. Two cars start moving from the same point. One travels south at 60 mi/h and the other
travels west at 25 mi/h. At what rate is the distance between the cars increasing two hours
later?

Solution: Choose the starting point to be at the origin. The position of the first car at time
t hr. is −60t mi. The position of the second car at time t hr. is −25t mi.. The distance
between them at time t therefore is d(t) =

√

(−25t)2 + (60t)2 = 65t (since t is positive).
Thus, the rate that the distance is increasing is d′(t) mph = 65 mph, regardless of the hour.

2. Show that tan(x) > x for 0 < x < π/2.

Solution: Consider the function g(x) = tan(x) − x. Then g(0) = 0. Also, we have g is
differentiable on its domain and g′(x) = sec2(x) − 1 > 0 for 0 < x < π/2. Thus, g(x)
is increasing for 0 < x < π/2 by the ID test, so we have g(x) > 0 for 0 < x < π/2, so
tan(x) > x.

3. A box with a square base and open top must have a volume of 32, 000 cm3. Find the
dimensions of the box that minimizes the amount of material used.

Solution: Let x cm be the length of the sides of the square bottom, and hcm be the height
of the box. The volume of the box is given by hx2 = 32, 000, so x > 0, and the area of the
box is given by A = x2 + 4xh = x2 + 128000/x. We compute A′(x) = 2x − 128000/x2 and
A′′(x) = 2 + 256000/x3. We see that A′′(x) > 0 for all x > 0. We compute A′(x) = 0 for
x > 0 if x3 = 64000, so x = 40. This is the global minimum by the second derivative test.

4. Find d
dx

∫ cos x
sin x

1√
1−t2

dt for 0 < x < π/2, justifying your answer.

Solution: Let F (u) =
∫ u
π/4

1√
1−t2

dt, then by rules for definite integrals, we have
∫ cos x
sinx

1√
1−t2

dt =

F (sin(x)) − F (cos(x)) for 0 < x < π/2. We want to find d
dx(F (sin(x)) − F (cos(x))) =

F ′(sin(x)) cos(x) − F ′(cos(x))(− sin(x)) by the chain rule. By FTC1, F ′(u) = 1√
1−u2

, so

we get cos(x)√
1−sin2(x)

+ sin(x)√
1−cos2(x)

= cos(x)
cos(x) + sin(x)

sin(x) since 0 < x < π/2 and using trigonometric

identities. Thus, d
dx

∫ cos x
sin x

1√
1−t2

dt = 2 for 0 < x < π/2.

5. Show that the tangent line to the ellipse

x2

a2
+

y2

b2
= 1

at the point (x0, y0) is
x0x

a2
+

y0y

b2
= 1.

Solution: We implicitly differentiate:

∂

∂x

x2

a2
+

y2

b2
= 2x/a2 + 2y/b2 ∂y

∂x
=

∂

∂x
1 = 0.

Plugging in (x0, y0) and solving we get ∂y
∂x(x0, y0) = −x0b2

y0a2 . We plug into the point-slope

equation of the tangent line to get y − y0 = −x0b2

y0a2 (x − x0). Multiplying both sides by y0/b
2

and rearranging, we get

yy0/b
2 + xx0/a

2 = x2
0/a

2 + y2
0/b

2 = 1.



6. Show that the tangent lines to the curves x = y3 and y2 + 3x2 = 5 are perpendicular when
the curves intersect. Justify your answer.

Solution: We use implicit differentiation d
dxx = 1 = d

dxy3 = 3y2 dy
dx using the power and chain

rules. Let m be the slope of the tangent line to the curve x = y3, and let k be the slope of
the tangent line to the curve y2 + 3x2 = 5 at a point (x, y) of intersection of the two curves.
Also, d

dxy2 + 3x2 = 2y dy
dx + 6x = d

dx5 = 0. Let (x, y) be in the intersection of the two curves.
If y = 0, then x = y3 = 03 = 0, and y2 + 3x2 = 0 = 5, a contradiction. Thus, y > 0, and
similarly x > 0. Thus, we may divide the derivatives by y to obtain m = dy

dx = 1/3y2 and
k = −6x/2y = −3x/y = −3y3/y = −3y2 = −1/m. Thus, k and m represent complementary
slopes, and thus the two curves intersect perpendicularly.

7. Evaluate the following integrals, justifying your answers:

(a)
∫ 1
0 x − tan−1 x

1+x2 dx

Solution: By linearity,
∫ 1
0 x − tan−1 x

1+x2 dx =
∫ 1
0 xdx −

∫ 1
0

tan−1 x
1+x2 dx. Since the integrands

are continuous, we may use FTC2.
∫ 1
0 xdx =

[

x2/2
]1

0
= 1/2 by the power rule.

Let u = tan−1 x, du = 1/(1 + x2)dx. Then u(0) = tan−1(0) = 0, u(1) = tan−1(1) = π/4.
∫ 1
0

tan−1 x
1+x2 dx =

∫ π/4
0 udu =

[

u2/2
]π/4

0
= π2/32, using the substitution method, the power

rule, and FTC2.

(b)
∫ 2
0

√
4 − x2dx This integral represents a quarter disk in the first quadrant of radius 2.

Since the area of a disk of radius 2 is π22, the area is π.

(c)
∫

ex
√

1 + exdx

We use the substitution method. Let u = 1 + ex, du = exdx. Then
∫

ex
√

1 + ex =
∫

u1/2du = 2/3u3/2 = 2/3(1 + ex)3/2 by the power rule.

8. For the function f(x) = ex/x, find with justification

(a) the domain

(b) intercepts

(c) symmetry

(d) asymptotes

(e) intervals of increase or decrease

(f) local maximum and minimum values

(g) concavity and points of inflection

Then sketch the graph y = f(x), marking on your graph all of the information you have
found.

Solution:

(a) The domain of f(x) is a ratio of functions defined for all x, so the ratio is defined as
long as the denominator is non-zero, which occurs for x 6= 0.

(b) We set f(x) = 0 to find the x-intercept. This occurs only when the numerator = 0.
Since ex > 0 for all x, f(x) 6= 0 for all x, and there is no x-intercept.

f is undefined at x = 0, so there is no y-intercept.
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(c) Let x 6= 0. Suppose f(−x) = e−x/(−x) = −1/(xex) = ±ex/x, then 1/ex = ±ex, so
±1 = e2x, which is only possible for x = 0, a contradiction. Therefore f is not even or
odd.

f(x) is not periodic, since its domain is not periodic.

(d) The only possible vertical asymptote is at x = 0, since f is undefined there. lim
x→0+

f(x) =

lim
x→0+

ex lim
x→0+

1/x = 1 · ∞ = ∞. lim
x→0−

f(x) = lim
x→0−

ex lim
x→0−

1/x = 1 · (−∞) = −∞.

lim
x→−∞

ex

x = lim
x→−∞

ex lim
x→−∞

1/x = 0 · 0 = 0 lim
x→∞

ex

x is indeterminate of type ∞/∞.

lim
x→∞

(ex)′

x′ = lim
x→∞

ex

1 = ∞. Thus, by l’Hospital’s rule, lim
x→∞

ex

x = ∞. So there is a

horizontal asymptote y = 0 as x → −∞.

(e) f ′(x) = (ex/x)′ = (ex)′x−exx′

x2 = exx−ex

x2 = ex x−1
x2 by the quotient rule. For x > 1,

x − 1 > 1, and ex/x2 > 0 for all x 6= 0, so f ′(x) > 1. By the increasing test, f(x) is
increasing on this interval. For x < 1 and x 6= 0 , x − 1 < 1, so f ′(x) < 0. Thus, on the
intervals x < 0 and 0 < x < 1, f(x) is decreasing by the decreasing test.

(f) Since f ′(1) = 0, and f ′′(1) < 0, f has a local maximum at x = 1 by the second
derivative test. By the first derivative test, since 1 is the only zero of f ′(x), f(x) has no
local extremum at any other point in its domain.

(g) f ′′(x) = −ex(x−1)(x2)′+(ex(x−1))′(x2)
(x2)2

= −ex(x−1)2x+(ex(x−1)′+(ex)′(x−1))(x2)
x4 = −ex(2x2−2x)+ex(x2+x3−x2)

x4 =

ex x2−2x+2
x3 = ex (x−1)2+1

x3 . Then ex((x − 1)2 + 1) > 0 for all x, and x3 > 0 for x > 0, and
x3 < 0 for x < 0, so f ′′(x) > 0 for x > 0, and f ′′(x) < 0 for x < 0. By the concavity
test, f(x) is concave up for x > 0, and f(x) is concave down for x > 0. f(x) has no
inflection points, since it changes sign only at x = 0 which is not in the domain of f(x).

(h) Sketch the graph.

9. Let f(x) = x − 2
√

x.

(a) Prove that f is increasing for x > 1.

Solution: For x > 1, x =
√

x
2
, so f(x) =

√
x

2 − 2
√

x+ 1− 1 = (
√

x− 1)2 − 1. For x1 >
x2 > 1,

√
x1 >

√
x2 > 1, so

√
x1−1 >

√
x2−1 > 0, and (

√
x1−1)2−1 > (

√
x2−1)2−1.

Thus, f(x) is increasing for x > 1. One can also take the derivative and apply the ID
test.

(b) Find an inverse function for f(x) on the interval x > 1.

Solution: We solve for x: y = (
√

x−1)2−1, so (
√

x−1)2 = y+1, and (
√

x−1) =
√

y + 1
for y > −1. Then x = (1 +

√
y + 1)2, so g(y) = (1 +

√
y + 1)2 is the inverse function,

where y > −1.

(c) Prove rigorously the following limit, using the precise definition of an infinite limit:

lim
x→∞

x − 2
√

x = ∞

Solution: Let M > −1, and let N = g(M) = (1 +
√

M + 1)2. Then f(g(M)) = M . Since
f is increasing for x > 1, then if x > N = g(M), we have f(x) > M . If M ≤ −1, then take
N = 1, so f(x) > −1 ≥ M for x > 1. Thus lim

x→∞
f(x) = ∞ by the precise definition of a limit

(Definition 9, p. 140).
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10. Suppose you make napkin rings by drilling holes through the centers of balls with different
diameters and different sized holes. Suppose that the napkin rings have the same height h.
Show that the volumes of the napkin rings are the same. Justify your answer.

Solution: Let r be the radius of the cylindrical hole, and R the radius of the sphere. Then
they satisfy the relation R2 = r2 + (h/2)2. Let r ≤ x ≤ R be the radius of a cylindrical
shell (or let −h/2 ≤ y ≤ h/2 be the height of a washer cross-section). Using the cylindrical

shells method to compute the volume, we have V olume =
∫ R
r (2πx)2

√
R2 − x2dx. Making

the substitution u = R2−x2, du = −2xdx, and using FTC2 since the integrand is continuous,
the power rule, and the constant multiple rule, we get

V olume =

∫ 0

(h/2)2
−2πu1/2du =

[

−2π
2

3
u3/2

]0

(h/2)2
= 2π

2

3
((h/2)2)3/2 = πh3/6.

Using the washers method, we have

V olume =

∫ h/2

−h/2
π(

√

R2 − y2
2
− r2)dy = 2π

∫ h/2

0
R2 − r2 − y2dy

= 2π

[

(h/2)2y − 1

3
y3

]h/2

0

= πh3/6.

Here, we have used the fact that the integrand is even and integrated over a symmetric
interval, and R2 − r2 = (h/2)2, and the FTC2 since the integrand is continuous, the sum,
constant multiple, and power rules to evaluate the anti-derivative.
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