
Sample Midterm 2 Solutions from 2009, Math 1A

1. Differentiate ecos(ln(x))

(ecos(ln(x)))′ = ecos(ln(x))(cos(ln(x)))′ = ecos(ln(x)) · − sin(ln(x)) · 1/x by two applications of the
chain rule and formulae for derivatives of trig, exponential, and logarithmic functions.

2. Find the equation of the tangent line to the curve y = ln(x)/x at the point (1, 0).

y′ = 1/x2 − ln(x)/x2 = (1− ln(x))/x2. y′(1) = (1− ln(1))/12 = 1, so the equation of the line
is y = 0 + (x− 1) = x− 1.

3. Find dy
dx by implicit differentiation if ex/y = x− y.

We implicitly differentiate:

d

dx
(ex/y) = ex/y(1/y − x/y2 dy

dx
) =

d

dx
(x− y) = 1− dy

dx
.

Solving for dy
dx and multiplying both sides by y 6= 0, we get

ex/y − y = (ex/yx/y − y)
dy

dx
,

so
dy

dx
= (ex/y − y)/(ex/yx/y − y).

4. The concentration y of a chemical at time t satisfies the equation dy/dt = −.0005y. Find a
formula for y in terms of t given that y = 1 at time t = 0.

The concentration satisfies the law of natural growth, so y = y(0)e−.0005t = e−.0005t.

5. Use differentials or a linear approximation to estimate
√

4.1.

We compute the differential for y = x
1
2 about 4:

dy = 1
24−

1
2 dx = 1

4dx. Use dx = .1, we get dy = .25 · .1 = .025. So the approximation is√
4.1 ≈ y + dy =

√
4 + dy = 2.025.

6. Find the absolute maximum and absolute minimum values of f(x) = x3−12x on the interval
[−3, 5].

We compute f ′(x) = 3x2 − 12 = 3(x− 2)(x + 2). So f has critical points ±2, both of which
are in the interval [−3, 5]. We compute f(−3) = −27− 12(−3) = 9, f(−2) = −8− 12(−2) =
16, f(2) = −16, f(5) = 5(25 − 12) = 65. Thus, the absolute minimum of f on the interval
[−3, 5] is −16, and the absolute maximum is 65.

7. Show that the equation ex = −x has exactly one real root.

Solution: We need to show that ex +x = 0 has exactly one solution in x. Let f(x) = ex +x.
Then we compute f ′(x) = ex + 1 > 1 for all x. We see that f(−1) = e−1 − 1 < 0, and
f(0) = e0 − 0 = 1. By the IVT since f is differentiable and therefore continuous on the
interval [−1, 0], there is −1 < c < 0 such that f(c) = 0. There can be only one real root
by Rolle’s theorem, since if there were b 6= c such that f(b) = 0, then there would be an a
between b and c with f ′(a) = 0, but f ′(a) > 1, a contradiction.



8. Find the limit lim
x→0

tan(x)−x
x3 .

Solution: We see that lim
x→0

tan(x) − x = tan(0) − 0 = 0 by DSP for continuous functions,

and lim
x→0

x3 = 0. So the limit is indeterminate of type 0
0 .

lim
x→0

(tan(x)−x)′

(x3)′ = lim
x→0

sec2(x)−1
3x2 . The numerator and denominator still have limit 0 by the DSP,

so this is indeterminate of type 0
0 , with denominator non-zero for x 6= 0.

lim
x→0

(sec2(x)−1)′

(3x2)′ = lim
x→0

2 sec2(x) tan(x)
6x . The numerator and denominator still have limit 0 by the

DSP, so this is indeterminate of type 0
0 , with denominator non-zero for x 6= 0.

lim
x→0

2 sec2(x) tan(x)
6x = lim

x→0

sin(x)
x

1
3 cos3(x)

= 1 · 1
3 cos3(0)

= 1
3 using the fact that lim

x→0

sin(x)
x = 1 and

limit laws.

Thus, we conclude by two applications of l’Hospital’s rule that lim
x→0

tan(x)−x
x3 = lim

x→0

2 sec2(x) tan(x)
6x =

1
3 .

9. Sketch the curve y = (x3 − x)
1
3 .

Solution: The domain of this function is all x, since it is composed of functions whose domain
is all x. The function is an odd function, so we need only analyze the behavior for x ≥ 0.
The x-intercepts are obtained by setting x3 − x = 0, so x = 0, 1,−1, and the y-intercept is 0.

We compute y′ = 1
3(x3 − x)−

2
3 (3x2 − 1) = x2− 1

3

(x3−x)
2
3

using the chain rule.

This is undefined when the denominator = 0 (since the numerator is non-zero), which is when
x3− x = x(x2− 1) = 0, so at x = 0, 1,−1. However, the function y is defined and continuous
at these points.

We also have y′ = 0 when the numerator is zero, so x2 − 1
3 = 0, or x2 = 1

3 , so x = ±1/
√

3.

So the critical points are x = 0,±1,±1/
√

3.

The denominator of y′ is > 0, since it is a square, and therefore the sign of y′ is determined
by the numerator. So we see that y′(x) > 0 when x2− 1

3 > 0, so for |x| > 1/
√

3, and y′(x) < 0
when x2 − 1

3 < 0, so for |x| < 1/
√

3. So by the I/D test, y is increasing for |x| > 1/
√

3, and
is decreasing for |x| < 1/

√
3. By the first derivative test, we conclude that 1/

√
3 is a local

minimum, and −1/
√

3 is a local maximum (since y is odd).

We also have lim
x→∞

(x3 − x)
1
3 =∞. There is a slant asymptote y = (x3 − x)

1
3 ∼ (x3)

1
3 = x, so

the graph behaves like y = x for x large.
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10. Sketch the curve y = x
1
x , for x > 0.

Solution: The domain of the function is given to us, x > 0.

We use logarithmic differentiation to compute y′ = y(ln y)′ = y(ln(x1/x))′ = y(1/x ln(x))′ =
y(−1/x2 ln(x) + 1/x · 1/x) = x1/x(1− ln(x))/x2.

This is defined for all x > 0. We compute y′ = 0 when 1 − ln(x) = 0, so for ln(x) = 1, or
x = e. Thus, the only critical point of y is x = e.

We also see that y′ > 0 when 1− ln(x) > 0, so for x < e, and y′ < 0 when x > e. By the I/D
test, y is increasing for 0 < x < e, and is decreasing for e < x. By the first derivative test,
x = e is a local maximum of y.

We also have lim
x→∞

x1/x is indeterminate of type∞0. We convert this to lim
x→∞

eln(x)/x, whose ex-

ponent is indeterminate of type∞/∞. Thus lim
x→∞

(ln(x))′/x′ = lim
x→∞

1/x = 0, so by l’Hospital’s

rule, lim
x→∞

ln(x)/x = 0, and lim
x→∞

x1/x = e0 = 1. So y has a horizontal asymptote as x→∞.

We have lim
x→0+

x1/x = 0∞ = 0.
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