Math 215a Homework #5, Due Friday 11/9 at 1:10 PM

- 1. Hatcher section 2.2 exercise 8.
- 2. Recall that $\mathbb{CP}^n = (\mathbb{C}^{n+1} \setminus \{0\}) / \sim$, where $v \sim w$ iff $v = \lambda w$ for some $\lambda \neq 0$. Show that \mathbb{CP}^n has the structure of a CW complex with one cell in each dimension $0, 2, \ldots, 2n$. *Hint:* use induction on n.
- 3. Hatcher section 2.2 exercise 17.
- 4. Hatcher section 2.2 exercises 20, 21, 22. (These should be quick.)
- 5. Let X and Y be compact surfaces, and let $f : X \to Y$ be a *d*-fold branched cover¹. Let r denote the sum of the orders of the ramification points in X. Prove the *Riemann-Hurwitz formula*

$$\chi(X) = d \cdot \chi(Y) - r.$$

6. Find an example of spaces X, Y and maps $f, g : X \to Y$ which induce the same map $H_n(X) \to H_n(Y)$ for all n, but which induce different maps $H_n(X;G) \to H_n(Y;G)$ for some n and G. (*Hint:* take $X = \mathbb{RP}^2$ and $Y = S^2$.) Why doesn't this contradict the universal coefficient theorem?

¹ f is a branched cover if for every $p \in X$, there are identifications of neighborhoods U of p and V of f(p) with a neighborhood of the origin in \mathbb{C} , identifying p and f(p) with 0, such that under these identifications, $f: U \to V$ is given by $f(z) = z^n$ for some positive integer n. If n > 1 then p is called a ramification point of order n-1, and f(p) is a branch point. The adjective 'd-fold' means that if $q \in Y$ is not a branch point then $|f^{-1}(q)| = d$. Note that over the complement of the branch points, f is a covering space.