Math 1b Section 2 Midterm \#1, 2/14/06, Solutions

1. Substitute $u=\sqrt{e^{x}+1}$. Then $u^{2}=e^{x}+1$, so $2 u d u=e^{x} d x=$ $\left(u^{2}-1\right) d x$, so $d x=2 u d u /\left(u^{2}-1\right)$. Thus

$$
\int_{\ln 3}^{\ln 8} \frac{d x}{\sqrt{e^{x}+1}}=\int_{2}^{3} \frac{2 d u}{u^{2}-1} .
$$

To evaluate the integral on the right we use partial fractions:

$$
\int_{2}^{3} \frac{2 d u}{u^{2}-1}=\int_{2}^{3}\left(\frac{1}{u-1}-\frac{1}{u+1}\right) d u=\left.\ln \left(\frac{u-1}{u+1}\right)\right|_{2} ^{3}=\ln (3 / 2) .
$$

2. The surface area is

$$
A=\int_{-1 / \sqrt{2}}^{1 / \sqrt{2}} 2 \pi y \sqrt{1+\left(\frac{d y}{d x}\right)^{2}} d x
$$

We calculate

$$
1+\left(\frac{d y}{d x}\right)^{2}=1+\frac{x^{2}}{1-x^{2}}=\frac{1}{1-x^{2}}
$$

so

$$
A=\int_{-1 / \sqrt{2}}^{1 / \sqrt{2}} \frac{2 \pi\left(2+\sqrt{1-x^{2}}\right)}{\sqrt{1-x^{2}}} d x
$$

To evaluate this integral we substitute $x=\sin \theta$ for $-\pi / 2 \leq \theta \leq \pi / 2$. Then $\sqrt{1-x^{2}}=\cos \theta$ and $d x=\cos \theta d \theta$, so

$$
A=\int_{-\pi / 4}^{\pi / 4} 2 \pi(2+\cos \theta) d \theta=2 \pi^{2}+2 \sqrt{2} \pi .
$$

3. (a) By definition, the midpoint approximation for $n=2$ is

$$
M_{2}=\frac{6-2}{2}\left(\frac{1}{3}+\frac{1}{5}\right)=\frac{16}{15} .
$$

(b) If $f(x)=1 / x$ and $x>0$ then $\left|f^{\prime \prime}(x)\right|=2 / x^{3}$. This is a decreasing function of x (since its derivative is negative), so if $x \geq 2$ then $\left|f^{\prime \prime}(x)\right| \leq$ $2 / 2^{3}=1 / 4=K$. We use the theorem asserting that the error in the midpoint approximation is bounded by

$$
\left|E_{M}\right| \leq \frac{K(b-a)^{3}}{24 n^{2}}=\frac{(1 / 4)(6-2)^{3}}{24 n^{2}}=\frac{2}{3 n^{2}} .
$$

We want to choose n large enough so that

$$
\frac{2}{3 n^{2}}<\frac{1}{100}
$$

We can take $n=9$ because $2 / 243<1 / 100$. (Any $n \geq 9$ is guaranteed to work by the theorem. Some smaller values of n might also work but this is not guaranteed by the theorem.)
4. The integral is convergent. To compute it we use partial fractions:

$$
\begin{gathered}
\int_{2}^{\infty} \frac{d x}{x(x-1)}=\lim _{t \rightarrow \infty} \int_{2}^{t}\left(\frac{1}{x-1}-\frac{1}{x}\right) d x=\left.\lim _{t \rightarrow \infty} \ln \left(\frac{x-1}{x}\right)\right|_{2} ^{t} \\
=\lim _{t \rightarrow \infty}\left(\ln \left(1-\frac{1}{t}\right)-\ln (1 / 2)\right)=\ln (2)
\end{gathered}
$$

5. We use integration by parts. We take $u=\arctan x$ and $d v=x^{2} d x$. Then $d u=d x /\left(1+x^{2}\right)$ and $v=x^{3} / 3$, so

$$
\int x^{2} \arctan x d x=\frac{x^{3} \arctan x}{3}-\frac{1}{3} \int \frac{x^{3}}{1+x^{2}} d x
$$

To evaluate the integral on the right, we divide polynomials to obtain

$$
\int \frac{x^{3}}{1+x^{2}} d x=\int\left(x-\frac{x}{1+x^{2}}\right) d x=\frac{x^{2}}{2}-\frac{1}{2} \ln \left(1+x^{2}\right)+C .
$$

Putting this all together, we get

$$
\int x^{2} \arctan x d x=\frac{x^{3} \arctan x}{3}-\frac{x^{2}}{6}+\frac{1}{6} \ln \left(1+x^{2}\right)+C .
$$

6. The integral is divergent, by the comparison test. If $0<x \leq 1$ then

$$
\frac{x+e^{x}}{x^{3 / 2}} \geq \frac{e^{x}}{x^{3 / 2}} \geq \frac{1}{x^{3 / 2}}>0
$$

The second inequality holds because e^{x} is an increasing function of x (because its derivative is positive), so $e^{x} \geq e^{0}$ when $x \geq 0$. We know that

$$
\int_{0}^{1} \frac{1}{x^{3 / 2}} d x
$$

diverges because $3 / 2 \geq 1$. So by the comparison test, the integral in question diverges.

