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Floer homology of 3-manifolds

Throughout this talk, Y denotes a closed oriented (connected)
3-manifold.

Definition
A spin-c structure on Y is an equivalence class of oriented 2-plane
fields on Y , where two oriented 2-plane fields are equivalent if they are
homotopic on the complement of a ball.

The set of spin-c structures on Y is an affine space over H2(Y ; Z).
We are interested in three particular kinds of Floer theory of a
three-manifold Y with a spin-c structure s.
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Seiberg-Witten Floer cohomology ĤM
∗
(Y , s)

Roughly speaking, this is the homology of a chain complex which
is generated by R-invariant solutions to the Seiberg-Witten
equations on R× Y , and whose differential counts non-R-invariant
solutions. (Detailed definition by Kronheimer-Mrowka.)
When c1(s) is torsion, due to the presence of “reducible” solutions,
the definition of ĤM

∗
(Y , s) is more complicated. In this case there

is an alternate version ȞM∗(Y , s) of Seiberg-Witten Floer
cohomology, and there is an exact triangle

ĤM
∗
(Y , s)→ ȞM∗(Y , s)→ HM

∗
(Y , s)→ ĤM

∗+1
(Y , s)→ · · ·

Here HM
∗
(Y , s) is determined by the reducibles and can be

computed in terms of the triple cup product on Y .
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Heegaard Floer homology HF +
∗ (Y , s) (Ozsváth-Szabó)

This is defined in terms of a Heegaard splitting of Y along a genus
g surface Σ.
It is a kind of Lagrangian Floer homology for two Lagrangians in
Symg(Σ).
Skilled practitioners can compute this in many examples, and
Manolescu-Ozsváth-Thurston give a general algorithm for
computing it with Z/2 coefficients.
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Contact forms

Let Y be a closed oriented 3-manifold.

Definition
A contact form on Y is a 1-form λ on Y such that λ ∧ dλ > 0.

A contact form λ determines:
A Reeb vector field R, defined by dλ(R, ·) = 0 and λ(R) = 1.
A contact structure, namely the oriented 2-plane field ξ = Ker(λ).

Definition
A Reeb orbit is a periodic orbit of R, i.e. a map γ : R/TZ→ Y for some
T > 0, modulo reparametrization, such that γ′(t) = R(γ(t)).

λ is called nondegenerate if all Reeb orbits are “cut out transversely”.
“Generic” contact forms have this property.
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Embedded contact homology ECH∗(Y , λ, Γ)

Let Y be a closed oriented 3-manifold, let λ be a nondegenerate
contact form on Y , and let Γ ∈ H1(Y ).
One can then define the embedded contact homology ECH∗(Y , λ, Γ).
This is the homology of a chain complex over Z.
A generator of the chain complex is a finite set of pairs α = {(αi ,mi)}
where:

The αi ’s are distinct embedded Reeb orbits.
The mi ’s are positive integers.
mi = 1 when αi is hyperbolic.∑

i mi [αi ] = Γ ∈ H1(Y ).
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To define the ECH differential, one chooses a generic almost complex
structure J on R× Y such that:

J(∂s) = R, where s denotes the R coordinate.
J(ξ) = ξ and dλ(v , Jv) ≥ 0 for v ∈ ξ.
J is R-invariant.

If α and β are two chain complex generators, the differential coefficient
〈∂α, β〉 counts certain (mostly) embedded index one J-holomorphic
curves in R× Y , modulo the R action, which are asymptotic (as
currents) to α as s → +∞ and to β as s → −∞.

Facts
∂2 = 0. (H.-Taubes, 2007)
The homology of the chain complex does not depend on J, and
not really on λ either. (Follows from next slide.)
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Isomorphism theorems
Fix a contact form λ with contact structure ξ. Suppose Γ ∈ H1(Y ) is
related to the spin-c structure s by

s = [ξ] + PD(Γ).

Theorem (Taubes, 2008)

ECH∗(Y , λ, Γ) is canonically isomorphic to ĤM
−∗

(Y , s) as relatively
graded groups.

This is a three-dimensional analogue of Taubes’s “SW=Gr” theorem for
closed symplectic four-manifolds.

Theorem (Kutluhan-Lee-Taubes, Colin-Ghiggini-Honda, 2010-)
Both are isomorphic to HF+

∗ (−Y , s) as relatively graded groups.

These isomorphisms allow one to transfer information between
topology and contact geometry in three dimensions.
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Some additional structure on ECH

There is a degree −2 map

U : ECH∗(Y , λ, Γ)→ ECH∗−2(Y , λ, Γ).

This is induced by a chain map which is defined like ∂, but now
counting index 2 holomorphic curves that pass through a base
point in R× Y .
There is a canonical class

c(ξ) ∈ ECH∗(Y , λ,0),

represented by the empty set of Reeb orbits.

These agree with analogous structures on ĤM
∗

(and HF+
∗ ).
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Applications of ECH

So far the main applications of ECH have been to the following:

(Slight) extensions of the Weinstein conjecture in three
dimensions.
The Arnold chord conjecture in three dimensions.
New, sometimes sharp obstructions to symplectic embeddings in
four dimensions.
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3d Weinstein conjecture
Every contact form on a closed oriented 3-manifold has a Reeb orbit.

Many partial results, e.g. Hofer, Abbas-Cieliebak-Hofer, Colin-Honda.

Theorem (Taubes, 2006)
Let λ be a contact form on a closed oriented 3-manifold Y . Let
Γ ∈ H1(Y ) such that c1(ξ) + 2 PD(Γ) is torsion in H2(Y ; Z). Then there
exists a nonempty finite set of (possibly multiply covered) Reeb orbits
{αi} with

∑
i [αi ] = Γ.

Note that classes Γ as in the theorem always exist, because c1(ξ) is
always divisible by 2.
The proof of the theorem is a first step in the proof of the isomorphism
of ECH with ĤM, and the theorem also follows from this isomorphism
(when λ is nondegenerate).
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Deducing the Weinstein conjecture from ECH ' ĤM

Theorem (Kronheimer-Mrowka)

If c1(s) is torsion then ĤM
∗
(Y , s) is infinitely generated.

Corollary
If λ is nondegenerate and if c1(ξ) + 2 PD(Γ) is torsion then there exists
a nonempty ECH generator α = {(αi ,mi)} with

∑
i mi [αi ] = Γ.

Proof. Γ corresponds to s with c1(s) torsion, so by Taubes’s
isomorphism, ECH∗(Y , λ, Γ) is infinitely generated. If there is no
nonempty ECH generator in the class Γ, then

ECH∗(Y , λ, Γ) =

{
Z, Γ = 0,
0, Γ 6= 0.

which is a contradiction. (Here the Z is generated by the empty set of
Reeb orbits.)
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Example: the boundary of an irrational ellipsoid
Identify R4 = C2 with coordinates zj = xj + iyj for j = 1,2. Let a,b > 0
with a/b irrational. Consider the ellipsoid

E(a,b) =

{
(z1, z2) ∈ C2

∣∣∣∣ π|z1|2

a
+
π|z2|2

b
≤ 1

}
.

Let Y = ∂E(a,b). Since Y is transverse to rays from the origin,

λ =
1
2

2∑
j=1

(xjdyj − yjdxj)

restricts to a contact form on Y . The Reeb vector field is given by

R =
2π
a

∂

∂θ1
+

2π
b

∂

∂θ2
.

The only embedded Reeb orbits are γ1 = (z2 = 0) and γ2 = (z1 = 0).
These are elliptic, so the ECH generators are γm1

1 γm2
2 where

m1,m2 ≥ 0. (The ECH differential vanishes here.)
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I do not know if there is any example of a contact form on a closed
3-manifold with only finitely many Reeb orbits, other then the irrational
ellipsoid example, and quotients of it on lens spaces.

Theorem (H.-Taubes, 2008)
Let λ be a nondegenerate contact form on a closed oriented
connected three-manifold Y such that all Reeb orbits are elliptic. Then
Y is S3 or a lens space, there are exactly two embedded Reeb orbits,
and these are the core circles of a genus 1 Heegaard splitting of Y .

The proof of this theorem uses the isomorphism ECH∗ ' ĤM
∗

much
more strongly. The genus one Heegaard splitting is obtained from a
foliation of Y\ Reeb orbits by J-holomorphic curves counted by U.

Theorem (H.-Taubes, 2008)
If λ is a nondegenerate contact form on a closed 3-manifold Y , and if
Y is not S3 or a lens space, then there are at least three embedded
Reeb orbits.
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Additional structure on ECH

Other applications make use of two additional structures on ECH:

The symplectic action filtration.
Cobordism maps.
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Symplectic action filtration

If α = {(αi ,mi)} is an ECH generator, define its symplectic action
by

A(α) =
∑

i

mi

∫
αi

λ.

The differential decreases symplectic action: if 〈∂α, β〉 6= 0 then
A(α) > A(β).
Given L ∈ R, define ECHL(Y , λ, Γ) to be the homology of the
subcomplex generated by α with A(α) < L.
This depends on λ (not just ξ), for example

ECHcL(Y , cλ, Γ) = ECHL(Y , λ, Γ)

for c ∈ R. It has no known counterpart in ĤM or HF+.
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Cobordism maps
Let (Y+, λ+) and (Y−, λ−) be closed oriented 3-manifolds with contact
forms. An exact symplectic cobordism from (Y+, λ+) to (Y−, λ−) is a
compact symplectic four-manifold (X , ω) with ∂X = Y+ − Y− such that
there exists a 1-form λ on X with dλ = ω and λ|Y± = λ±.

Theorem (H.-Taubes, to appear soon)
An exact symplectic cobordism as above induces maps

ΦL(X , ω) : ECHL(Y+, λ+)→ ECHL
∗ (Y−, λ−)

for each L ∈ R such that

Φ(X , ω) = lim
L→∞

ΦL(X , ω) : ECH(Y+, λ+)→ ECH(Y−, λ−)

agrees with the induced map on ĤM
∗
.

Here we use Z/2 coeffients and sum over all Γ ∈ H1(Y ).
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Cobordism maps and holomorphic curves

The cobordism map ΦL(X , ω) is constructed using Seiberg-Witten
theory. It is presumably possible to define it by counting holomorphic
curves instead, but this is technically difficult. In any case we know:

Holomorphic curves axiom
Given a suitable almost complex structure J on the “symplectization
completion” X of X , the map ΦL(X , ω) is induced by a (noncanonical)
chain map φ such that if α± are ECH generators for λ± then:

If 〈φα+, α−〉 6= 0 then there exists a (possibly broken)
J-holomorphic curve in X from α+ to α−.
If the only (possibly broken) J-holomorphic curve from α+ to α− is
a union of “product cylinders”, then 〈φα+, α−〉 = 1.
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The Arnold chord conjecture in 3 dimensions
Let Y be a closed oriented connected 3-manifold with a contact form λ.

A Legendrian knot in (Y , λ) is a knot K ⊂ Y such that TK ⊂ ξ|K .
A Reeb chord of K is a path γ : [0,T ]→ Y for some T > 0 such
that γ′(t) = R(γ(t)) and γ(0), γ(T ) ∈ K .

Arnold chord conjecture in 3d (proved by H.-Taubes, 2010)
Every Legendrian knot in (Y , λ) has a Reeb chord.

Outline of proof:

Let (Y ′, λ′) be obtained from (Y , λ) by Legendrian surgery along K .

Y ′ is obtained from Y by surgery along K with framing tb(K )− 1.
λ′ agrees with λ outside of the surgery region.
∃ exact symplectic cobordism (X , ω) from (Y ′, λ′) to (Y , λ).
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Suppose to get a contradiction that K has no Reeb chord. Also
assume that λ is nondegenerate.
Then for any L > 0, one can arrange that λ′ is nondegenerate and
has the same Reeb orbits as λ up to action L.
By the Holomorphic Curves axiom,
ΦL(X , ω) : ECHL(Y ′, λ′)→ ECHL(Y , λ) is induced by an upper
triangular chain map, hence an isomorphism.
Therefore Φ(X , ω) : ECH(Y ′, λ′)→ ECH(Y , λ) is an isomorphism.
By Kronheimer-Mrowka, this map fits into an exact triangle

· · · → ĤM
∗
(Y ′′)→ ĤM

∗
(Y ′)→ ĤM

∗
(Y )→ · · ·

where Y ′′ is a different surgery along K . (Z/2 coefficients.)

This contradicts the fact that ĤM
∗
(Y ′′) is infinitely generated.

Proof in degenerate case: In nondegenerate case, there exists a
Reeb chord with an upper bound on the length that depends
continuously on λ.
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Summary of the preceding

So far we have used ECH∗ = ĤM
∗

as follows:

Nontriviality of ĤM
∗

implies the Weinstein conjecture.

Additional properties of ĤM
∗

lead to refinements of the Weinstein
conjecture.

Nonisomorphism of cobordism maps on ĤM
∗

induced by Dehn
surgeries implies the chord conjecture.

We now consider some further applications of ECH which do not use
the isomorphism with ĤM (except as currently needed to define ECH
cobordism maps).
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Four-dimensional symplectic embedding problems

Define a (4-dimensional) Liouville domain to be a compact symplectic
4-manifold (X , ω) such that ω is exact, and there exists a contact form
λ on ∂X with dλ = ω|∂X .

General question
If (X0, ω0) and (X1, ω1) are two Liouville domains, when does there
exist a symplectic embedding X0 → X1?

Obvious necessary condition: vol(X0, ω0) ≤ vol(X1, ω1), where
vol(X , ω) = 1

2

∫
X ω ∧ ω.

This is far from sufficient, as shown by Gromov nonsqueezing.
The answer to the question is unknown, or only recently known,
for some very simple examples.
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Symplectic embeddings of four-dimensional ellipsoids

Given positive real numbers a and b, let N (a,b) denote the sequence
of nonnegative integer linear combinations of a and b, arranged in
nondecreasing order. For example.

N (1,2) = (0,1,2,2,3,3,4,4,4,5,5,5, . . .).

Theorem (McDuff, 2010)
int(E(a,b)) symplectically embeds into E(c,d) if and only if
N (a,b) ≤ N (c,d).

The “only if” part of this theorem can be proved using ECH.
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ECH capacities
To each Liouville domain (X , ω) we associate a sequence of real
numbers

0 = c0(X , ω) ≤ c1(X , ω) ≤ c2(X , ω) ≤ · · · ≤ ∞,

called ECH capacities. Below, consider ECH with Z/2 coefficients.

Definition (when ∂X is connected)

ck (X , ω) is the infimum of L such that there exists σ ∈ ECHL(∂X , λ,0)
with Ukσ = c(ξ).

Example
{ck (E(a,b))} = N (a,b).

Proof. U is an isomorphism on the nonempty ECH generators and
decreases symplectic action. The generator γm

1 γ
n
2 has symplectic

actiom ma + nb.
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Monotonicity of ECH capacities

Theorem
If there is a symplectic embedding ϕ : (X0, ω0)→ (X1, ω1), then

ck (X0, ω0) ≤ ck (X1, ω1).

Proof. We can assume that ϕ(X0) ⊂ int(X1). Then (X1 \ int(ϕ(X0)), ω1)
is a “weakly exact symplectic cobordism” from (∂X1, λ1) to (∂X0, λ0).
Similarly to previous theorem, it induces a cobordism map

ECHL(∂X1, λ1,0)→ ECHL(∂X0, λ0,0)

for each L ∈ R. This map respects U and c(ξ) and decreases
symplectic action.

Michael Hutchings (UC Berkeley) Applications of ECH Low-dimensional manifolds etc. 26 / 29



More examples of ECH capacities

Proposition

ck

(
n∐

i=1

(Xi , ωi)

)
= max

{
n∑

i=1

cki (Xi , ωi)

∣∣∣∣ n∑
i=1

ki = k

}
.

McDuff has also shown that ECH capacities give a sharp obstruction to
symplectically embedding a disjoint union of ellipsoids into an ellipsoid.

Example
Given a,b > 0, define the polydisk

P(a,b) = {(z1, z2) ∈ C2 ∣∣ π|z1|2 ≤ a, π|z2|2 ≤ b}.

Then

ck (P(a,b)) = min{am + bn
∣∣ m,n ∈ N, (m + 1)(n + 1) ≥ k + 1}.
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More about ECH capacities

Work of D. Müller implies that ECH capacities give a sharp
obstruction to symplectically embedding an ellipsoid into a
polydisk.
However they do not give an sharp obstruction to symplectically
embedding a polydisk into an ellipsoid, because P(1,1) and
E(1,2) have the same ECH capacities, but P(1,1) symplectically
embeds into E(a,2a) if and only if a ≥ 3/2.

Conjecture (confirmed in many cases)
If ck (X , ω) <∞ for all k , then

lim
k→∞

ck (X , ω)2

k
= 4 vol(X , ω).

That is, asymptotically the ECH obstruction to a symplectic embedding
recovers the volume constraint.
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Some open questions

Let Y be a closed oriented connected 3-manifold other than a lens
space (or S3). Does every contact form on Y have infinitely many
embedded Reeb orbits?
Is there a quantitative refinement of the Weinstein conjecture? For
example, does a closed contact 3-manifold (Y , λ) always have a
Reeb orbit with symplectic action at most

√
2 vol(Y , λ)?

Can one prove that ECH depends only on the contact structure,
and construct the ECH cobordism maps, by counting holomorphic
curves (i.e. without using Seiberg-Witten theory)?
Is there a direct explanation for why the ECH obstruction to
symplectically embedding one ellipsoid into another is sharp?
To what extent is the ECH obstruction sharp for other symplectic
embedding problems?
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