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Floer homology of 3-manifolds

Throughout this talk, Y denotes a closed oriented (connected)
3-manifold.

Definition
A spin-c structure on Y is an equivalence class of oriented 2-plane
fields on Y , where two 2-plane fields are equivalent if they are
homotopic on the complement of a ball.

The set of spin-c structures on Y is an affine space over H2(Y ; Z).
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Three isomorphic Floer theories for spin-c 3-manifolds
1 Seiberg-Witten Floer cohomology ĤM

∗
(Y , s)

(Kronheimer-Mrowka), defined using solutions to the
Seiberg-Witten equations on R× Y

2 Heegaard Floer homology HF +
∗ (Y , s) (Ozsváth-Szabó), defined

using a Heegaard splitting of Y
3 Embedded contact homology ECH∗(Y , s), defined using a contact

form on Y .

Theorem (Taubes, 2008)

ĤM
∗

is isomorphic to ECH∗.

Theorem (Kutluhan-Lee-Taubes,Colin-Ghiggini-Honda, 2010)

ĤM
∗
(Y , s) and ECH∗(Y , s) are isomorphic to HF +

∗ (−Y , s).

Applications of ECH use these isomorphisms to transfer information
between topology and contact geometry in three dimensions.
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Contact geometry in 3 dimensions
A contact form on a closed oriented 3-manifold Y is a 1-form λ on Y
such that λ ∧ dλ > 0 everywhere. A contact form λ determines:

the contact structure ξ = Ker(λ) (an oriented 2-plane field),
the Reeb vector field R satisfying dλ(R, ·) = 0 and λ(R) = 1.

Definition
A Reeb orbit is a closed orbit of R, i.e. a map γ : R/TZ→ Y for some
T > 0 such that γ′(t) = R(γ(t)) (modulo reparametrization).

λ is nondegenerate if all Reeb orbits are “cut out transversely”.
Generic contact forms have this property.

General question
How does the dynamics of the Reeb vector field R relate to the
topology of the 3-manifold Y (and the contact structure ξ)?
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For example, given (Y , ξ), what is the minimum number of (embedded)
Reeb orbits of a contact form λ with Ker(λ) = ξ?

3-dimensional Weinstein conjecture
For every contact form on a closed oriented 3-manifold, there exists a
Reeb orbit.

Many partial results: Hofer, Abbas-Cieliebak-Hofer, Colin-Honda,...

Theorem (Taubes, 2006)

If Γ ∈ H1(Y ) is such that c1(ξ) + 2 PD(Γ) is torsion in H2(Y ; Z), then
there exists a nonempty finite set of Reeb orbits {αi} with

∑
i [αi ] = Γ.

Slight improvement on Weinstein conjecture (H.-Taubes, 2008)
If λ is a nondegenerate contact form on a closed oriented 3-manifold
Y , and if Y is not a lens space (or S3), then there are at least three
embedded Reeb orbits.
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Definition of embedded contact homology

We now define the embedded contact homology ECH∗(Y , ξ, Γ), where:

Y is a closed oriented 3-manifold.
ξ is a contact structure on Y .
Γ ∈ H1(Y ).

Homology of a chain complex depending also on:

a nondegenerate contact form λ with Ker(λ) = ξ.
A generic almost complex structure J on R× Y such that:

I J is R-invariant.
I J(∂s) = R, where s denotes the R coordinate.
I J(ξ) = ξ, and dλ(v , Jv) ≥ 0 for v ∈ ξ.
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Definition of the chain complex
The chain complex ECC∗(Y , λ, Γ, J) is freely generated over Z.
A generator is a finite set of pairs {(αi ,mi)}, where:

The αi ’s are distinct embedded Reeb orbits.
The mi ’s are positive integers.∑

i mi [αi ] = Γ ∈ H1(Y ).
If αi is hyperbolic (i.e. if its linearized return map has real
eigenvalues) then mi = 1.

If β = {(βj ,nj)} is another generator, then the differential coefficient
〈∂α, β〉 is a signed count of (possibly disconnected) J-holomorphic
curves C in R× Y (modulo R translation) such that:

C has positive ends at covers of αi with total multiplicity mi .
C has negative ends at covers of βj with total multiplicity nj .
C has “ECH index” I(C) = 1.

Theorem (H.-Taubes, 2007)

∂2 = 0.
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Definition of the ECH index

I(C) = cτ (C) + Qτ (C) +
∑

i

mi∑
k=1

CZτ (αk
i )−

∑
j

nj∑
k=1

CZτ (βk
j ).

Here:

τ is a trivialiation of ξ over the Reeb orbits αi and βj .
cτ (C) denotes the relative first Chern class of ξ over C with
respect to τ .
Qτ is a “relative intersection form”.
CZτ denotes the Conley-Zehnder index with respect to τ .

Proposition
If I(C) = 1 then C = C0 t C1 where:

C0 is a union of (covers of) R-invariant cylinders.
C1 is embedded and lives in a 1-dimensional moduli space.
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Taubes’s isomorphism
There is a canonical isomorphism of relatively Z/d-graded Z-modules

ECH∗(Y , ξ, Γ) ' ĤM
−∗

(Y , [ξ] + PD(Γ)).

Here d denotes the divisibility of c1(ξ) + 2 PD(Γ) = c1([ξ] + PD(Γ))
in H2(Y ; Z)/Torsion.

Analogy (motivation for the definition of ECH)
Taubes’s “Seiberg-Witten = Gromov” theorem relates the
Seiberg-Witten invariants of a closed symplectic 4-manifold (X , ω) to a
count of holomorphic curves C in X with c1(C) + C · C = 0.
The above isomorphism is an analogue of this for X = R× Y .
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The Weinstein conjecture

The Weinstein conjecture in 3 dimensions follows immediately from
Taubes’s isomorphism, together with:

Theorem (Kronheimer-Mrowka)

If s is a torsion spin-c structure, i.e. c1(s) is torsion in H2(Y ; Z),
then ĤM

∗
(Y , s) is infinitely generated.

If there were no Reeb orbit, then we would have

ECH∗(Y , ξ, Γ) =

{
Z, Γ = 0,
0, Γ 6= 0.

Here the Z is generated by the empty set of Reeb orbits.
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Simplest example: the boundary of an ellipsoid

Consider R4 = C2 with coordinates zj = xj + iyj for j = 1,2.
If Y is the boundary of a star-shaped subset of R4, then

λ =
1
2

2∑
j=1

(xjdyj − yjdxj)

restricts to a contact form on Y .

If a,b > 0, define the ellipsoid

E(a,b) =

{
(z1, z2) ∈ C2

∣∣∣∣ π|z1|2

a
+
π|z2|2

b
≤ 1

}
.

Compute ECH(∂E(a,b), λ,0) . . .
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Reeb vector field
R =

2π
a

∂

∂θ1
+

2π
b

∂

∂θ2
.

If a/b is irrational, the embedded Reeb orbits are γ1 = (z2 = 0)
and γ2 = (z1 = 0), which are elliptic. Chain complex generators
are γm1

1 γm2
2 where m1,m2 ≥ 0.

Z-grading: normalize I(∅) = 0, then

I
(
γm1

1 γm2
2

)
= 2

(
m1 + m2 + m1m2 +

m1∑
k=1

bka/bc+

m2∑
k=1

bkb/ac

)
.

One generator of each even nonnegative integer grading, so

ECH∗(∂E(a,b), λ,0) =

{
Z, ∗ = 0,2,4, . . . ,
0, otherwise.
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Some additional structure on ECH

When Y is connected, there is a map

U : ECH∗(Y , ξ, Γ)→ ECH∗−2(Y , ξ, Γ),

induced by a chain map which counts I = 2 holomorphic curves in
R× Y passing through a chosen point in R× Y .
There is a canonical element

c(ξ) ∈ ECH∗(Y , ξ,0),

called the contact invariant, represented by the empty set of Reeb
orbits. Although ECH depends only on Y , the contact invariant
c(ξ) depends on ξ, and vanishes when ξ is overtwisted.

Both U and c(ξ) agree with analogous structures on ĤM
∗

and HF +
∗ .
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The symplectic action filtration

If α = {(αi ,mi)} is an ECH generator, define its symplectic action

A(α) =
∑

i

mi

∫
αi

λ.

The differential decreases symplectic action: if 〈∂α, β〉 6= 0 then
A(α) > A(β).
If L ∈ R, define ECHL(Y , λ, Γ) to be the homology of the
subcomplex spanned by generators with action less than L.
This is independent of J, but heavily dependent on λ.
No obvious counterpart in ĤM or HF +.
Write

ECHL(Y , λ) =
⊕

Γ

ECHL(Y , λ, Γ).
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Cobordism maps
Let (Y+, λ+) and (Y−, λ−) be closed oriented (connected) 3-manifolds
with nondegenerate contact forms. An exact symplectic cobordism
from (Y+, λ+) to (Y−, λ−) is a compact symplectic four-manifold (X , ω)
such that ∂X = Y+ − Y− and there is a 1-form λ on X with dλ = ω and
λ|Y± = λ±.

Theorem (H.-Taubes, 2010)
An exact symplectic cobordism as above determines maps

ΦL(X , ω) : ECHL(Y+, λ+)→ ECHL(Y−, λ−)

for each L, such that

Φ(X , ω) = lim
L→∞

ΦL(X , ω) : ECH(Y+, λ+)→ ECH(Y−, λ−)

agrees with the induced map on ĤM
∗
. Here we use Z/2 coefficients.

Proof uses Seiberg-Witten theory.
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Comparison with symplectic field theory

SFT (defined by Eliashberg-Givental-Hofer) associates various chain
complexes to a contact manifold (Y , λ) where the generators involve
Reeb orbits and the differential counts holomorphic curves in R× Y .

SFT is defined in 2n + 1 dimensions, while ECH is only defined in
3 dimensions.
SFT has more generators than ECH, and counts some
non-embedded holomorphic curves.
SFT depends on the contact structure ξ, and is trivial when ξ is
overtwisted. ECH does not depend on ξ and does not vanish
when ξ is overtwisted. (But the ECH contact invariant c(ξ) does.)
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Applications of ECH

1 Extensions of the three-dimensional Weinstein conjecture
2 The Arnold chord conjecture in three dimensions
3 Obstructions to symplectic embeddings in four dimensions

By Taubes’s isomorphism ECH∗ ' ĤM
∗
, and results of

Kronheimer-Mrowka about ĤM
∗
, we know that:

ECH∗(Y , ξ, Γ) is finitely generated for each value of the grading ∗.
ECH∗(Y , ξ, Γ) is nonzero for only finitely many Γ.
If c1(ξ) + 2 PD(Γ) is torsion in H2(Y ; Z), then:

I ECH∗(Y , ξ, Γ) is infinitely generated.
I ECH∗(Y , ξ, Γ) = 0 when ∗ is sufficiently small.
I U : ECH∗(Y , ξ, Γ)→ ECH∗−2(Y , ξ, Γ) is an isomorphism when ∗ is

sufficiently large.

These facts have implications for contact geometry.
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Extensions of the Weinstein conjecture
Theorem (H.-Taubes, 2008)
Let λ be a nondegenerate contact form on a closed oriented connected
3-manifold Y such that all Reeb orbits are elliptic. Then there are
exactly two embedded Reeb orbits and Y is a lens space (or S3).

Outline of proof:

Since all Reeb orbits are elliptic, all generators have even grading,
so ∂ = 0.
Since ECH∗(Y , ξ, Γ) 6= 0 for only finitely many Γ, all Reeb orbits
represent torsion homology classes, and c1(ξ) is torsion.
Linear growth of rk(

⊕
∗≤k ECH∗(Y , ξ)) as a function of k implies

that there are exactly two embedded Reeb orbits γ1, γ2.
The holomorphic curves contributing to U include a cylinder which
projects to an embedded cylinder in Y that generates a foliation of
Y \ (γ1 ∪ γ2) by cylinders.
This foliation determines a genus 1 Heegaard splitting of Y .
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Similar arguments show that if λ is nondegenerate and if Y is not
a lens space (or S3), then there are at least three embedded
Reeb orbits.
This theorem can be used to extend the Weinstein conjecture to
“stable Hamiltonian structures” (a generalization of contact forms)
on 3-manifolds that are not T 2-bundles over S1.
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The Arnold chord conjecture in 3 dimensions
Let Y be a closed oriented connected 3-manifold with a contact form λ.

A Legendrian knot in (Y , λ) is a knot K ⊂ Y such that TK ⊂ ξ|K .
A Reeb chord of K is a path γ : [0,T ]→ Y for some T > 0 such
that γ′(t) = R(γ(t)) and γ(0), γ(T ) ∈ K .

Arnold chord conjecture in 3d (proved by H.-Taubes, 2010)
Every Legendrian knot in (Y , λ) has a Reeb chord.

Outline of proof:

Let (Y ′, λ′) be obtained from (Y , λ) by Legendrian surgery along K .

Y ′ is obtained from Y by surgery along K with framing tb(K )− 1.
λ′ agrees with λ outside of the surgery region.
∃ exact symplectic cobordism (X , ω) from (Y ′, λ′) to (Y , λ).
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Suppose to get a contradiction that K has no Reeb chord. Also
assume that λ is nondegenerate.
Then for any L > 0, one can arrange that λ′ is nondegenerate and
has the same Reeb orbits as λ up to action L.
Then ΦL(X , ω) : ECHL(Y ′, λ′)→ ECHL(Y , λ) is an isomorphism
(induced by an upper triangular chain map).
Therefore Φ(X , ω) : ECH(Y ′, λ′)→ ECH(Y , λ) is an isomorphism.
By Kronheimer-Mrowka, this map fits into an exact triangle

· · · → ĤM
∗
(Y ′′)→ ĤM

∗
(Y ′)→ ĤM

∗
(Y )→ · · ·

where Y ′′ is a different surgery along K .

This contradicts the fact that ĤM
∗
(Y ′′) is infinitely generated.

Proof in degenerate case: In nondegenerate case, there exists a
Reeb chord with an upper bound on the length that depends
continuously on λ.
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Obstructions to 4-dimensional symplectic embeddings

Define a (4-dimensional) Liouville domain to be a compact symplectic
4-manifold (X , ω) such that ω is exact, and there exists a 1-form λ on
∂X with dλ = ω|∂X .

General question
If (X0, ω0) and (X1, ω1) are two Liouville domains, when does there
exist a symplectic embedding X0 → X1?

Obvious necessary condition: vol(X0, ω0) ≤ vol(X1, ω1), where
vol(X , ω) = 1

2

∫
X ω ∧ ω.

This is far from sufficient, as shown by Gromov nonsqueezing.
The answer to the question is unknown for some very simple
examples.
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ECH capacities
To each Liouville domain (X , ω) we associate a sequence of real
numbers

0 = c0(X , ω) ≤ c1(X , ω) ≤ c2(X , ω) ≤ · · · ≤ ∞,

called ECH capacities.

Definition (when ∂X is connected)
ck (X , ω) is the least symplectic action needed to represent a class
σ ∈ ECH(∂X , λ,0) with Ukσ = c(ξ).

Theorem
If there is a symplectic embedding (X0, ω0)→ (X1, ω1), then

ck (X0, ω0) ≤ ck (X1, ω1).

Proof: ECH cobordism map induced by X1 \ X0 respects U and c(ξ)
and decreases symplectic action.
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Basic examples of ECH capacities
Proposition

ck (E(a,b)) = (a,b)k+1, where (a,b)k denotes the k th smallest entry in
the array (am + bn)m,n≥0.

Proposition

ck

(
n∐

i=1

(Xi , ωi)

)
= max

{
n∑

i=1

cki (Xi , ωi)

∣∣∣∣ n∑
i=1

ki = k

}
.

Theorem (McDuff, 2010)
int(E(a,b)) symplectically embeds into int(E(c,d)) if and only if
ck (E(a,b)) ≤ ck (E(c,d)) for all k.

Fact (follows from work of Biran)
The ECH obstruction to symplectically embedding a disjoint union of
balls into a ball is likewise sharp.
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ECH capacities and volume

Conjecture (confirmed in many cases)
If ck (X , ω) <∞ for all k , then

lim
k→∞

ck (X , ω)2

k
= 4 vol(X , ω).

That is, asymptotically the ECH obstruction to a symplectic embedding
recovers the volume constraint.
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Some open questions

Let Y be a closed oriented connected 3-manifold other than a lens
space (or S3). Does every contact form on Y have infinitely many
embedded Reeb orbits?
Is there a quantitative refinement of the Weinstein conjecture? For
example, does a closed contact 3-manifold (Y , λ) always have a
Reeb orbit with symplectic action at most

√
2 vol(Y , λ)?

Can one prove that ECH depends only on the contact structure,
and construct the ECH cobordism maps, by counting holomorphic
curves (i.e. without using Seiberg-Witten theory)?
Is there a direct explanation for why the ECH obstruction to
symplectically embedding one ellipsoid into another is sharp?
To what extent is the ECH obstruction sharp for other symplectic
embeddings? (It’s not always sharp for embedding a polydisk into
an ellipsoid.)
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