Math 1A, practice Midterm 1 from fall 2009, solutions

1. Sketch the graph of $y=\left|x^{2}-2 x\right|$ for $-4 \leq x \leq 4$.

Solution: The plot looks like that of a usual parabola, except when $0<x<2$, the part underneath the x-axis gets reflected above the x-axis to be positive, since in this interval $x^{2}-2 x=x(x-2)<0$ since $x>0, x-2<0$. We compute the points $y(-4)=(-4)^{2}-2(-4)=$ $24, y(0)=0, y(1)=|1-2|=1, y(2)=0, y(4)=4^{2}-2(4)=8$.

2. Sketch the graph of the function $f(x)=(4 x-1) /(2 x+3)$. Find a formula for its inverse f^{-1} and sketch the graph of f^{-1} on the same plot.
Solution: We compute $f(0)=-1 / 3$. Also, dividing numerator and denominator by $x>0$, we have $\lim _{x \rightarrow \infty} \frac{4 x-1}{2 x+3}=\lim _{x \rightarrow \infty} \frac{4-1 / x}{2+3 / x}=\frac{4-\lim _{x \rightarrow \infty} 1 / x}{2+3 \lim _{x \rightarrow \infty} 1 / x}=4 / 2=2$ using the fact that $\lim _{x \rightarrow \infty} 1 / x=0$ and the direct substitution property for rational functions (and the fact that the denominator is non-zero). Similarly, $\lim _{x \rightarrow-\infty} \frac{4 x-1}{2 x+3}=2$. Thus the graph will have a horizontal asymptote the line $y=2$, which we include in the plot.
The y-intercept is $\frac{4 x-1}{2 x+3}=0$, so $4 x-1=0$, and we see that $x=\frac{1}{4}$. There is also vertical asymptotes when the denominator $2 x+3=0$, so $x=-3 / 2$. We have $\lim _{x \rightarrow-3 / 2^{+}} \frac{4 x+1}{2 x+3}=$ $-\infty$ since the numerator approaches -5 , and the denominator is a small positive number. Similarly, $\lim _{x \rightarrow-3 / 2^{-}} \frac{4 x+1}{2 x+3}=\infty$, since now the denominator is a small negative number. We incorporate all of this information into a graph.
The domain of the function is $x \neq-3 / 2$. We compute the inverse function by setting $\frac{4 y-1}{2 y+3}=x$, and solving for y in terms of x. Since $2 y+3 \neq 0$, we may multiply through to get $4 y-1=x(2 y+3)=2 x y+3 x$. Gather the terms involving y on one side of the equation and the rest on the other to obtain $y(4-2 x)=3 x+1$. Now, x cannot equal 2 since this would give $y(4-2 \cdot 2)=0=3 \cdot 2+1=7$, which is impossible. So $4-2 x \neq 0$, and we may divide
both sides of the equation by $4-2 x$ to obtain $y=\frac{3 x+1}{4-2 x}$. From before, this has horizontal asymptote $y=-\frac{3}{2}$ and vertical asymptote at 2 since we've exchanged the roles of x and y, and the x and y intercepts get interchanged.

3. Evaluate the limit

$$
\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4 x-x^{2}}
$$

Solution: This is an indeterminate limit, since both the numerator and denominator approach 0 as $x \rightarrow 4$. The domain of the function is $x>0$ and $x \neq 4$.
We compute $\frac{2-\sqrt{x}}{4 x-x^{2}}=\frac{2-\sqrt{x}}{x(2-\sqrt{x})(2+\sqrt{x})}=\frac{1}{x(2+\sqrt{x})}$, which holds for $x>0, x \neq 4$. Now the denominator does not approach zero, so we may plug in by Theorem 2.5.7, to get

$$
\lim _{x \rightarrow 4} \frac{2-\sqrt{x}}{4 x-x^{2}}=\frac{1}{4(2+\sqrt{4})}=\frac{1}{16} .
$$

4. Show that there is a number x such that $e^{x}+\sin (x)=5$.

Solution: Consider the function $f(x)=e^{x}+\sin (x)$. This is a continuous function by Theorem 2.5.7 and the sum rule 2.5.4. We compute $f(0)=e^{0}+\sin (0)=1+0=1$. Also, we compute $f(\ln (7))=e^{\ln (7)}-\sin (\ln (7)) \geq 7-1=6$. Thus, by the intermediate value theorem, since $f(0)<5<f(\ln (7))$ and f is continuous, there must exist c with $0<c<\ln (7)$ such that $f(c)=5$. Then we see that $f(c)=e^{c}+\sin (c)=5$.
5. What is $\lim _{x \rightarrow+\infty} \sqrt{x^{2}+3 x}-\sqrt{x^{2}+2 x}$?

Solution: This is a special case of problem $2.6 \# 27$ from the book.
Multiply by the conjugate:
$\sqrt{x^{2}+3 x}-\sqrt{x^{2}+2 x}=\left(\sqrt{x^{2}+3 x}-\sqrt{x^{2}+2 x}\right)\left(\sqrt{x^{2}+3 x}+\sqrt{x^{2}+2 x}\right) /\left(\sqrt{x^{2}+3 x}+\sqrt{x^{2}+2 x}\right)$
which holds for all x in the domain of the function. We obtain

$$
\left(x^{2}+3 x-\left(x^{2}+2 x\right)\right) /\left(\sqrt{x^{2}+3 x}+\sqrt{x^{2}+2 x}\right)=x /\left(\sqrt{x^{2}+3 x}+\sqrt{x^{2}+2 x}\right) .
$$

Since $x \rightarrow \infty, x$ is positive, so we may divide out by x in the denominator:

$$
x /(x(\sqrt{1+3 / x}+\sqrt{1+2 / x}))=1 /(\sqrt{1+3 / x}+\sqrt{1+2 / x})
$$

Now $\lim _{x \rightarrow \infty} 1 / x=0$, so we may plug into the limit since it is an algebraic function by Theorem 2.5.7, and the denominator does not approach zero, to get $1 /(\sqrt{1}+\sqrt{1})=1 / 2$.
6. Find the equation of the tangent line to the curve $y=2 x^{3}-5 x$ at the point where $x=-1$.

Solution: We compute $\frac{d y}{d x}=\left(2 x^{3}-5 x\right)^{\prime}=2\left(x^{3}\right)^{\prime}-5 x^{\prime}$ by the sum and constant multiple rules. Then using the power rule, we get $\frac{d y}{d x}=2 \cdot 3 x^{2}-5 \cdot 1=6 x^{2}-5$. When $x=-1$, we get $y^{\prime}(-1)=6(-1)^{2}-5=1$. We also have $y(-1)=2 \cdot(-1)^{3}-5 \cdot(-1)=-2+5=3$. We plug into the point-slope formula to obtain the tangent line:

$$
y-y(1)=y^{\prime}(-1)(x-(-1))=y-3=x+1,
$$

so $y=x+4$.
7. State the definition of the derivative of a function, and fine the derivative of the function $f(x)=x^{2}-1$ using the definition of the derivative.
Solution: The derivative is defined as

$$
f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a},
$$

when the limit exists.
First we compute the difference quotient: $\frac{x^{2}-1-\left(a^{2}-1\right)}{x-a}=\frac{x^{2}-a^{2}}{x-a}=\frac{(x-a)(x+a)}{x-a}=x+a$, where the last equality holds for all $x \neq a$. The we plug this into the limit definition of the derivative:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{x^{2}-1-\left(a^{2}-1\right)}{x-a}=\lim _{x \rightarrow a} x+a=a+a=2 a .
$$

The substitution is valid since the two functions are equal for $x \neq a$. Also, $x+a$ is continuous since it is a polynomial by Theorem 2.5.7, so we may plug in the limit.
8. (Skip this problem, since we haven't covered $\arctan (x)$ yet).
9. Differentiate the function $y=e^{x+1}+x^{-10}$.

Solution: The domain of this function is $x \neq 0$, since $e^{x+1}=e \cdot e^{x}$ is defined for all x, and x^{-10} is defined for $x \neq 0$. We differentiate using the sum, exponential, constant multiple, and power rules:
$\frac{d y}{d x}=\left(e^{x+1}+x^{-10}\right)^{\prime}=\left(e e^{x}\right)^{\prime}+\left(x^{-10}\right)^{\prime}=e e^{x}+(-10) x^{-10-1}=e^{x+1}-10 x^{-11}$.
10. Differentiate $e^{x} \sqrt{x}$

Solution: The domain of the function is $x \geq 0$. The function $\left(e^{x}\right)^{\prime}=e^{x}$ by the exponential law, and $(\sqrt{x})^{\prime}=\left(x^{\frac{1}{2}}\right)=\frac{1}{2} x^{-\frac{1}{2}}$ by the power law for $x>0$. We then apply the product rule (for $x>0$):

$$
\left(e^{x} x^{\frac{1}{2}}\right)^{\prime}=\left(e^{x}\right)^{\prime} x^{\frac{1}{2}}+e^{x}\left(x^{\frac{1}{2}}\right)^{\prime}=e^{x} x^{\frac{1}{2}}+e^{x} \frac{1}{2} x^{-\frac{1}{2}}=e^{x}\left(\sqrt{x}+\frac{1}{2} / \sqrt{x}\right) .
$$

11. Differentiate $\frac{e^{x}}{x^{2}+1}$.

Solution:

We apply the quotient rule. Since $x^{2}+1 \geq 1$, the denominator is never 0 . Also, the numerator and denominator are differentiable functions (by the exponential, sum, and power rules). So we may apply the quotient rule:

$$
\frac{d}{d x} \frac{e^{x}}{x^{2}+1}=\frac{\left(e^{x}\right)^{\prime}\left(x^{2}+1\right)-\left(e^{x}\right)\left(x^{2}+1\right)^{\prime}}{\left(x^{2}+1\right)^{2}}=\frac{e^{x}\left(x^{2}+1\right)-e^{x}(2 x)}{\left(x^{2}+1\right)^{2}}=e^{x} \frac{(x-1)^{2}}{\left(x^{2}+1\right)^{2}} .
$$

