Math H185 HW\#11

Have you learned enough for grad school? The following questions are from recent prelim exams for first-year grad students. (In the actual exam, one attempts 12 out of 18 questions, and one has to get about 7 out of 12 right to pass.) I will grade this homework on a pass-fail basis (i.e. did you make a reasonable effort or not), and I also hope that it will be helpful in reviewing for the final.

1. Let $U \subset \mathbb{C}$ be simply connected, and suppose $f: U \rightarrow \mathbb{C}$ is holomorphic and never zero. Show that there is a holomorphic function $g: U \rightarrow \mathbb{C}$ with $e^{g}=f$.
2. Find the Laurent expansion of

$$
f(z)=(1+z)^{-1}+\left(z^{2}-9\right)^{-1}
$$

in the annulus $1<|z|<3$.
3. Let $D \subset \mathbb{C}$ denote the unit disc. If $a, b \in D$, show that there exists a holomorphic bijection $f: D \rightarrow D$ with $f(a)=b$.
4. Calculate

$$
\int_{0}^{2 \pi} \frac{1}{1+\frac{1}{2} \sin \theta} d \theta
$$

5. If $0<r<1$, find

$$
\sum_{k=0}^{\infty} r^{k} \cos (k \theta)
$$

Your final answer should not involve any complex numbers.
6. Find a conformal map from the unit disk $|z|<1$ to the sector $0<$ $\arg (z)<\pi / 4$.
7. Compute

$$
\int_{|z|=2} \frac{z^{4}}{z^{5}-z-1} d z
$$

8. Let $f, g: \mathbb{C} \rightarrow \mathbb{C}$ be holomorphic. Show that if $\operatorname{Re}(f(z))>\operatorname{Re}(g(z))$ for all z with $|z|=1$, then $\operatorname{Re}(f(z))>\operatorname{Re}(g(z))$ for all z with $|z|<1$.
9. Prove that there are infinitely many complex numbers with $e^{z}=z$. Hint: Consider the behavior of $e^{z}-z$ on a large square.
