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Let X be a closed oriented Riemannian manifold with s(X)"0 and b
1
(X)'0, and let / : XPS1 be a circle-valued

Morse function. Under some mild assumptions on /, we prove a formula relating

1. the number of closed orbits of the gradient flow of / in different homology classes;
2. the torsion of the Novikov complex, which counts gradient flow lines between critical points of /; and
3. a kind of Reidemeister torsion of X determined by the homotopy class of /.

When dim(X)"3, we state a conjecture related to Taubes’s ‘‘SW"Gromov’’ theorem, and we use it to deduce (for
closed manifolds, modulo signs) the Meng—Taubes relation between the Seiberg-Witten invariants and the ‘‘Milnor
torsion’’ of X. ( 1999 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

1.1. Background on circle-valued Morse theory and torsion
Let X be an n-dimensional closed Riemannian manifold and / :XPR a Morse function.

Definition 1.1. Recall that the Morse complex (CM034%, d) is defined as follows. The chain
module CM034%

i
is the free Z-module generated by Crit

i
, the set of critical points of index i.

The differential d : CM034%
i

PCM034%
i~1

sends a critical point x3Crit
i
to

d(x) :" +
y|C3*5i~1

Sdx, yTy

where Sdx, yT denotes the signed number of downward gradient flow lines (i.e. flow lines
of !+/) from x to y. (If the metric on X is generic, then there are a finite number of such
flow lines, and we can attach a sign to each one after certain orientation data are chosen, see
Section 2.2.)

One of the fundamental theorems of Morse theory (which evolved in [36, 32, 21, 41]) is:

THEOREM 1.2 (cf. [1, 5, 31]). d2"0 and H
i
(CM034%

*
, d )"H

i
(X).

Novikov [25] generalized this to multiple-valued functions, i.e. closed 1-forms. In the
simplest version of Novikov’s construction, we consider a circle-valued Morse function
/ :XPS1. There is an analogue of the Morse complex which counts gradient flow lines
of /. In this circle-valued case, to obtain a finite count we need to classify flow lines using
some information about their homotopy classes. A minimal way to do this is as follows.

Definition 1.3. Define the Novikov complex (C/07
*

, d) as follows. Let C/07
i

denote the free
Z((t))-module generated by Crit

i
. (Notation: if R is a ring, then R((t)) denotes the ring of
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Laurent series with coefficients in R, i.e. formal sums +=
k/k0

a
k
tk with k

0
3Z and a

k
3R.)

Assume that 0 is a regular value of / and consider the level set

& :"/~1(0)LX.

If x3Crit
i
, we define

d(x) :" +
y|C3*5i~1

=
+
k/0

Sdx, yTktky

where Sdx, yTk denotes the signed number of flow lines of !+/ from x to y that cross
& a total of k times. (For a generic metric, d is well defined, and d2"0.)

The Novikov complex has a topological counterpart.

Notation 1.4. (a) Let XI denote the infinite cyclic cover of X induced by /, i.e. the fiber
product of X and R over S1"R/Z:

We sometimes regard XI as a subset of X]R.
(b) Choose a cell decomposition of X, and lift the cells to obtain an equivariant cell

decomposition of XI . Let C#%--
*

(XI ) denote the cellular chain complex. This is a module over
Z[t, t~1], where t acts by the ‘‘downward’’ deck transformation sending (x, j)Â (x, j!1).

THEOREM 1.5. (Novikov [25], cf. [26, 29, 19]).

H
i
(C/07

*
)KH

i
(C#%--

*
(XI )?Z*t, t~1+

Z ((t))).

One can think of C#%--
*

(XI )?Z*t, t~1+
Z((t)) as the complex of ‘‘half-infinite’’ chains in XI .

Note that the Novikov homology H
i
(C/07

*
) is usually quite different from H

i
(X)?Z((t)); for

example, if d/ is not exact, then H
0
(C/07

*
)"H

n
(C/07

*
)"0.

When s(X)"0 and b
1
(X)'0, it may happen that all of the Novikov homology

vanishes, at least after tensoring with the field Q((t)). In this case it is interesting to consider
the Reidemeister torsion of the Novikov complex.

Definition 1.6. Suppose C
m

L
PC

M~1
L
P2

L
PC

0
is an acyclic complex of finite-dimen-

sional vector spaces over a field F, and suppose that each vector space C
i
has a volume form

chosen on it. Choose u
i
3'*C

i
for each i so that 0OLu

i`1
'u

i
3'501C

i
. Then the

Reidemeister torsion q(C
*
, L)3F is defined to be

q(C
*
) :"

m
<
i/0

vol(Lu
i`1

'u
i
)(~1)i`1 (1.1)

(where we interpret Lu
m`1

"1). One can check, using the fact that L2"0, that q(C
*
) does

not depend on the choice of u
i
’s.

The Novikov complex has a natural basis consisting of the critical points, and this gives
a volume form on C/07

i
?Q((t)), up to sign.
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Definition 1.7. If C/07
*

?Q((t)) is acyclic, we define the Morse-theoretic Reidemeister
torsion

¹
M034%

:"q(C/07
*

? Q((t)))3
Q((t))

$1
.

(Note that choosing a different level set & will multiply ¹
M034%

by a power of t. More
intrinsically, one should define the Novikov complex using the critical points in XI ; a basis is
then determined by choosing lifts of the critical points in X to XI .)

If C/07
*

?Q((t)) is acyclic, then so is the cell complex C#%--
*

(XI )?Q(t) (where Q(t) is the
field of rational functions), by Novikov’s theorem. The latter complex has a basis consisting
of a lift of each cell in X to XI , and this gives a volume form, defined up to sign and powers
of t.

Definition 1.8. If C#%--
*

(XI )?Q(t) is acyclic, we define the topological Reidemeister torsion,

¹
501

:"q(C#%--
*

(XI ) ?Q(t))3
Q(t)

$tk.

If C#%--
*

(XI )?Q(t) is not acyclic, we define ¹
501

:"0.
The invariant ¹

501
depends only on the homotopy class of /, namely the cohomology

class [d/]3H1(X; Z). (This follows for instance from Lemma 2.6.) We sometimes denote
¹

501
by ¹

501
(X, [d/]) to indicate this dependence.

Example 1.9. Let KLS3 be a knot, and let X be the 3-manifold obtained by 0-surgery
on K. Milnor observed (cf. [37] or Lemma 2.6) that if a is a generator of H1(X; Z)KZ then

¹
501

(X, a)"
Alex(K)

(1!t)2

where Alex(K)3Z[t,t~1]/$tk is the Alexander polynomial of K.
We can compare the Morse-theoretic and topological Reidemeister torsion using the

natural inclusion ı : Q(t))Q((t)). It turns out that usually

¹
M034%

Oı (¹
501

).

In fact, the Morse-theoretic torsion is not a topological invariant when d/ is not exact.

Example 1.10. Let X"S1, and suppose / :XPS1 has degree kO0. If / has 2c'0
critical points then for a certain choice of orientation data, the differential d :C/07

1
PC/07

0
has

the form

d"A
ta1 !tb1 0 2 0

0 ta2 !tb2 2 0

F } F

F } F

!tbc 0 2 0 tac
B .

Since / has degree k, the exponents satisfy +
i
a
i
!+

i
b
i
"k, so up to signs and powers of t,

¹
M034%

"(1!tk)~1.

(We also have ¹
501

"(1!tk)~1, as one can see by choosing a cell decomposition of X with
one 1-cell and one 0-cell.) However, if we choose a different function / with no critical
points, then ¹

M034%
"1.
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1.2. The main theorem

To obtain a topologically invariant Reidemeister torsion from the Morse-theoretic data,
we must also consider the closed orbits of the gradient flow. This is the novelty of the
present paper, from the standpoint of Morse theory. Of course, closed orbits of flows have
been extensively studied in the dynamical systems literature, and they are typically counted
by various ‘‘zeta functions’’ going back to [40]. We will use the following basic ‘‘zeta
function’’.

Definition 1.11. (a) For k"1,2,2 we define partially defined return maps

f k : &P&

as follows. If p3&, then f k(p) is the kth intersection with & of the trajectory of the flow !+/
starting at p, if it exists. If the flow from p does not cross & k times (due to the intervention of
a critical point), then f k(p) is not defined.

(b) We define the zeta function

f :"expA
=
+
k/1

Fix ( f k )
tk

kB .

Here Fix( f k) counts the fixed points of f k with signs. If p3& is a fixed point of f k, we
define its sign to be the sign of det(1!df k

p
). (For a generic metric on X, these determinants

are always nonzero, and there are only finitely many fixed points for each k.)

THEOREM 1.12 (Main result). ¸et X be a closed smooth manifold and / :XPS1 a circle-
valued Morse function. Choose a generic metric on X so that (C/07

*
, d) and f are defined.

Suppose C#%--
*

(XI )?Q(t) is acyclic. (In particular, s(X)"0 and 0O[d/]3H1(X; Z).) ¹hen

¹
M034%

) f"ı (¹
501

) (1.2)

in Q((t)), up to sign and multiplication by powers of t.

We can re-express equation (1.2) as a kind of Lefschetz formula for the partially defined
maps f k, in which the Reidemeister torsion of the Novikov complex appears as a correction
term.

Notation 1.13. Let Q
i
: H

i
(XI ; Q)PH

i
(XI ; Q), or Q :H

*
(XI ; Q)PH

*
(XI ; Q), denote the

map in rational homology induced by the ‘‘upward’’ deck transformation of XI which sends
(x, j)Â (x, j#1).

When C/07
*

? Q((t)) is acyclic, the rational homology H
i
(XI ; Q) is a finite dimensional

Q-vector space (see Lemma 2.5), and we will see in Section 2.6 that

¹
501

"c
n~1
<
i/0

det(1!tQ
i
)(~1)i`1 (1.3)

(modulo$tk) where c3Q. Hence, taking the logarithmic derivative of (1.2) gives:

THEOREM 1.14 (Main result, alternate statement). ºnder the assumptions of ¹heorem
1.12, we have

=
+
k/1

tkFix( f k )#t
d

dt
log¹

M034%
"Str((1!tQ)~1)#m (1.4)

in Z((t)), where m3Z.
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(Here Str denotes graded trace, using the homology grading, and (d/dt) log¹
M034%

denotes (¹
M034%

)~1(d/dt)¹
M034%

, which is well defined even though ¹
M034%

has a sign ambiguity.
The integer m absorbs the ambiguity of multiplication by powers of t in Theorem 1.12.)

Example 1.15. If / has no critical points, then f is a diffeomorphism of &, we can identify
H

i
(XI )KH

i
(&), and under this identification Q

i
"H

i
( f ). (This is consistent with the fact

that Q
i
goes ‘‘up’’ and f goes ‘‘down”, cf. Section 3.1.) Since ¹

M034%
"1, Eq. (1.4) reduces to

the Lefschetz fixed point theorem for f and its iterates. (In this case, the relation between zeta
functions and torsion goes back to Milnor [22], and has been generalized by Fried [6, 7] to
count closed orbits of certain nonsingular hyperbolic flows.)

Remark 1.16. Earlier papers such as [16, 27, 9] considered a different kind of torsion
(Whitehead torsion, modulo units in the Novikov ring with leading coefficient $1) for a
more refined version of the Novikov complex (using the universal cover), when the latter is
acyclic. The version of torsion studied in these papers does not detect the zeta function, but
it does give an obstruction to finding non-singular closed 1-forms in a given cohomology
class, which is more or less sharp when dim(X)*6.

In Section 2.6 we will show that, in fact, Theorem 1.14 implies Theorem 1.12. We will
then prove Theorem 1.14 in Section 3, by modifying a classical proof of the Lefschetz fixed
point theorem.

1.3. Seiberg—Witten invariants of 3-manifolds

Our original motivation for this work was to compute the Seiberg—Witten invariants of
a closed oriented 3-manifold X with b

1
(X)'0, following a suggestion of Taubes. The

Seiberg—Witten invariant (see e.g. [15, 24, 2, 20], or [42, 23] for the four-dimensional case)
is a map

SW : Spinc (X)PZ.

Here Spinc (X) denotes the set of spin-c structures on X; a spin-c structure is equivalent to
a º(2)-bundle ¼PX with some extra structure, see Section 4.1. (The sign of SW depends
on a choice of homology orientation of X. When b

1
"1, the invariant SW also depends on

a choice of ‘‘chamber’’.)
By a sort of dimensional reduction of Taubes’ ‘‘SW"Gr’’ theorem relating

Seiberg—Witten invariants of symplectic 4-manifolds to counting pseudoholomorphic
curves, we conjecture (Conjecture 4.8) that the Seiberg—Witten invariant of our 3-manifold
X equals an invariant I, defined in Section 4.1, which counts certain unions of closed orbits
and flow lines between critical points of the vector field dual to a closed 1-form. We explain
the motivation for this conjecture in more detail in Section 4.2.

The invariant I is similar to the left-hand side of Theorem 1.12, but it is sharper, because
it keeps track of the relative homology classes of closed orbits and flow lines (and not just
intersection numbers with &). Theorem 1.12 thus allows us to compute some of the
information in I, leading (in Section 4.3) to:

THEOREM 1.17. ¸et X be a closed oriented 3-manifold with b1'0 and 0Oa3H1(X; Z).
¹hen Conjecture 4.8 implies that

+
W|S1*/c(X)

SW(¼)ta(c1($%5W))@2"¹
501

(X, [a]) (1.5)
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modulo multiplication by $tk. (If b
1
"1, then we mean SW to be computed in the chamber

defined by a, see Conjecture 4.8).

Remark 1.18. (a) When b1(X)'1, the tk ambiguity can be resolved by applying the
‘‘charge conjugation invariance’’ of the Seiberg—Witten equations, which asserts that SW is
invariant under conjugation of spin-c structures and implies that the left-hand side of (1.5)
is invariant under tÂ t~1. See [20], or [42, 23] for the four-dimensional case. (The invariant
I of Conjecture 4.8 has the same duality property, as a result of the involution that replaces
a circle-valued Morse function with its additive inverse.)

(b) Even if we apply this theorem to every a3H1(X; Z), we cannot recover all of the
Seiberg—Witten invariants of X, because the theorem does not distinguish between spin-c
structures that differ by the action of a torsion element of H2(X; Z) (i.e. by tensoring with
a line bundle for which c

1
is torsion). However, we can recover (see Section 4.4), in the

closed case modulo signs, the theorem of Meng and Taubes [20] which relates SW to
‘‘Milnor torsion’’.

1.4. Other approaches and further developments

In a sequel to this paper [12], we define a refined version of the invariant ¹
M034%

) f for
a circle-valued Morse function (or closed 1-form) and show that it equals a form of
topological torsion defined by Turaev [38]. The refined Morse theory invariant in [12] is
a natural generalization of the three-dimensional invariant I to n dimensions using ideas
from [38]. The method of proof in [12] (following [18]) is different: we compute the
topological torsion directly using a cell decomposition adapted to the Morse function. (The
homological methods used to compute topological torsion in the present paper, cf. Sec-
tion 2.5, are not sufficient to compute more refined versions of torsion.) Roughly speaking,
the cell decomposition splits X into the union of a Morse-theoretic component, whose
torsion equals that of the Novikov complex, and something similar to a mapping torus,
whose torsion equals the zeta function. A preprint by Pajitnov [38], proving a similar result,
appeared at about the same time as [12].

A third approach to Theorem 1.12 (and the sharper result of [12]) is to first prove that
¹

M034%
) f is a topological invariant, and then use this fact to compute it (using tricks of

Latour [16] or Pozniak [29] to reduce to the easier case when / lifts to a real-valued
function). To prove invariance, we study what happens to ¹

M034%
and f as one deforms the

Morse function / and the metric through a generic one-parameter family.
If / lifts to a real-valued function, then ¹

M034%
is invariant (cf. [17]). For example, if

a critical point p3Crit
i
‘‘slides over’’ q3Crit

i
(i.e. if at some time in the deformation there is

a flow line from p to q), then the effect on the Novikov complex is a change of basis in which
p is replaced by p$q. This does not change the torsion since the change of basis matrix has
determinant one. However, in the circle-valued case, it is possible for p to slide over tkp. This
multiplies ¹

M034%
by (1$tk)B1. At the same time, the boundary of the graph of f k (see

equation Eq. (2.2)) crosses the diagonal in &]&, causing a closed orbit to be created or
destroyed. Due to a product formula for the zeta function (see Remark 4.6), the result is that
the zeta function is multiplied by (1$tk)B1. Further analysis shows that the signs work out
so that ¹

M034%
) f is unchanged.

In the circle-valued case, ¹
M034%

and f also change when two critical points of index
difference one are created or destroyed; when two critical points die, it turns out that every
k-times broken closed orbit or flow line at the time or bifurcation leads to an unbroken
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closed orbit or flow line after the bifurcation. By a little algebra, ¹
M034%

) f stays invariant
when this happens. See [13] for details.

ºpdate. In [12] we also show that Conjecture 4.8 implies that the full Seiberg—Witten
invariant of a 3-manifold with b

1
'0, up to sign, equals a refined form of Reidemeister

torsion defined by Turaev in [38]. Turaev conjectured this conclusion in [38] and later
showed in [39] how it may be proved by refining the work of Meng and Taubes [20]. Thus,
the combination of [12, 39] confirms, indirectly, that Conjecture 4.8 is true.

2. PRELIMINARIES

2.1. More notation

The symbol ) indicates (sometimes) intersection number of oriented submanifolds. We
take a )b to be zero if a and b do not have complementary dimension.

The Novikov complex possesses a natural inner product

S , T : C/07
*

?C/07
*

PZ((t))

in which the critical points are orthonormal. We denote the adjoint (with respect to S , T) of
the differential d : C/07

*
PC/07

*~1
by d* : C/07

*
PC/07

*`1
. We define

* :"dd*#d*d.

2.2. Sign conventions

If ½ is an oriented manifold, / :½PR, and j3R is a regular value of /, we orient the
level set ¼"/~1(j) by declaring

¹½ D
W
"R ) grad(/)=¹¼

to be an isomorphism of oriented vector bundles.
If ½ has a metric and p is a critical point of /, the ascending manifold A(p) (resp.

descending manifold D(p)) is the set of y3½ such that downward (resp. upward) gradient
flow starting at y converges to p. If / is a Morse function, then D(p) and A(p) are embedded
manifolds intersecting transversely at p. We choose orientations of D(p) and A(p) such that
the oriented intersection number

D(p) )A(p)"(!1)*/$%9(p).

If p3Crit
i
and q3Crit

i~1
, and if D(p) and A(q) intersect transversely along a flow line from

p to q, then we define the sign of the flow line to be minus the local intersection number (at
the point corresponding to the flow line) of D(p)W¼ with A(q)W¼ in ¼, where ¼ is
a level set of /.

If ½ is an oriented manifold with boundary, we orient the boundary via the convention

¹½D
©Y
"R ) l =¹(L½)

where l points outwards.

2.3. Morse-theoretic preliminaries

Our proof of Theorem 1.14 will consist in manipulation of a few simple formulas (stated
in Lemma 2.3 below) concerning various maps between the Morse complex and chains in
XI and & defined using the gradient flow. These formulas also lead to proofs of the
fundamental isomorphisms between Morse/Novikov homology and ordinary homology.
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Consider a ‘‘Morse cobordism’’, i.e. let ½ be a compact n-dimensional manifold with
boundary L½"½

0
X½

1
, and let / :½P[0, 1] be a Morse function with ½

0
"/~1(0) and

½
1
"/~1(1). (In the case of interest later, ½ will be a subset of XI sandwiched between two

lifts of &.)
Choose a metric on ½ so that the ascending and descending manifolds of the critical

points intersect transversely. Let (CM034%
*

, d) denote the Morse complex as in Section 1.1.
For p3Crit, we define the ascending and descending ‘‘slices’’ A(p) :" A(p)W½

1
and

D(p) :" D(p)W½
0
. The downward gradient flow defines a diffeomorphism

f :½
1
C Z
p|C3*5

A(p)P½
0
C Z
p|C3*5

D(p).

We let G( f )L½
1
]½

0
denote its graph. If aL½

1
is a submanifold (possibly with bound-

ary), we let F(a) denote the submanifold of all y3½ such that upward gradient flow from
y converges to a point in a.

For any manifold Z, let (C 4*/'
*

(Z), L) denote the complex of singular chains in Z. We call
a singular chain in C 4*/'

*
(½

1
) generic if every face of every simplex is smooth and transverse

to the ascending manifolds of the critical points. Generic chains form a subcomplex
(C'%/

*
(½

1
), L), and a standard argument shows that its homology equals that of C 4*/'

*
(½

1
). (See

[8] for a similar use of generic singular chains.)
We will now define the following chains and maps:

G( f )3C 4*/'
n~1

(½
1
]½

0
)

DM :CM034%
*

PC4*/'
*

(½)

DM : CM034%
*

PC4*/'
*~1

(½
0
)

(2.1)
AM : CM034%

*
PC4*/'

n~*~1
(½

1
)

FM : C'%/
*

(½
1
)PC4*/'

*`1
(½)

f
*

:C'%/
*

(½
1
)PC4*/'

*
(½

0
).

The bars indicate that these are ‘‘compactifications’’ — more precisely, pushforwards of
triangulations of certain abstract compactifications. We construct the latter using ‘‘broken
flow lines’’, a standard technique in Floer theory.

Definition 2.1. For k*0, a (k-times) broken flow line from y3½ to y@3½ is a sequence
(p

0
,2,p

k`1
) such that p

0
"y, p

k`1
"y@, and p

i
3Crit for 1)i)k, together with down-

ward flow lines from p
i
to p

i`1
for 0)i)k.

The abstract compactified graph, G( f )
!"4

, consists of broken flow lines from points in

½
1

to points in ½
0
. The space G( f )

!"4
naturally has the structure of a smooth manifold with

corners, and the codimension k stratum consists of k-times broken flow lines. (For the
analytic details of very similar constructions see e.g. [3, 8, 31].) There is a natural endpoint
map

e :G( f )
!"4

P½
1
]½

0

which is smooth on each stratum. (The map e sends a broken flow line with itinerary

(p
0
,2,p

k`1
) to the pair (p

0
, p

k`1
).) We can choose a smooth triangulation of G( f )

!"4
, and

we define G( f )3C 4*/'
n~1

(½
1
]½

0
) to be the pushforward of this triangulation under e.
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The map DM is defined analogously. If p3Crit, then DM (p)
!"4

consists of broken flow lines
starting at p and ending anywhere in ½. Again this is a manifold with corners whose
codimension k stratum consists of k-times broken flow lines. To obtain the chain DM (p), we
push forward a smooth triangulation of DM (p)

!"4
to ½ via the lower endpoint map

DM (p)
!"4

P½ (which sends a broken flow line with itinerary (p
0
"p,2,p

k`1
) to p

k`1
). We

then extend DM linearly from the set Crit to the module CM034%
*

.
It should now be clear how we define the remaining objects in (2.1). We define one more

map

As :C'%/
*

(½
1
)PCM034%

*

by requiring that for a3C'%/
*

(½
1
) and p3Crit,

a )A(p)"SAsa, pT.

Before stating our key formulas, we need to discuss certain harmless error terms which
arise in them.

Definition 2.2. A singular chain a3C4*/'
k

(Z) is degenerate if it is a linear combination of
chains satisfying (a) or (b) below:

(a) There is a compact k-dimensional manifold with corners M, a map e : MPZ, and
two chains b

1
, b

2
3C

k
(M) obtained from different triangulations of M, such that

a"e
*
(b

1
!b

2
).

(b) There are compact manifolds with corners M and N of dimensions j(k and k!j,
a map e : MPZ, and a chain b3C

k
(M]N) coming from a triangulation, such that

a"(e °n
M

)
*
(b), where n

M
is the projection M]NPM.

Observe that degenerate chains form a subcomplex, and modding out by this subcom-
plex does not affect homology. Moreover, smooth generic chains have intersection number
zero with smooth chains that intersect them transversely. Thus we can and will mod out by
degenerate chains in the intersection-theoretic and homological calculations in the rest of
the paper.

LEMMA 2.3. ¹he following equations hold, modulo degenerate chains:

LG( f )"
n~1
+
i/1

+
p|C3*5i

(!1)(n~1)(i~1)AM (p)]DM (p) (2.2)

LFM "!FM L#1!fM
*
!DM As (2.3)

LDM "DM d!DM (2.4)

LDM "!DM d (2.5)

LAM "!AM d*(!1)*/$%9 (2.6)

dAs"AsL (2.7)

LfM
*
"fM

*
L#DM As. (2.8)

Proof. Except for the orientations, these formulas are fairly clear from the construction
of the compactifications, and express the fact that certain submanifolds of different abstract
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compactifications map to the same submanifold of ½. For example, in (2.2), the boundary

(i.e. the codimension one stratum) of G( f )
!"4

comes from flow lines broken by a single
critical point p, and the image under the endpoint map of the set of such flow lines is by

definition A(p)]D(p); moreover the closure of the codimemsion one stratum in G( f )
!"4

maps to AM (p)]DM (p).
Two types of error terms may arise in these formulas. First, there might be disagreement

between the chosen triangulations of submanifolds of different abstract compmactifications
that map to the same submanifold of ½. Second, in the formulas after (2.2), there are error
terms consisting of chains supported in submanifolds of lower dimension than the degree of
the chain. For example, in (2.4), if p3Crit

i
, then the codimension 1 stratum of DM (p)

!"4
includes components corresponding to flow lines broken by critical points q of index less
than i!1 (which are then mapped to D(q), which has dimension less than i!1, in ½). All of
these errors are degenerate in the sense of Definition 2.2.

One can check the orientations in the formulas explicitly for a special metric in
which the gradient flow near each critical point has the nice form
(!x1L

1
,2,!xiL

i
, xi`1L

i`1
,2, xnL

n
) for some local coordinates (x1,2, xn). The orienta-

tions agree in the general case by continuity. K

Remark 2.4. (a) Instead of dealing with degenerate chains, it might be possible to use
currents here. An apparently related use of currents in Morse theory appears in [10].

(b) One can see the standard isomorphism

H
i
(CM034%

*
)"H

i
(½, ½

0
) (2.9)

using similar formalism. Namely, one can introduce a complex C'%/
*

(½, ½
0
) of ‘‘generic’’

chains in ½ relative to ½
0

which intersect all ascending manifolds transversely. One can
extend FM to such chains and define a map As on them by analogy with As. Then we
observe that:

(i) Equation (2.4) shows that we have a chain map

DM : CM034%
*

PC'%/
*

(½, ½
0
).

(ii) As in (2.7) we have dAs"AsL, so

As : C'%/
*

(½, ½
0
)PCM034%

*

is a chain map.
(iii) By definition, AsDM equals the identity at the chain level.
(iv) As in (2.3) we have (modulo degenerate chains as usual)

LFM "!FM L#1!fM
*
!DM As

on C'%/
*

(½, ½
0
), so FM is a chain homotopy between DM As and the identity.

(c) Note also that under the isomorphism (2.9), the connecting homomorphism
d : H

*
(½, ½

0
)PH

*~1
(½

0
) is induced by DM .

(d) The Novikov isomorphism of Theorem 1.5 can be proved similarly to (b).

2.4. Homological assumptions

We will now clarify the homological assumption in our main theorem. Versions (a), (b),
and (d) below are required for the statements of the main theorem to make sense, while
version (c) will be needed in the proof in Section 3.
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LEMMA 2.5. ¹he following are equivalent (the notation is defined in Section 1.1):

(a) C/07
*

?Q((t)) is acyclic.
(b) C#%--

*
(XI )? Q(t) is acyclic.

(c) ¹he map H
*
(&; Q)PH

*
(XI ; Q) induced by the inclusion x Â (x, 0) is surjective.

(d) H
*
(XI ; Q) is a finite-dimensional Q-vector space.

Proof (a) Q (b): This follows from the Novikov isomorphism (Theorem 1.5).
(b)N (c): Assume (b), and let b3C#%--

*
(XI ; Q) be a cycle. Assumption (b) implies that

the complexes C#%--
*

(XI )?Q((t)) and C#%--
*

(XI )?Q((t~1)) are acyclic. So we can write
b"Ll

~
"Ll

`
where l

~
and l

`
are locally finite chains in XI supported in fI ~1(!R, R) and

fI ~1(!R,#R) respectively for some R3R. Without loss of generality, we can choose
our cell decomposition of XI so that & is a subcomplex. Now let a :"l

`
W fI ~1(!R, 0]#

l
~
WfI ~1[0, R). Then b!La is a cycle supported in &. Since a is compactly supported, this

means that b is equal in H
*
(XI ; Q) to a cycle in &.

(c) N (d): This is clear since & is compact.
(d) N (b): Assume (d). If a3H

*
(XI ; Q), then for large k the vectors a, ta,2, tka must be

linearly dependent, so a is annihilated by a nonzero polynomial in P3Z[t]. Since P is
invertible in Q(t), the homology class a vanishes in H

*
(C#%--

*
(XI )? Q(t)) (cf. [22]). K

2.5. Algebraic facts about torsion

We will use the following lemma in Section 2.6 to compute ¹
501

in terms of the
homology of XI . (It should be noted that more refined versions of topological torsion are not
homotopy invariant and thus cannot be computed this way.)

If R is a ring, let R] denote its group of units. If E is a finitely generated module over
a ring R, the first Fitting ideal of E is generated by the determinants of the n]n minors of
the matrix of relations for a presentation of E with n generators. This does not depend
on the presentation. If greatest common divisors exist in R, let ord(E)3R/R] denote the
greatest common divisor of the elements in the first Fitting ideal. If R is an integral domain,
let Q(R) denote its field of fractions.

LEMMA 2.6 (Turaev [37, Section 2.1]). ¸et R be a Noetherian ºFD (e.g. Z[t, t~1] or
Z((t))). ¸et (C

*
, L) be a finite complex of finitely generated free R-modules. If C

*
?

R
Q(R) is

acyclic, then its Reidemeister torsion is given by

q(C
*
?

R
Q(R))"

m
<
i/0

(ordH
i
(C))(~1)i`1

3

Q(R)

R] .

(Here q(C
*
?

R
Q(R)) is defined using volume forms induced by arbitrary bases for C

*
over R.)

Note also that if ı :Q(R))F is an inclusion into a field, then C
*
?

R
F is acyclic if and

only if C
*
?

R
Q(R) is, and

q(C
*
?

R
F)"ı(q(C?

R
Q(R))) (2.10)

modulo units in R.

2.6. Equivalence of Theorems 1.12 and 1.14

This follows from:
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LEMMA 2.7. (a) ¹he leading coefficients of the left and right sides of ¹heorem 1.12 are
equal, up to sign.

(b) ¹heorem 1.14 is the logarithmic derivative of ¹heorem 1.12.

Proof. (a) The leading coefficient of f( f ) is 1 by definition, so we need to check that
the leading coefficients of ¹

M034%
and ¹

501
agree up to sign. By Eq. (2.10), if ı : Q(t))Q((t))

is the natural inclusion, then

ı (¹
501

)"q(C#%--
*

(XI )?Z*t,t~1+
Q((t))). (2.11)

Applying Lemma 2.6 to the complexes C/07
*

and C#%--
*

(XI )? Z*t,t~1+
Z((t)) over Z((t)), and using

the Novikov isomorphism (Theorem 1.5), we obtain

q(C#%--
*

(XI ) ? Z*t,t~1+
Q((t)))"¹

M034%
(2.12)

up to multiplication by units in Z((t)). By (2.11) and (2.12) we are done, since every unit in
Z((t)) has leading coefficient $1.

(b) We just need to prove Eq. (1.3) (cf. Notation 1.13). For this purpose, it will suffice to
show that the order of the Z[t, t~1]-module H

i
(XI ) is given by

ord(H
i
(XI ))"c

i
det(1!tQ

i
) (2.13)

for some c
i
3Z. We will then be done by Lemma 2.6. (Note that Z[t, t~1]C"M$tkN, so the

ambiguity in Lemma 2.6 is no worse than the ambiguity in the definition of ¹
501

.)
To prove (2.13), let » denote the Z-torsion part of H

i
(XI ; Z), i.e.

» :" Mb3H
i
(XI ) D (&k3Z`) kb"0N.

Then H
i
(XI )/» is free and by Lemma 2.5(d) we can choose a finite set SLH

i
(XI ) which

projects to a basis for H
i
(XI )/» over Z. Since Z[t, t~1] is Noetherian, we can choose a finite

set ¹ which generates » over Z[t, t~1]. So S and ¹ generate H
i
(XI ), and the matrix of

relations is

S ¹ ¹

S

¹A
1!tQ

i
0 0

? D ?B .

Here the columns represent relations. The only relations on H
i
(XI ; Q) are 1!tQ

i
, and when

we lift these to H
i
(XI ) via our choice of S, there may be an additional component in ¹, which

is the lower left block of the matrix. D is a diagonal matrix of integers asserting that the
elements of ¹ are torsion. The lower right block of the matrix expresses whatever additional
relations the elements of ¹ may satisfy amongst themselves.

Every minor of this matrix is divisible by det(1!tQ
i
), so det(1!tQ

i
) divides ord(H

i
(XI )).

On the other hand one of the minors is det(D)det(1!tQ
i
), so ord(H

i
(XI )) divides

det(D)det(1!tQ
i
). This proves (2.13). K

3. PROOF OF THEOREM 1.14

3.1. Outline of the proof

One of the classical proofs of the Lefschetz fixed point formula Fix( f )"Str(H
*
( f )) for

a diffeomorphism f on a manifold & proceeds as follows. We wish to calculate the
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intersection number of the graph G( f ) with the diagonal Diag in &]&. We can replace
the diagonal with a homologous cycle in C4*/'

*
(&)c2, and then we are reduced to

intersection theory in &. Let Me
k
N be representatives of a basis for H

*
(&; Q), and let Me*

k
N

be the (Poincaré) dual basis. Then Diag is homologous to +
k
e
k
]e*

k
, so the intersection

number

G( f ) )ADiag!+
k

e
k
]e*

k B"0. (3.1)

This gives the Lefschetz formula, since G( f ) )Diag"Fix( f ) and

G( f ) )+
k

e
k
]e*

k
"Str(H

*
( f )). (3.2)

We wish to extend this reasoning to the partially defined maps f k in Section 1.2. There
are two difficulties. First, Eq. (3.1) is no longer true, because the graph G( f k ) is not a cycle.
Second, the r.h.s of Eq. (3.2) does not make sense for f k, because f k is not a chain map and
does not induce a map in homology.

We can correct (3.1) by completing the graph to a cycle as follows. To start, it is useful to
combine the graphs of f k for different k into a single ‘‘generating function’’. Namely, define
a chain G3C4*/'

n~1
(&]&; Z((t))) by

G :"
=
+
k/1

tkG ( f k )

(where the graph G( f k) is compactified as in Section 2.3, using ½"M(x, j)3XI D 0)j)kN).
We wish to find Z3C4*/'

*
(&)c2 such that L(G!Z)"0. Fortuitously, as we will see in

Section 3.3, if C/07
*

?Q((t)) is acyclic, then a canonical such Z exists, constructed by Morse
theory. Equation (3.1) is now replaced by

(G!Z) )ADiag!+
k

e
k
]e*

kB"0. (3.3)

Theorem 1.14 then results from the following three calculations:

LEMMA 3.1. (a) G )Diag"+=
k/1

tkFix( f k ).
(b) Z )Diag"!t(d/dt) log¹

M034%
.

(c) (G!Z) )+
k
e
k
]e*

k
!Str((1!tQ)~1)3Z.

Part (a) is clear, and part (b) will be proved by direct calculation in Section 3.4.
Part (c) is the appropriate analogue of (3.2) in our situation. To prove it, we first compute

in Section 3.4 that

LEMMA 3.2. (G!Z) )+
i
e
i
]e*

i
"Str(B : H

*
(&; Q((t)))PH

*
(&; Q((t)))).

Here B is a chain map, defined on generic chains in C4*/'
*

(&; Q((t))), which is obtained (in
Section 3.2) roughly by adding a Morse-theoretic correction term to +=

k/1
tkf k

*
, under the

assumption that C/07
*

?Q((t)) is acyclic. The affinity of B with f k, or more precisely with Qk,
is clarified by the following lemma:
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LEMMA 3.3. ¹he diagram

commutes. (Here ı :&)XI is the inclusion sending pÂ (p, 0).)

(The idea of the proof is as follows. Let c3C
*
(&; Q) be a cycle, and suppose the

downward gradient flow takes c around X k times without hitting any critical points. Then
c]MkN and f k(c)]M0N are homologous in XI , because their difference is the boundary of the
entire gradient flow between them. This means that Qk(ı

*
c)"ı

*
f k(c). More generally, if the

downward gradient flow of c hits some critical points, then the gradient flow no longer gives
a homology between c]MkN and f k(c)]M0N, because it has additional boundary compo-
nents arising from the critical points. But the Morse-theoretic correction term in B is exactly
what is needed to cancel these.)

Lemma 3.3 implies (with the help of Lemma 2.5(c), asserting that ı
*

is surjective) that

Str(B)"Str(tQ(1!tQ)~1)#Str(B DKer(ı
*
)).

To complete the proof of Lemma 3.1(c) and hence of Theorem 1.14, we need to show that
Str(B DKer(ı

*
))3Z. We do this in Section 3.6 by describing Ker(ı

*
) in terms of Morse theory

and directly evaluating B on it.

3.2. Some useful chain maps

We begin by introducing four chain maps D, A, As, and B, which will be needed for the
calculations outlined above.

Let C'%/`
*

(&) (resp. C'%/~
*

(&)) denote the subcomplex of (smooth) singular chains
intersecting all ascending (resp. descending) manifolds in X transversely.

If p3Crit, let pJ 3XI denote the lift (p, j) of p with !1(j(0. Define

D(p) :"
=
+
k/0

tk(D(pJ )W(&]M!1!kN))3C'%/`
*

(&; Z((t))).

Here we are identifying &]M!kN with &. Also we are implictly making the noncompact
manifold D(pJ )W(&]M!kN) into a chain using the machinery of Section 2.3 (namely using
the operator DM on ½"M(x, j)3XI D!k)j)0N). Intuitively, D(p) is the intersection in X of
D(p) and &, with the components weighted by powers of t. Now extend linearly over Z((t)) to
obtain a map

D :C/07
*

PC'%/`
*~1

(&; Z((t))).

We define a Z((t))-linear map

A : C/07
*

PC'%/~
n~1~*

(&; Z((t)))

similarly, using ascending manifolds; if p3Crit, then

A(p) :"
=
+
k/0

tk(A(pJ )W(&]MkN)).

The maps D and A arise naturally as follows:
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LEMMA 3.4. ¹he boundary of the graph is given by

LG"t
n~1
+
i/1

+
p|C3*5i

(!1)(n~1)(i~1)A(p)]D(p).

Proof. Applying (2.2) to ½"M(x,j)3XI D!k)j)0N, we obtain

LG( f k)"
n~1
+
i/1

+
p|C3*5i

(!1)(n~1)(i~1)
k~1
+
j/0

AM (tjpJ )]DM (tjpJ )

"

n~1
+
i/1

+
p|C3*5i

(!1)(n~1)(i~1)
k~1
+
j/0

(A(p))j](D(p))k~j~1

where (A(p))j denotes the tj term of A(p), etc. This proves the tk term of the lemma. K

In the rest of the paper, we will omit the details when applying formulas from Lemma 2.3
in a straightforward way as above.

We next define a map

As :C'%/`
*

(&; Z((t)))PC/07
*

by requiring that for a3C'%/`
*

(&; Z((t))) and x3C/07
*

,

a )A(x)"SAsa,xT.

The maps D, A, and As are all chain maps:

LEMMA 3.5. (a) LD"!Dd,
(b) LA"(!1)i~1Ad* on C/07

i
,

(c) dAs"AsL.

Proof. These equations follow from (2.5), (2.6) and (2.7), respectively. K

By the machinery of Section 2.3 (applied to ½"M(x, j)3XI D 0)j)kN), we have a map

f k
*

:C'%/`
*

(&)PC'%/`
*

(&). We now define

f :"
=
+
k/1

tk f k
*
:C'%/`

*
(&; Z((t)))PC'%/`

*
(&; Z((t))).

Because f k is only partially defined, f is not a chain map; by (2.8) we have

Lf"fL#tDAs. (3.4)

However we can add a correction term to f to obtain a chain map. We are assuming that
C/07

*
?Q((t)) is acyclic, so * is invertible over Q((t)). We then define

B :" f#tDd**~1As. (3.5)

(This will arise naturally in the calculations in Section 3.4.)

LEMMA 3.6. LB"BL.

Proof. By (3.4) we have

LB"fL#tDAs#tLDd**~1As. (3.6)
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Using the identity dd**~1#d**~1d"1 and Lemma 3.5(a), (c) gives

tDAs"tD(dd**~1#d**~1d)As

"!tLDd**~1As#tDd**~1AsL.

Substituting this into (3.6) gives LB"BL. K

3.3. Closing off the boundary of the graph

We will now find Z3C4*/'
*

(&; Q((t)))c2 with LZ"LG. Let P be the composition

Hom(C/07
i

, C/07
j

) oPC/07
j

? C/07
i

A?D
&"C'%/~

n~1~j
(&; Z((t)))?C'%/`

i~1
(&; Z((t))).

Here o is the canonical isomorphism given by the inner product S , T. Our ansatz will be

Z"P(¼)

for some ¼3Hom(C/07
*

, C/07*~1
).

LEMMA 3.7. ¸et ¼"+n
i/1

¼
i
with ¼

i
3Hom(C/07

i
, C/07

i~1
). ¹hen

LP(¼)"
n~1
+
i/1

P((!1)id*¼
i
#(!1)n~i¼

i`1
d*).

Proof. By Lemma 3.5(a) and (b) we have

LP(¼)"
n
+
i/1

(A?D)((!1)id*?1#(!1)n~i`11?d)o(¼
i
).

(A factor of (!1)n~i arises because L(a]b)"La]b#(!1)$*.(a)a]Lb.) Now use the facts
(d*?1)o(¼

i
)"o(d*¼

i
) and (1?d)o(¼

i
)"o(¼

i
d*). K

In this notation, Lemma 3.4 says that

LG"t
n~1
+
i/1

(!1)(n~1)(i~1)P(1 :C/07
i

PC/07
i

).

So by Lemma 3.7, LZ"LG if and only if

(!1)id*¼
i
#(!1)n~i¼

i`1
d*"(!1)(n~1)(i~1)t

on C/07
i

for 0(i(n. Thanks to our standing assumption that C/07
*

?Q((t)) is acyclic, such
a ¼ exists, and we will make the natural choice

¼
i
:"(!1)ni`n`1t*~1d.

3.4. Calculating intersection numbers

We will now prove Lemmas 3.1(b) and 3.2. For these calculations, it is convenient to
choose a basis Mx

ij
N for Ker(d* DC/07

i
) with Ex

ij
E"1 and *x

ij
"j

ij
x
ij
. (To find such a basis

we may have to extend to coefficients in the algebraically closed field C((t)), which causes no
problems.) In this notation we have

Z"

n
+
i/1

(!1)ni`n`1+
j

j~1
ij

A(dx
ij
)]D(x

ij
) (3.7)

876 M. Hutchings and Y.-J. Lee



(because the x
ij
’s, together with an orthonormal basis of Ker(d), constitute an orthonormal

basis of C/07
*

). We also have

¹
M034%

"

n
<
i/1
A<

j

Jj
ijB

(~1)i
(3.8)

as one can see by choosing u
i
"§

j
x
ij

in (1.1).

LEMMA 3.8. ¸et x3C/07
*

and y3C/07*~1
. ¹hen

Dx )Ay"!

d

dt
Sdx, yT#TdA

d

dt
xB, yU#Tdx,

d

dt
yU.

Proof. If x, y3Crit, then the two rightmost terms are zero, and the formula follows
directly from the definitions. The general case follows by expanding x and y in powers
of t. K

Proof of ¸emma 3.1(b). If a, b are two chains of complementary dimension a,b then
(a]b) )Diag"(!1)(a`1)bb ) a. So by (3.7) we have

Z )Diag"t+
i,j

(!1)ij~1
ij

D(x
ij
) )A(dx

ij
). (3.9)

Lemma 3.8 gives

Dx )Adx"!

d

dt
EdxE2#TdA

d

dt
xB, dxU#Tdx,

d

dt
dxU.

If x"x
ij
, then the middle term on the right vanishes:

TdA
d

dt
x
ijB, dx

ijU"T
d

dt
x
ij
, d*dx

ijU
"j

ijT
d

dt
x
ij
, x

ijU
"

j
ij
2

d

dt
Ex

ij
E2

"0.

Thus

Dx
ij
)Adx

ij
"!

1

2

d

dt
Edx

ij
E2"!

1

2

d

dt
j
ij
.

Substituting this into (3.9) and comparing with (3.8) proves Lemma 3.1(b). K

Proof of ¸emma 3.2. By definition we have

G )+
k

e
k
]e*

k
"+

k

(!1)$*.(ek) f(e
k
) ) e*

k
. (3.10)

By (3.7),

Z )+
k

e
k
]e*

k
"t +

i,j,k

(!1)ij~1
ij

(e
k
)Adx

ij
) (Dx

ij
) e*

k
). (3.11)
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We rewrite

e
k
)Adx

ij
"SAse

k
, dx

ij
T

"Sdd**~1Ase
k
, dx

ij
T

"j
ij
Sd**~1Ase

k
, x

ij
T.

(We have Ase
k
"dd**~1Ase

k
above because dAse

k
"0 by Lemma 3.5(c).) Putting this into

(3.11) gives

Z )+
k

e
k
]e*

k
"t +

k

(!1)$*.(ek)`1Dd**~1Ase
k
) e*

k
.

Subtracting this from (3.10) gives Lemma 3.2. K

3.5. The action of B on homology

We will now prove Lemma 3.3. We begin by defining Q-linear maps

F
k
:C'%/`

*
(&; Q)PC4*/'*`1

(XI ; Q)

D
k
: C/07

*
?Q((t))PC4*/'

*
(XI ; Q)

for k"1,2,2 as follows. If c3C'%/`
*

(&; Q) then we take ½"M(x, j)3XI D!k)j)0N in
Section 2.3 and define F

k
(c) :"FM (c]M0N). If p3Crit and l3Z, then we take

½"M(x, j) D!k)j)!lN and define D
k
(tlp) :" DM (tlpJ ). (Recall that tlpJ 3XI is the lift (p, j)

with j3(!l!1,!l).) If l*k then D
k
(tlp)"0. We extend D

k
linearly over Q (it is not

Q((t))-linear).

LEMMA 3.9. (a) If c3C'%/`
*

(&; Q) is a cycle and k'0, then

LF
k
(c)"c]M0N!f k(c)]M!kN!D

k
Asc. (3.12)

(b) If x3C/07
*

then

LD
k
(x)"D

k
dx!(Dx)k~1]M!kN. (3.13)

(Here (Dx)k~1 denotes the coefficient of tk~1 in Dx.)

Proof. (a) and (b) follow from equations (2.3) and (2.4), respectively. K

Proof of ¸emma 3.3. Let c3C'%/`
*

(&; Q) be a cycle; we need to show that

tQ(1!tQ)~1ı
*
c"ı

*
Bc.

Equating coefficients of tk, this is equivalent to:

(a) If k'0, then (Bc)k]M!kN is homologous to c]M0N in C4*/'
*

(XI ; Q) (where (Bc)k
denotes the tk coefficient of Bc).

(b) If k)0, then (Bc)k]M!kN is nullhomologous in C4*/'
*

(XI ; Q).

Suppose k'0. By Lemma 3.5(c), dAsc"0, so we can write Asc"d(d**~1Asc). Thus,
putting x"d**~1Asc into (3.13) gives

LD
k
d**~1Asc"D

k
Asc!(Dd**~1Asc)k~1]M!kN. (3.14)
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Adding this to (3.12) gives

L(something)"c]M0N!f k(c)]M!kN!(Dd**~1Asc)k~1]M!kN

"c]M0N!(Bc)k]M!kN.

This proves (a).
If k)0, then D

k
Asc"0, because Asc contains no negative powers of t. Then (3.14) gives

LD
k
d**~1Asc"!(Bc)k]M!kN.

This implies (b). K

3.6. Completing the proof of the main theorem

We will now prove that Str(BDKer(ı
*
))3Z (Lemma 3.12), which will complete the proof

of Theorem 1.14, as explained in Section 3.1.
We first need to describe the kernel of ı

*
: H

*
(&; Q)PH

*
(XI ; Q) in terms of Morse

theory. Let »
~
LH

*
(&; Q) denote the subspace consisting of cycles of the form (Dx)0, where

x3C/07
*

and (dx))0"0. (Here (Dx)0 denotes the constant coefficient of Dx, and (dx))0 the
portion of dx containing nonpositive powers of t.) Similarly, let

»
`

:"M(Ay)0 D(d*y))0"0N.

LEMMA 3.10 (a) Ker(ı
*
:H

*
(&; Q)PH

*
(XI ; Q))"span(»

`
, »

~
).

(b) If H
*
(C/07

*
?Q((t)))"0, then »

`
5»

~
"M0N.

Proof. Define
XI ` :"M(x, j)3XI Dj*0N

XI ~ :"M(x, j)3XI Dj)0N.

The relative homology exact sequence

H
*`1

(XI ~, &) dPH
*
(&)PH

*
(XI ~)

and Remark 2.4(c) imply that

Ker(H
*
(&)PH

*
(XI ~))"»

`
.

(Here we are identifying & with &]M0NLXI , and all homology is with rational coefficients.)
Furthermore, the kernel of H

*
(XI ~)PH

*
(XI ) is given by the image of the connecting

homomorphism d in the exact sequence

H
*`1

(XI , XI ~) dPH
*
(XI ~)PH

*
(XI ).

By excision, H
*`1

(XI , XI ~)"H
*
(XI `, &), and d sends this to »

~
. This proves (a).

To prove (b), suppose u3»
`
W»

~
. Write u"(Ax)0"(Dy)0. Let v3H

*`1
(XI ) be the

cycle obtained by gluing together the upward gradient flow of x (up to &) and the downward
gradient flow of y (down to &), compactified into chains as in Section 2.3. Note that u is the
image of v under the connecting homomorphism d in the Mayer—Vietoris sequence

H
k`1

(XI ~) =H
k`1

(XI `)PH
k`1

(XI ) dPH
k
(&).

By Lemma 2.5(c), v is in the image of ı
*

: H
k`1

(&)PH
k`1

(XI ). But dı
*
"0, so u"0. K

We now compute BDKer(ı
*
). Let R be the Q-linear operator that sends tk to t~k.
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LEMMA 3.11. (a) If (dx))0"0 then B((Dx)0)"!(Dx))0 in H
*
(&; Q).

(b) If (d*y))0"0 then B((Ay)0)"R((Ay):0) in H
*
(&; Q).

Proof. Without loss of generality, x;0"0. Then

f((Dx)0)"(Dx);0. (3.15)

From the definitions of As and d, we have

As((Dx)0)"!t~1(dx);0"!t~1dx.
Then

tDd**~1As((Dx)0)"!Dd**~1dx"!Dx#Ddd**~1x

"!Dx#(nullhomologous cycle) (3.16)

by Lemma 3.5(a). Putting (3.15) and (3.16) into the definition of B (Eq. (3.5)) proves (a).
To prove (b), let c3C'%/`(&) be a perturbation of (Dy)0. (We need to perturb because

(Dy)0 NC'%/`(&), so we cannot apply B to (Dy)0 at the chain level.) We create c by replacing
(Ay)0 with the intersection of &]M0N and the ascending slices of small spheres linking the
descending manifolds of the critical points in y at generic points. For any positive integer k,
we can choose these spheres to be small enough that

f(c)"R((Ay):0)#(nullhomologous cycle)#O(tk).

Similarly

As(c)"$R((d*y))0)#O(tk)"O(tk).

Now apply the definition of B. K

LEMMA 3.12. Str(B DKer(ı
*
))3Z.

Proof. By Lemma 3.10,

Str(B DKer(ı
*
))"Str(B D»

`
)#Str(B D»

~
). (3.17)

(We are assuming that H
*
(C/07

*
?Q((t)))"0, which is necessary for B to be defined.) Now

we use a trick. Equation (3.3) and the combination of Lemmas 3.1(b), 3.2, 3.3 and 2.5(c)
imply that

Str(B DKer(ı
*
))"G )Diag#t

d

dt
log¹

M034%
!Str(tQ(1!tQ)~1). (3.18)

It follows from (3.18) that Str(B DKer(ı
*
)) contains no negative powers of t, and moreover the

constant coefficient of Str(B DKer(ı
*
)) is an integer (namely the smallest exponent in ¹

M034%
).

It then follows from (3.17) and Lemma 3.11 that Str(B D»
~

)3Z, since all the negative degree
terms must vanish. We also see from Lemma 3.11 that the coefficients of Str(B D»

`
) are

exactly minus what the nonconstant coefficients of Str(B D»
~
) would be if we inverted the

Morse function (with appropriate new orientations on the ascending and descending
manifolds). So Str(B D»

`
)"0. Thus Str(B DKer(ı

*
))3Z by (3.17). K

4. SEIBERG–WITTEN INVARIANTS OF 3-MANIFOLDS

From now on we assume that X is a closed oriented 3-manifold with b1'0. In
Section 4.1, we define the invariant I which is an analogue of the Gromov invariant for X,
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and in Section 4.2 we explain the motivation for our conjecture that I equals the
Seiberg—Witten invariant. In Section 4.3 we apply Theorem 1.12 to compute an ‘‘averaged’’
version of the invariant I, and in Section 4.4 we deduce that our conjecture implies the
Meng—Taubes formula (for closed manifolds, modulo signs) relating the Seiberg—Witten
invariant to Milnor torsion.

4.1. An analogue of the Gromov invariant

Let / :XPS1 be a generic Morse function, and let &"/~1(0) as usual. Let g"!d/.
Assume that / has no index 0 or 3 critical points. (This assumption is not really necessary to
define our invariant I but will simplify the algebra, and is justified in the Seiberg—Witten
context of Section 4.2, where we will take / to be harmonic.) In particular this implies that
the homology class of g is nontrivial.

4.1.1. Parametrization of the invariant

Definition 4.1. Within the relative homology H
1
(X, g~1(0)), we consider the subset

H
1
(X, g) :"Mc3H

1
(X, g~1(0))DLc"[g~1(0)]N.

(Here g~1(0) is oriented in the usual way, which means via minus the parity of the index of
critical points of /.) The set H

1
(X, g) is naturally an affine space modelled on H

1
(X).

Our analogue of the Gromov invariant will initially be defined on the set H
1
(X, g). To

state a conjectural analogue of the ‘‘SW"Gr’’ theorem, we need a way of identifying
H

1
(X, g) with the set of spin-c structures, on which the Seiberg—Witten invariant is defined.

Definition 4.2. A spin-c structure on our 3-manifold X is a º(2) vector bundle ¼PX
together with a Clifford multiplication map cl :¹*XPEnd(¼), satisfying the axioms

cl(v)2"!DvD2

cl(e
1
) cl(e

2
) cl(e

3
)"!1 :¼

p
P¼

p

where Me
1
, e

2
, e

3
N is an oriented orthonormal basis for ¹*

p
X. The set Spinc(X) of spin-c

structures on X is an affine space modelled on H2(X; Z)"H
1
(X); a cohomology class

a3H2(X; Z) acts by a )¼"¼?¸, where ¸ is the complex line bundle with c
1
(¸)"a.

Given a spin-c structure ¼, the endomorphism cl(g/DgD), defined on XCCrit, has square
!1 and splits ¼ into $i eigenspaces, which we denote by E

B
.

LEMMA 4.3. ¹here is a well-defined H
1
(X)-equivariant isomorphism

jg : Spinc(X)PH
1
(X, g)

which sends ¼3Spinc(X) to the Poincaré-¸efschetz dual of

c
1
(E

~
)3H2(XCg~1(0)).

Proof. To show that jg is well defined, i.e. that PD(c
1
(E

~
))3H

1
(X, g), we must check

that if p is a zero of g with sign $1 and S is a small 2-sphere around p, then the line bundle
E
~
D
S
has degree G1. Choose local coordinates x

1
, x

2
, x

3
near p. The isomorphism class of

E
~
D
S
depends only on the homotopy class of the map g/DgD :SPS2, and not on the metric. So

we can assume the metric is Euclidean in these coordinates and consider the special case

g"x
1
dx

1
#x

2
dx

2
$x

3
dx

3
.
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We can trivialize the spin bundle ¼ in this neighborhood so that

cl(dx
1
)"A

!i

iB, cl(dx
2
)"A

!1

1 B, cl(dx
3
)"A

i

i B.
We can then define a section s of E

~
by

s"A
!x

2
$ix

3
ix

1
!iDxDB.

We see that s~1(0) is the positive x
1
-axis, and the sign of the zero on S is G1.

This shows that jg is well defined. The map jg is clearly H
1
(X)-equivariant, and it follows

that it is an isomorphism. K

4.1.2. The Novikov ring. The definition of our invariant involves some algebraic counting
which takes place in the following ring.

Definition 4.4. If G is an abelian group and N :GPR is a homomorphism, then the
Novikov ring Nov(G; N) is defined to be the ring of formal sums +

g|G
a
g
)g with a

g
3Z

(equivalently, functions GPZ sending gÂ a
g
) such that for each R3R, there are only

finitely many g3G such that a
g
O0 and N(g)(R. Multiplication in Nov(G; N) is given by

the convolution product

A+
g|G

a
g
) gBA+

g|G

b
g
)GB :" +

g|G
A+
h|G

a
h
b
g~hB ) g.

The Novikov ring is an enlargement of the group ring Z[G]. (See e.g. [11] for more about
Novikov rings.)

We are interested in the case when G is the relative homology H
1
(X, g~1(0)) and N is

intersection number with &, and we denote the corresponding Novikov ring by ".

4.1.3. Refined zeta function

Definition 4.5. Let O denote the set of (nonconstant) closed orbits of the flow dual to g.
We define (cf. [6, 28])

fK :"expA+
c|O

(!1)e(c)
p(c)

[c]B3".

Here [c]3H
1
(X) denotes the homology class of c and p(c) the period of c (i.e. the largest

integer k such that the closed orbit c : S1PX factors through a k-fold covering S1PS1).
The sign (!1)e(c) is defined by the same local information as the Lefschetz sign in
Section 1.2; it is the sign of det(1!df

x
), where x3X is a point on the closed orbit and f is the

(pth) return map on the hyperplane in ¹
x
X normal to c. A compactness argument shows

that fK is a well defined element of the Novikov ring ".

Remark 4.6. This definition makes sense in n dimensions, and for motivation elsewhere,
we note that there is a product formula (cf. [7, 14])

fK"<
c|I

(1!(!1)i~[c])~(~1)i0
.

(4.1)

Here I denotes the set of irreducible (i.e. period 1) closed orbits; i
~
(c) and i

0
(c) denote the

numbers of eigenvalues of the return map that are real and in the intervals (!R,!1) and
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(!1, 1) respectively. This formula is easily verified by taking the formal logarithm of both
sides.

4.1.4. Definition of the invariant I. Let "SCrit
i
T denote the free "-module generated by the

set Crit
i
. Define a map

dK : "SCrit
2
TP"SCrit

1
T

as follows. If x3Crit
2

and y3Crit
1
, let P(x, y) denote the set of flow lines from x to y (of the

flow dual to g), with the orientation induced by g. If c3P(x,y), let (!1)e(c) denote its sign, as
in Section 2.2. (For this to be defined, we need to choose orientations of the ascending and
descending manifolds of the critical points, as in Section 2.2.) For x3Crit

2
, define

dK (x) :" +
y|C3*51

A +
c|P(x,y)

e(c)[c]By.

Next define

Ig :" det(dK ) ) fK3". (4.2)

(To fix the sign of the determinant, we have to choose orderings of the sets Crit
1

and Crit
2
.

Note that dª is a square matrix because s(X)"0.) The formal sum Ig can be regarded as
a function H

1
(X, g~1(0))PZ, and because of the determinant term, this function is zero on

any element of H
1
(X, g~1(0)) not contained in the subset H

1
(X, g). We now finally define

I :" Ig ° jg : Spinc(X)PZ.

We will not use the following theorem in this paper, but it provides some assurance that
I is a reasonable object to define.

THEOREM 4.7. ¹he map I depends only on X, with the following exceptions:

(a) Changing the orientation choices above will multiply I by $1.
(b) If b

1
(X)"1 then I depends on the sign of the cohomology class [g].

See Section 1.4 for some of the ideas in the proof. An n-dimensional generalization is
proved in [13] and also follows a posteriori from the result of [12].

4.2. Conjectural analogue of Taubes’ ‘‘SW"Gr’’ theorem

The idea of the following conjecture was suggested to us by Taubes. Recall that
SW : Spinc(X)PZ denotes the Seiberg—Witten invariant of X (see Section 1.3).

CONJECTURE 4.8 ¸et X be a closed oriented 3-manifold with b1(X)'0. ¹hen

SW"$I.

(If b
1
(X)"1, then we mean SW to be computed in the chamber determined by g, i.e. counting

solutions to the S¼ equations perturbed by ir * g for r<0.)

4.2.1. Motivation. The idea is that this is a dimensional reduction of Taubes’s ‘‘SW"Gr’’
theorem [33], extended to certain singular symplectic forms.

The ‘‘SW"Gr’’ theorem asserts roughly that on a symplectic four-manifold, the
Seiberg—Witten invariant of a given spin-c structure equals a certain count of
pseudoholomorphic curves in a homology class determined by the spin-c structure. The
Seiberg—Witten invariants of a 3-manifold X equal the Seiberg—Witten invariants of
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product spin-c structures on the 4-manifold X]S1. (A standard integration by parts which
Taubes showed us proves that for the product metric, any Seiberg-Witten solution on
X]S1 comes from a solution on X.) If g is a harmonic 1-form on X, then on X]S1 the
2-form

u :"*3
g#g'dh

is symplectic, except on the circles g~1(0)]S1 where it vanishes. Moreover, if a 1-manifold
cLX is parallel to g, then c]S1LX]S1 is pseudoholomorphic (with respect to the
almost complex structure on X]S1 determined by u and the product metric). This suggests
that the Seiberg—Witten invariant of X should somehow count unions of closed orbits and
flow lines between critical points.

More specifically, we can try to imitate on X the proof of Taubes’s theorem. The
strategy is to perturb the curvature equation in the Seiberg-Witten equations by ir * g,
where r''0. If r is large, then given a solution of the perturbed equations, the zero set of the
E
~

component of the spinor should be approximately parallel to g. This suggests that for
a spin-c structure ¼, the Seiberg—Witten invariant SW(¼) counts unions of closed orbits
and flow lines between critical points of g whose total homology class equals jg(¼). Now
our invariant I(¼) gives just such a count. The term det(dK ) is a generating function counting
unions of flow lines between critical points whose boundary contains each critical point
once. Moreover, by the product formula (4.1), the refined zeta function fK is a generating
function counting unions of closed orbits, where some orbits may be multiply covered (i.e.
those for which i

0
is even—which, because g is harmonic, means those orbits which are not

hyperbolic). The signs (especially those arising from the determinant) are subtle but
apparently necessary to obtain a topological invariant. The treatment of multiply covered
orbits is a special case of Taubes’ treatment of multiply covered tori in four dimensions [34].

Indeed, if g has no zeroes (and is harmonic, which we can achieve either by deforming
g or by choosing an appropriate metric), then the conjecture is a consequence of Taubes’s
theorem applied to the 4-manifold X]S1 with the symplectic form u defined above. (One
can check that every pseudoholomorphic curve on X]S1 in a homology class in
H

1
(X)]H

1
(S1) is a union of closed orbits of g crossed with S1.) Moreover, Taubes [35] has

extended part of the ‘‘SW"Gr’’ story to ‘‘singular symplectic forms’’, including forms such
as u above when g has zeroes, and this analysis may eventually lead to a proof of our
conjecture.

In the case when g has no zeroes, an alternate proof of the conjecture is provided by
a result of Salamon [30] which turns out to be equivalent and asserts that the
Seiberg—Witten invariants of the mapping torus of a surface diffeomorphism are given by
Lefschetz numbers of the induced maps on the symmetric products of the surface. (Different
spin-c structures correspond to different homological fixed point classes.)

4.3. Computing Seiberg—Witten invariants

We now prove Theorem 1.17 (using Theorem 1.12). Let / : XPS1 be a generic Morse
function with no index 0 or 3 critical points and with [d/]"a. (One way to find such a / is
to start with the harmonic representative of a and perturb it slightly.) Let 0 be a regular
value of /, and let &"/~1(0).

Let ¼3Spinc(X). We have

a(c
1
(det¼))"P&c1(det¼).
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The tangent bundle ¹& has a complex structure induced by the orientation and metric on
X, and Clifford multiplication (identifying ¹&L¹*X using the metric) gives an isomor-
phism of complex line bundles

¹&?E
~
D&KE

`
D&.

Therefore ¼D&KE
~

D&= (¹&?E
~

D& ), so

a(c
1
(det¼))"s(&)#2& ) jg(¼).

By Conjecture 4.8,

+
W|S1*/c(X)

SW(¼)t& >jg(W)"$o(Ig)

where o : "PZ((t)) sends c Â t& >c. Thus

+
W|S1*/c(X)

SW(¼)ta(c1($%5W))@2"$ts(&)@2o(Ig).

To compute o(Ig), observe that

o(det(dK ))"det(d :C/07
2

PC/07
1

)

o(fK )"f.

(The first equation is clear, and the second is proved by a short combinatorial calculation.)
Therefore

+
W|S1*/c(X)

SW(¼) ta(c1($%5W))@2"det(d :C/07
2

PC/07
1

) ) f (4.3)

modulo multiplication by $tk.
Since C/07

2
and C/07

1
are the only nontrivial terms in the Novikov complex,

det(d :C/07
2

PC/07
1

) equals ¹
M034%

if C/07
*

?Q((t)) is acyclic, and zero otherwise. In con-
clusion, if C/07

*
? Q((t)) and C#%--

*
(XI ?Q((t))) are acyclic, then equation (1.5) which we need

to prove follows from equation (4.3) and Theorem 1.12. If C/07
*

?Q((t)) and C#%--
*

(XI )?Q((t))
are not acyclic, then the left-hand side of (1.5) equals zero because det(d) vanishes, and the
right side is zero by the definition of ¹

501
. K

4.4. The Meng–Taubes formula

Theorem 1.17 turns out to be equivalent to a formula for the Seiberg—Witten invariants
(in the boundaryless case, modulo signs) obtained by Meng and Taubes [20], as we will now
explain.

Let H"H
1
(X)/Torsion"H2(X; Z)/Torsion, and let XK be the universal free abelian

covering of X, whose monodromy is the projection n
1
(X)PH. The Milnor torsion

MT(X)3Q(Z[H])/$H

is defined as follows. Let C#%--
*

(XK ) be the chain complex (over Z[H]) coming from an
H-equivariant triangulation. This has a basis consisting of a lift of each cell in X to XK , giving
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a volume form (defined modulo $H). If C#%--
*

(XK ) ?Q(Z[H]) is acyclic, define

MT :"q(C#%--
*

(XK )?Q(Z[H]))3
Q(Z[H])

$H
.

If C#%--
*

(XK ) ?Q(Z[H]) is not acyclic, define MT :"0.
When b1(X)'1, it turns out that MT3Z[H]/$H. (See Turaev [37, Theorem 1.1.2].)

Furthermore [37, Section 1.11.5] there is, up to sign, a unique element in this equivalence
class invariant under the map that sends hPh~1 for h3H. When b1(X)'1 we will identify
MT with this distinguished lift in Z[H]/$1.

Next, following Meng—Taubes [20], define

SW :" +
W|S1*/c(X)

SW(¼)
c
1
(det¼)

2
3Z[[H]].

Here Z[[H]] denotes the set of arbitrary functions HPZ.

THEOREM 4.9. ¸et X be a closed oriented 3-manifold with b1(X)'0. ¹hen Conjecture 4.8
implies that

SW"$MT. (4.4)

(Equation (4.4), with the sign ambiguity resolved, and for some three-manifolds with
boundary as well, was proved by Meng and Taubes, see the announcement in [20].)

The idea of the proof of Theorem 4.9 is to apply ‘‘tomography’’ using Theorem 1.17 and
the following simple lemma.

LEMMA 4.10. ¸et G be a finitely generated free abelian group and let f, g3Z[G]. Suppose
that for every homomorphism a : GPZ, we have a

*
( f )"a

*
(g) in Z[Z], up to sign. ¹hen

f"$g.

Proof. Let Me
i
N be a basis for G. Choose an integer N such that f and g are supported in

the set S :"M+a
i
e
i
D Da

i
D(NN. Let a send e

i
to (2N)i. Then for any integer k, the hyperplane

Mx3G D a(x)"kN contains at most one point of S. Apply the hypothesis to this a. K

Proof of ¹heorem 4.9. If b1(X)"1 then this is just Theorem 1.17. Assume b1(X)'1. We
have already remarked that M¹3Z[H]. We also have SW3Z[H], by the well-known
a priori bounds for the Seiberg—Witten equations. (See [42] for the four-dimensional
case. Note that we do not necessarily have SW3Z[H] when b1"1, because here we are
making a large perturbation to the equations which destroys the a priori bounds on their
solutions, and the Seiberg—Witten invariants are not invariant under perturbation when
b1(X)"1.) A cohomology class a3H1(X; Z) gives rise to a function a

*
: Z[H]PZ[Z], and

if we identify Z[Z]"Z[t, t~1], then the left hand side of Theorem 1.17 equals a
*
(SW),

modulo signs. On the other hand, the right side of Theorem 1.17 equals a
*
(M¹). (This is

easy when both the complexes involved are acyclic, and the general case follows from [37,
Theorem 1.1.3].) So Theorem 1.17 asserts that a

*
(SW)"a

*
(M¹), modulo signs and powers

of t. Since both SW and M¹ are symmetric, it follows that a
*
(SW)"a

*
(M¹) modulo signs.

We are done by Lemma 4.10. K
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