Math 1b Section 2 Midterm #1, 2/14/06, Solutions

1. Substitute u = v/e* +1. Then u? = €* + 1, so 2udu = e*dzr =
(u? — 1) dz, so dz = 2udu/(u? — 1). Thus

/lns dv 3 2du
m3 Ver+1 Sy ur—1
To evaluate the integral on the right we use partial fractions:
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2. The surface area is
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We calculate
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To evaluate this integral we substitute x = sinf for —7/2 < 0 < /2.
Then V1 — 22 = cos 6 and dx = cosf db, so
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3. (a) By definition, the midpoint approximation for n = 2 is
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(b) If f(z) = 1/z and x > 0 then |f”(z)| = 2/x3. This is a decreasing
function of x (since its derivative is negative), so if z > 2 then | f"(z)| <
2/23 = 1/4 = K. We use the theorem asserting that the error in the
midpoint approximation is bounded by
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We want to choose n large enough so that
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We can take n = 9 because 2/243 < 1/100. (Any n > 9 is guaranteed

to work by the theorem. Some smaller values of n might also work but
this is not guaranteed by the theorem.)

. The integral is convergent. To compute it we use partial fractions:
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. We use integration by parts. We take u = arctanz and dv = 22 dx.
Then du = dz/(1 + 2?) and v = 23/3, so

3 3
t 1
/xQ arctan z dxr = rarlant / v dx.
3 3) 1+2a?

To evaluate the integral on the right, we divide polynomials to obtain
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Putting this all together, we get
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. The integral is divergent, by the comparison test. If 0 < z < 1 then
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The second inequality holds because e” is an increasing function of z
(because its derivative is positive), so e® > e when z > 0. We know

that .
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diverges because 3/2 > 1. So by the comparison test, the integral in
question diverges.



