Math 215a Homework #2, Due Wednesday 10/3 at 1:10 PM

- 1. Hatcher, section 1.3, exercise 4.
- 2. Hatcher, section 1.3, exercise 12.
- 3. Hatcher, section 1.3, exercise 14.
- 4. Hatcher, section 1.3, exercise 26.
- 5. Let n and k be positive integers, and let F(n) denote the free group on n generators. Show that if G is an index k subgroup of F(n), then $G \simeq F(kn - k + 1)$.
- 6. Let $X := T^n = \mathbb{R}^n / \mathbb{Z}^n$. Let \widetilde{X} be a path connected covering space of X. Show that \widetilde{X} is homeomorphic to $T^m \times \mathbb{R}^{n-m}$ for some $m \in \{0, \ldots, n\}$.
- 7. Let F denote the free group on two generators a, b, and let G denote the commutator subgroup of F. Show that G is freely generated by

$$\{[a^m, b^n] \mid m, n \in \mathbb{Z} \setminus \{0\}\}.$$

8. Extra credit (the hard part is to figure out what this means): Let (X, x_0) be path connected, locally path connected, and semi-locally simply connected. Let \mathcal{C} denote the category of covering spaces $p : \widetilde{X} \to X$; here \widetilde{X} does not have a base point and is not assumed to be path connected. Let \mathcal{P} denote the category of sets equipped with a right $\pi_1(X, x_0)$ action. Show that there is an equivalence of categories $\mathcal{F} : \mathcal{C} \to \mathcal{P}$.