Midterm 1, Math 1A, section 1 solutions

1. Let $F(x)=\sqrt{2+x}, G(x)=\sqrt{2-x}$. Find $F-G, F G, F / G$, and $G \circ F$, and find their domains. Determine which of these functions is even, odd, or neither.

Solution:

First, we find the domain of F and G. If $F(x)=\sqrt{2+x}$, then we must have $2+x \geq 0$, so $x \geq-2$. If $G(x)=\sqrt{2-x}$, then $2-x \geq 0$, so $x \leq 2$.
We have $F(x)-G(x)=\sqrt{2+x}-\sqrt{2-x}$. The domain is $-2 \leq x \leq 2$.
$F G(x)=\sqrt{2+x} \sqrt{2-x}=\sqrt{(2+x)(2-x)}=\sqrt{4-x^{2}}$. Then $F G$ has domain $-2 \leq x \leq 2$, and $F G$ is even since $F G(-x)=\sqrt{4-(-x)^{2}}=\sqrt{4-x^{2}}=F G(x)$.
$(F / G)(x)=\frac{\sqrt{2+x}}{\sqrt{2-x}}$. This has domain $-2 \leq x<2$, since the denominator cannot $=0 . F / G(x)$ is neither even nor odd since its domain is not symmetric about $x=0$.
$G \circ F(x)=\sqrt{2-\sqrt{2+x}}$. For $G \circ F$ to be defined, we must have $F(x)$ lies in the domain of $G(x)$, so $F(x) \leq 2$. Then $\sqrt{2+x} \leq 2$, so we have $0 \leq 2+x \leq 4$, and thus $-2 \leq x \leq 2$. $G \circ F$ is neither odd nor even, since since $G \circ F(2)=\sqrt{2-\sqrt{2+2}}=0$, while $G \circ F(-2)=$ $\sqrt{2-\sqrt{2-2}}=\sqrt{2}$, so $0=G \circ F(2) \neq \pm G \circ F(-2)= \pm \sqrt{2}$.
2. Draw the graph of $y=x^{2}$. Use the graph to find a number δ such that if $|x-1|<\delta$, then $\left|x^{2}-1\right|<.96=\frac{24}{25}$. Label the corresponding intervals on your graph.

Solution:

The inequality $\left|x^{2}-1\right|<\frac{24}{25}$ is equivalent to $-\frac{24}{25}<x^{2}-1<\frac{24}{25}$. Adding 1 to each part of the inequality, we obtain $\frac{1}{25}=1-\frac{1}{25}<x^{2}<1+\frac{24}{25}=\frac{49}{25}$. Since the positive square root preserves inequalities, this is equivalent to $\sqrt{\frac{1}{25}}=\frac{1}{5}<x<\frac{7}{5}=\sqrt{\frac{49}{25}}$ for $x>0$. Now, we subtract 1 from both sides, obtaining $-\frac{4}{5}=\frac{1}{5}-1<x-1<\frac{2}{5}=\frac{7}{5}-1$. Thus, we see that if we let $\delta<\frac{2}{5}$, then if $|x-1|<\delta$, we have $-\frac{4}{5}<-\frac{2}{5}<x-1<\frac{2}{5}$, and therefore from the above reversible derivations, we get $\left|x^{2}-1\right|<\frac{24}{25}$.

3. Let $f(x)=\frac{x+8}{x^{2}-4}$
(a) What is the domain of f ?
(b) Find $f(1), f(-3)$, and the x - and y-intercepts of f.
(c) Is f even, odd, or neither? Give an explanation.
(d) Find $\lim _{x \rightarrow \infty} f(x), \lim _{x \rightarrow 2^{+}} f(x), \lim _{x \rightarrow 2^{-}} f(x)$. What are the asymptotes of $y=f(x)$?
(e) Sketch all of the points and asymptotes you have found from the previous parts on a graph. Then sketch the graph of $y=f(x)$ on the same graph.

Solution:

(a) $f(x)$ is defined when the denominator is non-zero, so when $x^{2}-4=(x-2)(x+2) \neq 0$, which is equivalent to $x-2 \neq 0$ and $x+2 \neq 0$. Thus, the domain of $f(x)$ is $x \neq \pm 2$.
(b) $f(1)=\frac{1+8}{1^{2}-4}=\frac{9}{-3}=-3 . f(-3)=\frac{-3+8}{(-3)^{2}-4}=\frac{5}{5}=1 . f(0)=\frac{8}{-4}=-2$. The y-intercept is obtained by setting $f(x)=0$, which happens when the numerator is zero, and therefore $x=-8$.
(c) f is neither even nor odd, since the denominator is even, but the numerator is neither odd nor even. Alternatively, one may use that $f(0)=-2 \neq 0$, so f is not odd, and $f(8)=\frac{4}{15}>0=f(-8)$, so f is not even.
(d) $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{x+8}{x^{2}-4}=\lim _{x \rightarrow \infty} \frac{1 / x+8(1 / x)^{2}}{1-4(1 / x)^{2}}=\frac{0}{1}=0$, where we are using the fact that $\lim _{x \rightarrow \infty} 1 / x=0$, and we may plug this into a limit of a continuous function.
When $-2<x<2$, we have $x^{2}-4<0, x+8>6$, and $\lim _{x \rightarrow 2^{-}} x^{2}-4=0$. Thus, $f(x)<0$.
So we have $\lim _{x \rightarrow 2^{-}} \frac{x+8}{x^{2}-4}=-\infty$.

When $x>2$, we have $x+8>10, x^{2}-4>0, \lim _{x \rightarrow 2^{+}} x^{2}-4=0$, and thus we have $\lim _{x \rightarrow 2^{+}} \frac{x+8}{x^{2}-4}=\infty$.

(e)
4. Let

$$
h(x)= \begin{cases}x^{2}+2 a, & x \leq 1 \tag{1}\\ a x+3, & x>1\end{cases}
$$

Determine a so that h is continuous for all real numbers. Explain with upper and lower limits.

Solution:

On the intervals $(-\infty, 1]$ and $(1, \infty), h(x)$ is equivalent to a polynomial function restricted to that interval, and thus $h(x)$ is continuous on both of these intervals. Thus, we need only choose a so that $h(x)$ is continuous at $x=1$. Since $\lim _{x \rightarrow 1^{-}} h(x)=\lim _{x \rightarrow 1^{-}} x^{2}+2 a=1+2 a=h(1)$, we need only choose a so that $\lim _{x \rightarrow 1^{+}} h(x)=\lim _{x \rightarrow 1^{+}} a x+3=a+3=h(1)=1+2 a$. Solving for a, we see that $a=2$, so $h(x)$ is continuous if $a=2$.
5. Prove rigorously the following limit, using the $M-N$ definition of an infinite limit:

$$
\lim _{x \rightarrow \infty} x-100 \cos x=\infty
$$

Solution:

Let $M>0$, and let $N=M+100$. Suppose $x>N$. We have $\cos x \leq 1$, so $-\cos x \geq-1$, and $-100 \cos x \geq-100$. Then $x-100 \cos x>N-100=M$. From the definition of infinite limits (Definition 8, p. 66 Stewart), we conclude that

$$
\lim _{x \rightarrow \infty} x-100 \cos x=\infty
$$

6. Find the tangent line to the graph of $y=2 x^{3}-5 x$ at the point $(-1,3)$.

Solution:

We compute $\frac{d y}{d x}(-1)=\lim _{x \rightarrow-1} \frac{2 x^{3}-5 x-3}{x+1}=\lim _{x \rightarrow-1} \frac{(x+1)\left(2 x^{2}-2 x-3\right)}{x+1}=\lim _{x \rightarrow-1} 2 x^{2}-2 x-3=1$ is the slope of the tangent line.
Then we use the formula for a line through $(-1,3)$ of slope 1 to be $y-3=x+1$, or $y=x+4$.
7. Find $g^{\prime}(x)$, where $g(x)=\sqrt{x-2}$ using the limit definition of the derivative and the methods for finding limits that we have developed so far. What are the domains of $g(x)$ and $g^{\prime}(x)$?
Solution: The domain of $g(x)$ is $x \geq 2$.
First, some algebra to reduce the difference quotient. Let $x>2$.

$$
\begin{gathered}
\frac{\sqrt{x+h-2}-\sqrt{x}}{h}=\frac{(\sqrt{x+h-2}-\sqrt{x-2})(\sqrt{x+h-2}+\sqrt{x-2})}{h(\sqrt{x+h-2}+\sqrt{x-2})} \\
=\frac{x+h-2-(x-2)}{h \cdot(\sqrt{x+h-2}+\sqrt{x-2})}=\frac{1}{(\sqrt{x+h-2}+\sqrt{x-2})}
\end{gathered}
$$

assuming $h \neq 0$ and $h>2-x$.
Now we may compute

$$
\begin{gathered}
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\sqrt{x+h-2}-\sqrt{x-2}}{h}=\lim _{h \rightarrow 0} \frac{1}{(\sqrt{x+h-2}+\sqrt{x-2})} \\
=\frac{1}{2 \sqrt{x-2}}=\frac{1}{2}(x-2)^{-1 / 2} .
\end{gathered}
$$

The second to last inequality, we are using that the function is continuous at $h=0$, so we may plug in $h=0$ to obtain the limit. The domain of $g^{\prime}(x)$ is $x>2$, since these give the values where the denominator $(x-2)^{\frac{1}{2}}$ is defined and non-zero.

