Math 282b Homework # 1, due 2/2/01

- 1. Let $\Sigma_{g,k}$ denote a genus g surface with k points removed. Compute $H_*(\Sigma_{g,k})$ for k > 0.
- 2. Let X be a topological space, let $\phi : X \to X$ be a homeomorphism, and let ϕ_k denote the induced map on $H_k(X)$. Define the mapping torus

$$Y = X \times [0,1]/(x,1) \sim (\phi(x),0).$$

Show that there is a short exact sequence

$$0 \to \operatorname{Coker}(1 - \phi_k) \to H_k(Y) \to \operatorname{Ker}(1 - \phi_{k-1}) \to 0.$$

- 3. Show that singular homology defined using simplices is naturally isomorphic to singular homology defined using cubes¹.
- 4. (a) Show that the Grassmannian G(k, n), consisting of k-dimensional subspaces of \mathbb{R}^n , is a manifold.
 - (b) Show that for $S \in G(k, n)$ there is a canonical isomorphism

$$T_SG(k,n) = \operatorname{Hom}(S, \mathbb{R}^n/S).$$

$$F_{i,n}^{-}(x_1,\ldots,x_{n-1}) = (x_1,\ldots,x_{i-1},0,x_i,\ldots,x_{n-1}),$$

$$F_{i,n}^{+}(x_1,\ldots,x_{n-1}) = (x_1,\ldots,x_{i-1},1,x_i,\ldots,x_{n-1}).$$

Let $C_n^{\square}(X)$ denote the free \mathbb{Z} -module generated by continuous maps $I^n \to X$, modulo constant maps when n > 0. For $\sigma : I^n \to X$, define

$$\partial \sigma = \sum_{i=1}^{n} \left(\sigma \circ F_{i,n}^{+} - \sigma \circ F_{i,n}^{-} \right) \in C_{n-1}^{\square}(X).$$

¹The cubical singular chain complex $(C^{\square}_*(X), \partial)$ of a topological space is defined as follows. For $i = 1, \ldots, n$ define face maps $F^{\pm}_{i,n} : I^{n-1} \to I^n$ by