Sample Midterm 2 Solutions from 2009, Math 1A

. Differentiate es(n(z))

(ecos(In(@)))/ — geos(In()) (cog(In(x))) = e3(n(#) . _gsin(In(z)) - 1/ by two applications of the
chain rule and formulae for derivatives of trig, exponential, and logarithmic functions.

. Find the equation of the tangent line to the curve y = In(z)/x at the point (1,0).

y =1/2% —In(x)/2? = (1 —In(z))/2%. 3/(1) = (1 —In(1))/12 = 1, so the equation of the line
isy=04+(x—1)=2—1.

. Find % by implicit differentiation if e®/¥ = z — y.

We implicitly differentiate:

d d dy

d
(YY) = oT/Y _ 24y _ 4 N=1_Y

Solving for % and multiplying both sides by y # 0, we get

e —y = (e"Va/y - y)%,
SO
Y (=) ()~ ).
. The concentration y of a chemical at time ¢ satisfies the equation dy/dt = —.0005y. Find a

formula for y in terms of ¢ given that y = 1 at time ¢t = 0.

The concentration satisfies the law of natural growth, so y = y(0)e 0005 —= ¢—0005¢

. Use differentials or a linear approximation to estimate v/4.1.
We compute the differential for y = 23 about 4:

dy = %4_%d:n = %dw. Use dx = .1, we get dy = .25 -.1 = .025. So the approximation is
VAl =y +dy = V4 + dy = 2.025.

. Find the absolute maximum and absolute minimum values of f(z) = 2% — 12z on the interval
[—3,5].

We compute f'(x) = 322 — 12 = 3(z — 2)(x + 2). So f has critical points £2, both of which
are in the interval [—3,5]. We compute f(—3) = —27 —12(-3) =9, f(—2) = -8 — 12(-2) =
16, f(2) = —16, f(5) = 5(25 — 12) = 65. Thus, the absolute minimum of f on the interval
[—3,5] is —16, and the absolute maximum is 65.

. Show that the equation ¢ = —x has exactly one real root.

Solution: We need to show that e” +x = 0 has exactly one solution in z. Let f(z) = e* +x.
Then we compute f/'(r) = e® +1 > 1 for all z. We see that f(—1) = e ! —1 < 0, and
f(0) = € —0 = 1. By the IVT since f is differentiable and therefore continuous on the
interval [—1,0], there is —1 < ¢ < 0 such that f(c) = 0. There can be only one real root
by Rolle’s theorem, since if there were b # ¢ such that f(b) = 0, then there would be an a
between b and ¢ with f’(a) =0, but f'(a) > 1, a contradiction.



tan(z)—x
3

8. Find the limit lin%)

€T —>

Solution: We see that 1irr[1J tan(z) — x = tan(0) — 0 = 0 by DSP for continuous functions,
T—

and limz3 = 0. So the limit is indeterminate of type %.

z—0
fine)2). — yiny

xr—

lin% Seczg(% The numerator and denominator still have limit 0 by the DSP,
xTr—>

so this is indeterminate of type 8, with denominator non-zero for x # 0.

. (sec?(z)—1)
ili% (3x2)/
DSP, so this is indeterminate of type %, with denominator non-zero for x # 0.

2sec?(z) tan(z)

= lim O . The numerator and denominator still have limit 0 by the

sin(x)

. 2sec?(x)tan(x) _ 7. sin(x) 1 o 1 _ 1 : : _
ili%T = i{r(l)Tgcosg(x) =1- Teos3(0) — 3 Using the fact that 312}1((1)7 =1 and
limit laws.

Thus, we conclude by two applications of ’'Hospital’s rule that lir% tangfg)_z — lim 257 (gitan(m) =
xr—

1

3

x—0

9. Sketch the curve y = (2% — .%)%

Solution: The domain of this function is all x, since it is composed of functions whose domain
is all . The function is an odd function, so we need only analyze the behavior for z > 0.
The z-intercepts are obtained by setting 23 — 2 = 0, so z = 0,1, —1, and the y-intercept is 0.

2 1
We compute y = £ (2 — x)7%(3x2 —1) = 275, using the chain rule.

(z3—x)3
This is undefined when the denominator = 0 (since the numerator is non-zero), which is when
23 —x=x(x>—-1)=0,s0at x =0,1,—1. However, the function y is defined and continuous
at these points.

We also have 3/ = 0 when the numerator is zero, so 22 —+ =0, or 22 = 1, so z = :tl/\/g.

3 =3
So the critical points are x = 0, +1, +1/+/3.
The denominator of 3 is > 0, since it is a square, and therefore the sign of 3’ is determined
by the numerator. So we see that /(z) > 0 when 2% — £ > 0, so for [z| > 1/v/3, and y/(z) < 0
when 22 — 1 < 0, so for |z| < 1/v/3. So by the I/D test, y is increasing for |z| > 1/v/3, and
is decreasing for |z| < 1/4/3. By the first derivative test, we conclude that 1/4/3 is a local
minimum, and —1/+/3 is a local maximum (since y is odd).

We also have lim (23 — x)% = 0o. There is a slant asymptote y = (23 — 1:)% ~ (ac?’)% =1z, so
r—00

the graph behaves like y = x for = large.



10. Sketch the curve y = m%, for z > 0.
Solution: The domain of the function is given to us, z > 0.
We use logarithmic differentiation to compute 3’ = y(Iny)’ = y(In(z/*)) = y(1/zIn(z)) =
y(—1/x?In(z) + 1/z - 1/z) = 2Y/*(1 — In(x)) /2>
This is defined for all z > 0. We compute ¢y’ = 0 when 1 — In(z) = 0, so for In(z) = 1, or
x = e. Thus, the only critical point of y is x = e.

We also see that ¢ > 0 when 1 —In(z) > 0, so for < e, and ¥’ < 0 when z > e. By the I/D
test, y is increasing for 0 < x < e, and is decreasing for e < x. By the first derivative test,
x = e is a local maximum of y.

We also have lim z'/7 is indeterminate of type co?. We convert this to lim e™®)/% whose ex-
Tr—00 Tr—00
ponent is indeterminate of type co/oco. Thus lim (In(x)) /2’ = lim 1/x = 0, so by 'Hospital’s
T—00 T— 00
1/z — ¢0 = 1. So y has a horizontal asymptote as z — oo.

rule, lim In(z)/x =0, and lim x
T— 00 Tr—0Q0

We have lim z!/* =0 = 0.
z—0t
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