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Abstract

The classical divergence theorem for an n-dimensional domain A and a smooth
vector field F in n-space ∫

∂A

F · n =
∫

A

divF

requires that a normal vector field n(p) be defined a.e. p ∈ ∂A. In this paper we
give a new proof and extension of this theorem by replacing n with a limit �∂A
of 1-dimensional polyhedral chains taken with respect to a norm. The operator �
is a geometric dual to the Hodge star operator and is defined on a large class of
k-dimensional domains of integration A in n-space called chainlets. Chainlets include
a broad range of domains, from smooth manifolds to soap bubbles and fractals. We
prove as our main result the Star theorem∫

�A

ω = (−1)k (n−k )
∫

A

�ω

where ω is a k-form and A is an (n − k)-chainlet. When combined with the general
Stokes’ theorem ([H1, H2]) ∫

∂A

ω =
∫

A

dω

this result yields optimal and concise forms of Gauss’ divergence theorem∫
�∂A

ω = (−1)(k )(n−k )
∫

A

d � ω

and Green’s curl theorem ∫
∂A

ω =
∫

�A

�dω.

1. Introduction

In this paper we develop a theory of calculus on a large class of domains by
taking limits of k-dimensional polyhedral chains in n-space with respect to a one
parameter family of norms depending on a parameter r � 0. We take r to be an
integer; extensions to real r are possible ([H5]). Elements of the Banach spaces N r

k

obtained on completion are called k-chainlets of class Nr. The norms are decreasing
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with r. The direct limit of the N r
k is a normed linear space N∞

k . The parameter r
reflects the roughness of the chainlets. Concepts such as smooth manifolds, fractals,
vector fields, differential forms, foliations and measures have counterparts in chainlet
geometry. There is no geometric wedge product for all pairs of chainlets as this would
lead to multiplication of distributions. However, other products and operators on
differential forms do have dual geometric versions on chainlets such as the Hodge
star, Laplace and Dirac operators.
Chainlets of class Nr are domains of integration for smooth differential k-forms ω

of class Br , (i.e., the r− 1 partial derivatives of ω are bounded uniformly and satisfy
Lipschitz conditions). The geometric Hodge star operator is a linear operator � from
k-chainlets of class Nr to (n − k)-chainlets of class Nr . It applies in all dimensions
and codimensions and does not require that tangents be defined anywhere. Examples
include the subgraph A of the Weierstrass nowhere differentiable function f defined
over a compact interval, even though ∂A has infinite length and has no tangents
defined in the graph of f . See Figure 1.

Theorem 1·1 (Star theorem). If A is a k-chainlet of class Nr, r � 1, and ω is a
differential k-form of class Br defined in a neighbourhood of sptA, then∫

�A

ω = (−1)k (n−k )
∫

A

�ω.

Theorem 1·2 (Generalized Stokes’ theorem). If A is a k-chainlet of class Nr, r � 0,
and ω is a differential (k−1)-form of class Br+1 defined in a neighbourhood of sptA, then∫

∂A

ω =
∫

A

dω.

This was first announced in [H1] and proved in [H2].
Extensions of the divergence and curl theorems for smooth differential forms and

rough chainlets in any dimension and codimension follow immediately.

Fig. 1. The Weierstrass “nowhere differentiable” function.
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Corollary 1·3 (Generalized Gauss divergence theorem). If A is a k-chainlet of

class Nr, r � 0, and ω is a differential (n − k + 1)-form of class Br+1 defined in a
neighbourhood of sptA, then∫

�∂A

ω = (−1)(k−1)(n−k+1)
∫

A

d � ω.

At one extreme, the form ω must satisfy a Lipschitz condition so that d � ω is
bounded measurable. It can then be paired with a finite mass chainlet A of class N 0,
e.g., a polyhedral chain, for this theorem to be satisfied. However, ∂A could have
locally infinite mass as in Figure 1. At the other extreme, if ω is of class C∞, the
chainlet A is permitted to have any degree of roughness, from soap films to fractals.
Federer and de Giorgi [F, deG] proved a divergence theorem for n-dimensional cur-

rents C in R
n with Ln measurable support and aHn−1 measurable current boundary.

The vector field F is assumed to be Lipschitz.∫
∂CF (x) · n(C, x)dHn−1x =

∫
C

divF (x)dLnx.

The hypotheses imply the existence a.e. of measure theoretic normals n(C, x) to
the current boundary which is not required in Theorem 1·2. Our result applies
to all chainlets in the Banach spaces N r

k which include all currents satisfying the
hypotheses of the theorem of Federer and de Giorgi. The divergence theorem was a
hallmark of geometric theory. Federer wrote in the introduction to [F]:

“A striking application of our theory is the Gauss-Green type theorem . . .”

and in the introduction to chapter 4:

“Research on the problem of finding the most natural and general form of this theorem
[Gauss-Green] has contributed greatly to the development of geometric measure theory.”

Corollary 1·4 (Generalized Green’s curl theorem). If A is a k-chainlet of class
Nr, r � 1, and ω is a differential (k− 1)-form of class Br+1 defined in a neighbourhood
of sptA, then ∫

∂A

ω =
∫

�A

�dω.

A geometric coboundary operator ♦ for chainlets is defined by

♦� (−1)nk+n+1 � ∂�,

and a geometric Laplace operator � is defined using combinations of ∂ and �:

� � (∂ +♦)2 = ∂♦ +♦∂.

Let ∆ denote the Laplace operator on differential forms.

Corollary 1·5 (Laplace operator theorem). Let r � 1. If A is a k-chainlet of class
Nr and ω is a differential k-form of class Br+2 defined in a neighbourhood of sptA,
then ∫

�A

ω = (−1)n−1
∫

A

∆ω.
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The main results in this paper were first announced in [H4]. The original draft,
has been significantly improved with the use of discrete chainlet theory. The norms
given below are initially defined for polyhedral k-chains in Euclidean space R

n , and
it is shown at the end how to extend the results to singular k-chains in Riemannian
manifolds Mn .

2. Norms on polyhedral chains

A cell σ in Rn is the nonempty intersection of finitely many closed affine half
spaces. The dimension of σ is k if k is the dimension of the smallest affine subspace E
containing σ. The support sptσ of σ is the set of all points in the intersection of half
spaces that determine σ.
Assume k > 0. An orientation of E is an equivalence class of ordered bases for the

linear subspace parallel to E where two bases are equivalent if and only if their
transformation matrix has positive determinant. An orientation of σ is defined to be
an orientation of its subspace E. Henceforth, all k-cells are assumed to be oriented.
(No orientation need be assigned to 0-cells which turn out to be single points {x}
in R

n .) When σ is a simplex, each orientation determines an equivalence class of
orderings of the set of vertices of σ.
An algebraic k-chain is a (formal) linear combination of oriented k-cells with coef-

ficients in F = Z or R. The vector space of algebraic k-chains is the quotient of the
vector space generated by oriented k-cells by the subspace generated by chains of the
form σ + σ′ where σ′ is obtained from σ by reversing its orientation. Let P =

∑
aiσi

be an algebraic k-chain. Following Whitney [W], define the function P (x) �
∑

ai

where the sum is taken over all i such that x ∈ sptσi. Set P (x) � 0 if x is not in
the support of any σi . We say that algebraic k-chains P and Q are equivalent and
write P ∼Q if and only if the functions P (x) and Q(x) are equal except in a finite
set of cells of dimension <k. For example, (−1, 1)∼ (−1, 0) + (0, 1). A polyhedral
k-chain is defined as an equivalence class of algebraic k-chains. This clever definition
implies that if P ′ is a subdivision of the algebraic chain P , then P and P ′ determine
the same polyhedral chain which behaves nicely for integrating forms. In particular,
algebraic k-chains P and Q are equivalent iff integrals of smooth differential k-forms
agree over them. (This property is sometimes taken as the definition of a polyhedral
chain). If P is an algebraic chain, [P ] denotes the polyhedral chain of P . As an abuse
of notation we usually omit the square brackets and write P instead of [P ]. Denote
the linear space of polyhedral chains by Pk .

Remarks. Every polyhedral chain P has a nonoverlapping representative. Two cells
that have the same coefficient, but opposite orientation, will cancel each other where
they overlap. If they have the same orientation, their coefficients are added.
The standard boundary operator ∂ on k-cells σ produces an algebraic (k−1)-chain.

This extends linearly to a boundary operator on algebraic k-chains. This, in turn,
leads naturally to a well defined boundary operator ∂ on polyhedral k-chains for
k � 1. For k = 0 we set ∂P � 0. Then

Pn
∂−→ Pn−1

∂−→ · · · ∂−→ P1
∂−→ P0

is a chain complex since ∂ ◦ ∂ = 0. (We omit the proof which is standard.)
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Mass of polyhedral chains

Let M (σ) denote k-dimensional Lebesgue measure, or k-volume of a k-cell σ. Every
0-cell σ0 takes the form σ0 = {x} and we set M (σ0) = 1. The mass of P is defined by

M (P )�
m∑
i=1

|ai |M (σi)

where P =
∑m

i=1 aiσi and the cells σi are non-overlapping. We think of mass as
weighted volume, or volume with multiplicity. For example, the mass of a piecewise
linear curve with multiplicity two is twice its arc length. Mass is a norm on the vector
space Pk . Suppose

∑m
i=1 aiσi is a non-overlapping representative of P . The support of

P is defined as sptP � �sptσi.
It is worth noting to those well versed in analysis based on unions and intersec-

tions of sets that these definitions are substantially different and bring algebra of
multiplicity and orientation into the mathematics at an early stage.

2·1. The k-vector of a polyhedral chain

([W, III]) The linear space of k-vectors in a vector space V is denoted Λk (V ). A k-
vector is simple if it is of the form v1∧· · ·∧vk . A simple k-vector is a k-direction if it has
unit volume. A k-cell σ determines a unique k-dimensional subspace. This, together
with its k-volume M (σ), determines a unique simple k-vector, denoted V ec(σ), with
the same volume and direction as σ. Define the k-vector of an algebraic k-chain
A =

∑
aiσi by V ec(A) �

∑
aiV ec(σi). For k = 0, define V ec(

∑
aipi) �

∑
ai.

This definition extends to a polyhedral k-chain P since the k-vector of any chain
equivalent to a k-cell is the same as the k-vector of the k-cell. The main purpose of
introducing V ec(A) in this paper is to show that the important k-elements defined
below in Section 4 are, in fact, well defined.

Proposition 2·1. If P is a polyhedral k-chain, then V ec(∂P ) = 0.

Proof. This follows since V ec(∂σ) = 0 for every k-cell σ.

Theorem 2·2. V ec is a linear transformation

V ec : Pk −→ Λk (Rn )

with

M (V ec(P )) � M (P )

for all P ∈ Pk .

Proof. This follows since M (V ec(σ)) = M (σ) for every k-cell σ.

Natural norms

For simplicity, we first define the norms in Euclidean space R
n , and later show

how to extend the definitions to Riemannian manifolds.

Difference cells

For v ∈ R
n , let |v| denote its norm and Tv translation through v. Let σ0 be a k-cell

in R
n . For consistency of terminology we also call σ0 a difference k-cell of order zero.
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Let v1 ∈ R
n . Define the difference k-cell of order 1 as

σ1 � σ0 − Tv1σ
0.

This is a chain consisting of two cells, oppositely oriented. A simple example consists
of the sum of the opposite faces of a cube, oppositely oriented. The chain is supported
in these two faces. Given σ0 and v1, . . . , vr ∈ R

n , define the difference k-cell of order j
recursively

σj � σj−1 − Tvj
σj−1.

A difference k-cell chain Dj of order j is a (formal) sum of difference k-cells of
order j,

Dj =
m∑
i=1

aiσ
j
i

with coefficients ai ∈ F. (See Figure 2.) The vector space of all difference k-cell chains
of order j is denoted Dj

k . The vector space of difference k-cell chains of order j is the
quotient of the vector space generated by difference k-cells of order j by the subspace
generated by difference chains of the form (σ−Tvσ)+(σ′−Tvσ

′) where σ′ is obtained
from σ by reversing its orientation.

Difference norms

Given a difference k-cell σj of order j in R
n generated by a k-cell σ0 and vectors

v1, . . . , vj , define the difference norms ‖σ0‖0 � M (σ0) and for j � 1,

‖σj‖j � M (σ0)|v1||v2| · · · |vj |.

For Dj =
∑m

i=1 aiσ
j
i , possibly overlapping, define the difference norm as

‖Dj‖j �
m∑
i=1

|ai |‖σj
i ‖j .

Fig. 2. A difference 1-cell chain of order 1.
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r-natural norms

Let P ∈ Pk be a polyhedral k-chain. For r = 0 define

|P |�0 � M (P ).

For r � 1 define the r-natural norm

|P |�r � inf

{
r∑

j=0

‖Dj‖j + |C|�r −1

}

where the infimum is taken over all decompositions

P =
r∑

j=0

Dj + ∂C

where Dj ∈ Dj
k and C ∈ Pk+1. It is clear | |�r is a semi-norm. We will prove that it

is a norm.
It follows immediately from the definitions that the boundary operator on chains

is bounded w.r.t. the r-natural norms.

Proposition 2·3. If P ∈ Pk , then

|∂P |�r � |P |�r −1 .

3. Isomorphisms of differential forms and cochains

We recall two classical results from integral calculus:

Theorem 3·1 (Classical Stokes’ theorem). If P is a polyhedral k-chain and ω is a
smooth k-form defined in a neighbourhood of P , then∫

∂P

ω =
∫

P

dω.

Theorem 3·2 (Classical change of variables). If P is a polyhedral k-chain, ω is a
smooth k-form, and f is an orientation preserving diffeomorphism defined in a neigh-
bourhood of P , then ∫

f P

ω =
∫

P

f∗ω.

The flat norm

Whitney’s flat norm on polyhedral chains A ∈ Pk is defined as follows:

|A|� � inf{M (B) +M (C) : A = B + ∂C, B ∈ Pk , C ∈ Pk+1}.

Flat k-forms ([W, 12·4]) are characterized as all bounded measurable k-forms ω
such that there exists a constant C > 0 with sup |

∫
σ

ω|< CM (σ) for all k-cells σ and
sup |

∫
∂τ

ω|<CM (τ ) for all (k + 1)-cells τ . The exterior derivative dω of a flat form ω
is defined a.e. and satisfies ∫

∂τ

ω =
∫

τ

dω.
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The support of a differential form is the closure of the set of all points p ∈ R
n such

that ω(p) is nonzero. Let ω be a bounded measurable k-form.
Define

‖ω‖0 � sup
{ ∫

σ
ω

M (σ)
: σ is a k-cell

}
.

Recursively define

‖ω‖r � sup
{
‖ω − Tvω‖r−1

|v|

}
.

Define

‖ω‖′0 � sup
{∫

∂τ
ω

M (τ )
: τ is a (KH)-cell

}

and

‖ω‖′r � sup
{‖ω − Tvω‖′r−1

|v|

}
.

Define

|ω|0 � ‖ω‖0
and for r � 1,

|ω|r �max{‖ω‖o , . . . , ‖ω‖r , ‖ω‖′0, . . . , ‖ω‖′r−1}.

We say that ω is of class Br if |ω|r <∞. Let Br
k denote the space of differential

k-forms of class Br.

Lemma 3·3. If |ω|1 <∞, then dω is defined a.e. Furthermore,∫
∂σ

ω =
∫

σ

dω.

Proof. If |ω|1 <∞, then ω is a flat form. It follows from ([W, 12·4]) that dω is
defined a.e. and satisfies Stokes’ theorem on cells.

Lemma 3·4. If ω ∈ Br
k , r � 1, then

|ω|r = max{‖ω‖o , . . . , ‖ω‖r , ‖dω‖0, . . . , ‖dω‖r−1}.

Therefore

|dω|r−1 � |ω|r . (3·1)

The next result generalizes the standard integral inequality of calculus:∣∣∣∣
∫

P

ω

∣∣∣∣ � M (P )|ω|o

where P is polyhedral and ω is a bounded, measurable form.

Theorem 3·5 (Fundamental integral inequality of chainlet geometry). Let P∈Pk ,
r ∈ Z

+, and ω ∈ Br
k be defined in a neighbourhood of sptP. Then∣∣∣∣

∫
P

ω

∣∣∣∣ � |P |�r |ω|r .
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Proof. We first prove
∣∣∫

σj ω
∣∣ � ‖σj‖j‖ω‖j . Since ‖ω‖0 = |ω|0 we know∣∣∣∣

∫
σ 0

ω

∣∣∣∣ � M (σ0)|ω|0 = ‖σ0‖0‖ω‖0.

Use the change of variables formula 3·2 for the translation Tvj
and induction to

deduce ∣∣∫
σj ω

∣∣ = ∣∣∣∫σj −1−Tv j
σ j −1 ω

∣∣∣ =
∣∣∣∫σj −1 ω − T ∗

vj
ω
∣∣∣

� ‖σj−1‖j−1‖ω − T ∗
vj

ω‖j−1

� ‖σj−1‖j−1‖ω‖j |vj |
= ‖σj‖j‖ω‖j .

By linearity ∣∣∣∣
∫

Dj

ω

∣∣∣∣ � ‖Dj‖j‖ω‖j

for all Dj ∈ Dj
k .

We again use induction to prove
∣∣∫

P
ω
∣∣ � |P |�r |ω|r . We know

∣∣∫
P

ω
∣∣ � |P |�0 |ω|0.

Assume the inequality holds for r − 1.
Let ε > 0. There existsP =

∑r
j=0 Dj + ∂C such that |P |�r >

∑r
j=0 ‖Dj‖j+|C|�r −1−ε.

By Stokes’ theorem for polyhedral chains, inequality (3·1) and induction

|
∫

P
ω| �

∑r
j=0 |

∫
Dj ω| + |

∫
C

dω|
�

∑r
j=0 ‖Dj‖j‖ω‖j + |C|�r −1 |dω|r−1

� (
∑r

j=0 ‖Dj‖j + |C|�r −1 )|ω|r
� (|P |�r + ε)|ω|r .

Since the inequality holds for all ε > 0 the result follows.

Corollary 3·6. |P |�r is a norm on the space of polyhedral chains Pk .

Proof. Suppose P � 0 is a polyhedral chain. There exists a smooth differential
form ω such that

∫
P

ω � 0. Then 0< |
∫

P
ω| � |P |�r |ω|r implies |P |�r > 0.

The Banach space of polyhedral k-chains Pk completed with the norm | |�r is
denoted N r

k . The elements of N r
k are called k-chainlets of class Nr .

It follows from Proposition 2·3 that the boundary ∂A of a k-chainlet A of class Nr

is well defined as a (k − 1)-chainlet of class Nr+1. If Pi → A in the r-natural norm
define

∂A � lim
i→∞

∂Pi.

By Theorem 3·5, the integral
∫

A
ω is well defined for k-chainlets A of class Nr and

differential k-forms of class Br . If Pi → A in the r-natural norm define∫
A

ω � lim
i→∞

∫
Pi

ω.
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Examples of chainlets

(i) The boundary of any bounded, open subset U of R
n . One may easily verify

that the boundary of any bounded, open set U ⊂ R
n , such as the Van Koch

snowflake, supports a well defined chainlet B = ∂U of class N 1. Suppose the
frontier of U has positive Lebesgue area. Then the chainlet B′ = ∂(Rn − U )
has the same support as B, namely the frontier of U , but since B +B′ bounds
a chainlet with positive mass it follows that B and −B′ are distinct chainlets.
(The definition of the support of a chainlet follows Corollary 3·15 below.) We
are accustomed to finding the inner boundary and outer boundary of U by
approximating γ with polyhedral chains supported inside or outside U . We
find two distinct chainlet boundaries B1, B2 of U as their difference bounds a
region with nonzero area. However, the chainlet boundaries are supported in
the same set, namely the frontier of U .

(ii) Graphs of functions. The graph of a nonnegative Riemann integrable function
f : K ⊂ R

n → R supports a chainlet Γf if K is compact. This can be seen
by approximating Γf by the polyhedral chains Pk determined by a sequence
of step functions gk approximating f . The difference Pk − Pk+j is a difference
k-cell chain of order 1. The subgraph of a nonnegative function f is the area
between the graph of f and its domain. Since the subgraph of f has finite
area, it follows that ‖Pk − Pk+j‖1 → 0 as j, k → ∞. Hence, the sequence Pk is
Cauchy in the 1-natural norm. The boundary ∂Γf is a chainlet that identifies
the discontinuity points of f .

Characterization of cochains as differential forms

The r-natural norm of a cochain X ∈ (N r )′ is defined by

|X|�r � sup
P ∈P

|X · P |
|P |�r

.

The differential operator d on cochains is defined as the dual to the boundary operator
dX ·A � X ·∂A. It remains to show how cochains relate to differential forms and how
the operator d given above relates to the standard exterior derivative of differential
forms. If X ∈ (N r

k )
′ then dX ∈ (N r−1

k+1 )
′ by Lemma 2·3.

Cochains and differential forms

In this section we show the operator Ψ mapping differential forms of class Br into
the dual space of chainlets of class Nr via integration

Ψ(ω) · A �
∫

A

ω

is a norm preserving isomorphism of graded algebras.
It follows from Theorem 3·5 thatΨ(ω) ∈ (N r

k )
′ with

|Ψ(ω)|�r � |ω|r .

Theorem 3·7 (Extension of the theorem of de Rham to cochains and forms). Let
r � 0. To each cochain X ∈

(
N r

k

)′
there corresponds a unique differential form



Hodge star 145
φ(X) ∈ Br

k such that ψ ◦ φ = φ ◦ ψ = ld. This correspondence is an isomorphism
with

|X|�r = |φ(X)|r .

If r � 1, then
φ(dX) = dφ(X).

This is proved in [H3].

Corollary 3·8. If A, B ∈ N r
k satisfy∫

A

ω =
∫

B

ω

for all ω ∈ Br
k , then A = B.

Proof. Let X ∈ (N r
k )

′. By Theorem 3·7 the form φ(X) is of class Br . Hence

X · (A − B) =
∫

A−B

φ(X) = 0.

It follows that A = B.

Corollary 3·9. If A ∈ N r
k then

|A|�r = sup
{∫

A

ω : ω ∈ Br
k , |ω|r � 1

}
.

Proof. By Theorem 3·7

|A|�r = sup
{

|X ·A |
|X |� r

: X ∈ (N r
k )

′
}

= sup
{

|
∫
A

φ(X )|
|φ(X )|r : φ(X) ∈ Br

k

}
= sup

{
|
∫
A

ω |
|ω |r : ω ∈ Br

k

}
.

Cup product

Given a k-cochain X and a j-cochain Y , we define their cup product as the (j + k)-
cochain

X � Y �Ψ(φ(X) ∧ φ(Y )).

The next result follows directly from Theorem 3·7.

Lemma 3·10. Given X ∈ (N r
k )

′ and Y ∈ (N r
j )

′ the cochain X �Y ∈ (N r
k+j (R

n ))′ with

|X � Y |�r = |φ(X) ∧ φ(Y )|r .

Furthermore

φ(X � Y ) = φ(X) ∧ φ(Y ).

Theorem 3·11. If X ∈ (N r
k )

′, Y ∈ (N r
j )

′, Z ∈ (N r
� )

′, and f ∈ Br+1
0 , then:

(i) |X � Y |�r � |X|�r |Y |�r ;
(ii) d(X � Y ) = dX � Y + (−1)j+kX � dY ;
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(iii) (X � Y ) + (Z � Y ) = (X + Z) � Y ; and
(iv) a(X � Y ) = (aX � Y ) = (X � aY ).

Proof. These follow by using the isomorphism of differential forms and cochains
Theorem 3·7 and then applying corresponding results for differential forms and their
wedge products.

Therefore, the isomorphism Ψ of Theorem 3·7 is one on graded algebras.
Continuity of Vec(P)

Lemma 3·12. Suppose P is a polyhedral chain and ω is a bounded, measurable dif-
ferential form. If ω(p) = ω0 for a fixed covector ω0 and for all p, then∫

P

ω = ω0 · V ec(P ).

Proof. This follows from the definition of the Riemann integral.

Theorem 3·13. If P is a polyhedral k-chain and r � 1, then
M (V ec(P )) � |P |�r .

If sptP ⊂ Bε(p) for some p ∈ R
n and ε > 0, then

|P |�1 � M (V ec(P )) + εM (P ).

Proof. Set α = V ec(P ) and let η0 be a covector such that |η0|0 = 1, and η0 ·α =
M (α). Define the k-form η by η(p, β) � η0(β). Since η is constant, it follows that
‖η‖r = 0 for all r > 0 and ‖dη‖r = 0 for all r � 0. Hence |η|r = |η|0 = |η0|0 = 1. By
Lemma 3·12 and Theorem 3·5, it follows that

M (V ec(P )) = η0 · V ec(P ) =
∫

P

η � |η|r |P |�r = |P |�r .

For the second inequality, we use Corollary 3·9. It suffices to show that |
∫

P
ω|/|ω|1

is less than or equal to the right-hand side for any 1-form ω of class B1. Given such
ω, define the k-form ω0(q, β)� ω(p, β) for all q. By Lemma 3·12∣∣∣∣

∫
P

ω

∣∣∣∣ �
∣∣∣∣
∫

P

ω0

∣∣∣∣ +
∣∣∣∣
∫

P

ω − ω0

∣∣∣∣
� |ω(p) · V ec(P )| + sup

q∈sptP

|ω(p)− ω(q)|M (P )

� ‖ω‖0M (V ec(P )) + ε‖ω‖1M (P )

� |ω|1(M (V ec(P )) + εM (P )).

If A = limi→∞ Pi in the r natural norm then {Pi} forms a Cauchy sequence in the
r-natural norm. By Theorem 3·13, {V ec(Pi)} forms a Cauchy sequence in the mass
norm on Λk (Rn ). Define

V ec(A)� limi→∞V ec(Pi).

This is independent of the choice of approximating Pi , again by Theorem 3·13.
Corollary 3·14. The linear transformation

V ec : N r
k −→ Λk (Rn )

is well defined.
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Corollary 3·15. Suppose A is a chainlet of class Nr and ω is a differential form of

class Br. If ω(p) = ω0 for a fixed covector ω0 and for all p, then∫
A

ω = ω0 · V ec(A).

Proof. This is merely Lemma 3·12 if A is a polyhedral chain. Theorem 3·13 lets
us take limits in the r-natural norm. If Pi → A in N r

k , then by Corollary 3·14
V ec(Pi)→ V ec(A) in the mass norm Therefore,∫

A

ω = lim
i→∞

∫
Pi

ω = lim
i→∞

ω0 · V ec(Pi) = ω0 · V ec(A).

The supports of a cochain and of a chainlet

The support sptX of a cochain X is the set of points p such that for each ε > 0
there is a cell σ ⊂ Uε(p) such that X · σ � 0.
The support sptA of a chainlet A of class Nr is the set of points p such that for

each ε > 0 there is a cochain X of class Nr such that X ·A� 0 and X ·σ = 0 for each
σ supported outside Uε(p). We prove that this coincides with the definition of the
support of A if A is a polyhedral chain. Assume A =

∑m
i=1 aiσi is nonoverlapping and

the ai are nonzero. We must show that sptA is the union F of the sptσi using this
new definition. Since X · A =

∫
A

φ(X) it follows that sptA ⊂ F. Now suppose x ∈ F ;
say x ∈ σi. Let ε > 0.We easily find a smooth differential form ω supported in Uε(p),∫

σi
ω � 0,

∫
σj

ω = 0, j � i. Let X be the cochain determined by ω via integration.
Then X · A� 0 and X · σ = 0 for each σ supported outside Uε(p).!

Proposition 3·16. If A is a chainlet of class Nr with sptA = �, then A = 0. If X is
a cochain of class Nr with sptX = � then X = 0.

Proof. By Corollary 3·9, it suffices to show X · A = 0 for any cochain X of class
Nr . Each p ∈ sptX is in some neighbourhood U (p) such that Y · A = 0 for any Y
of class Nr with φ(Y ) = 0 outside U (p). Choose a locally finite covering {Ui, i� 1} of
sptX. Using a partition of unity {ηi} subordinate to this covering we have

X =
∑

ηiX

and φ(ηiX) = ηiφ(X) = 0 outside Ui . Hence

X · A =
∑
(ηiX · A) = 0.

For the second part it suffices to show thatX ·σ = 0 for all simplexes σ. Each p ∈ σ
is in some neighbourhood U (p) such that X · τ = 0 for all τ ⊂ U (p). We may find a
subdivision

∑
σi of σ such that each σi is in someU (p). ThereforeX ·σ =

∑
X ·σi = 0.

4. Geometric star operator

k-elements

In this section we make precise the notion of an infinitesimal of calculus. Imagine
taking an infinitely thin card and cutting it into many pieces. Stack the pieces
and repeat, taking a limit. What mathematical object do we obtain? The reader
will recall Dirac monopoles which are closely related. We show the limit, called a
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k-element, exists as a well defined chainlet, and thus may be acted upon by any
chainlet operator. We emphasize that these operators have geometric definitions, as
opposed to the weak definitions arising from duals of differential forms.
Let p ∈ R

n and α be a k-direction in R
n . A unit k-element αp is defined as follows:

for each �� 0, letQ� = Q�(p, α) be the weighted k-cube centered at p with k-direction
α, edge 2−� and coefficient 2k� . ThenM (Q�) = 1 and V ec(Q�) = α.We show that {Q�}
forms a Cauchy sequence in the 1-natural norm. Let j � 1 and estimate |Q� −Q�+j |�1 .
SubdivideQ� into 2kj binary cubesQ�,i and considerQ�+j as 2kj copies of (1/2kj )Q�+j .
We form difference k-cells of order 1 of these subcubes of Q� −Q�+j with translation
distance � 2−� . Since the mass of each Q� is one, it follows that

|Q� − Q�+j |�1 =

∣∣∣∣∣∣
2k j∑
i=1

(
Q�,i −

1
2kj

Q�+j

)∣∣∣∣∣∣
�1

�
2k j∑
i=1

∥∥∥∥Q�,i −
1
2kj

Q�+j

∥∥∥∥
1

� 2−� .

Thus Q� converges to a 1-natural, chain denoted αp , with |αp − Q� |�1 � 21−� . If we
let α be any simple k-vector with nonzero mass, the same process will produce a
chainlet αp ∈ N 1

k depending only on α and p, whose mass is the same as that of α
and supported in p. We obtain

αp = limQ� and |αp − Q� |�1 � 21−�M (α). (4·1)

Since V ec(Q�) = α for all �, it follows from Corollary 3·14 that V ec(αp ) = α. If ω
is a form of class B1 defined in a neighbourhood of p, then

∫
αp

ω = ω(p;α) by Corol-
lary 3·15.

Proposition 4·1. For each nonzero simple k-vector α and p ∈ R
n , there exists a

unique chainlet αp ∈ N 1
k such that V ec(αp ) = α, sptαp = {p} and

∫
αp

ω = ω(p;α) for
all forms ω of class B1k .

Proof. Let αp = limQ� be as in (4·1). It is unique by Corollary 3·8 since
∫

αp
ω =

ω(p;α) for all forms ω of class B1k . Since V ec(αp ) = α we know αp � 0. Since
sptQ� ⊂ Bp (2−�) then sptαp is either the empty set or the set {p}. By Propo-
sition 3·16 sptA = � =⇒ A = 0. Hence sptA = {p}.

The next proposition tells us that the particular shapes of the approximating poly-
hedral chains to αp do not matter. There is nothing special about cubes.

Proposition 4·2. Let {Pi} be a sequence of polyhedral k-chains such that

M (Pi) � C, sptPi ⊂ Bεi
(p), V ec(Pi) −→ α

for some C > 0 and εi → 0. Then Pi → αp in the 1-natural norm.

Proof. By (4·1) αp = limQi with V ec(Qi) = α. By Theorem 3·13 and Corollary 3·14

|Pi − Qi |�1 � M (V ec(Pi)− V ec(Qi)) + εiM (Pi − Qi)→ 0.
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Theorem 4·3. Fix p ∈ R

n . The linear transformation

V ec : N r
k −→ Λk (Rn )

is one-one on chainlets supported in p.

Proof. By Proposition 4·1 and Theorem 2·2 we only need to show that if A ∈ N r
k

which is supported in p and satisfies V ec(A) = 0, then A = 0. Let X be an r-natural
cochain. Define X0 by

φ(X0)(q)� φ(X)(p) for all q.

By Corollary 3·15
X · A = X0 · A = φ(X)(p) · V ec(A) = 0

implying A = 0.

In [H5] we develop the discrete theory more fully. The boundary of a k-element is
studied, as well as actions of other operators. The full calculus is developed starting
with k-elements replacing k-dimensional tangent spaces with k-elements.
A k-element chain Ṗ =

∑m
i=1 bi(αp )i is a chain of k-elements (αp )i with coefficients

bi in F. (Note that both the k-vector α and point p may vary with i.) Denote
the vector space of k-element chains in R

n by Ek . The next theorem is a quant-
ization of chainlets including, for example, fractals, soap films, light cones, and
manifolds.

Theorem 4·4 (Density of element chains). The space of k-element chains Ek is dense
in N r

k .

Proof. Let R be a unit k-cube in R
n centered at p with k-direction α. For each

j � 1 subdivide R into 2kj binary cubes Rj,i with midpoint pj,i and edge 2−j . Since
Rj,i = 2−jkQj (pj,i , α) by using (4·1) it follows that

|Rj,i − 2−jkαpj , i
|�1 � 2−jk |Qj (pj,i , α)− αpj , i

|�1
� 2−jk2−j+1 = 2−j+1M (Rj,i).

Let Ṗj =
∑m

i=1 2
−jkαpj , i

. Then

|R − Ṗj |�1 � 2−j+1
∑

M (Rj,i) = 2−j+1M (R) = 2−j+1.

This demonstrates that Ṗj
�1→ R. This readily extends to any cube with edge ε.

Use the Whitney decomposition to subdivide a k-cell τ into binary k-cubes. For
each j � 1, consider the finite sum of these cubes with edge � 2−j . Subdivide each of
these cubes into subcubes Qji with edge 2−j obtaining

∑
i Qji → τ in the mass norm

as j → ∞. Let α = V ec(τ ) and pji the midpoint of Qji. Then∣∣∣∣∣τ −
∑

i

αpj i

∣∣∣∣∣
�1

�
∣∣∣∣∣τ −

∑
i

Qji

∣∣∣∣∣
�1

+
∑

i

|Qji − αpj i
|�1 .

We have seen that the first term of the right-hand side tends to zero as j → ∞. By
(4·1) the second is bounded by

∑
i M (Qji)2−j+1 � M (τ )2−j+1 → 0. It follows that τ
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is approximated by k-element chains in the 1-natural norm. Thus k-element chains
are dense in Pk . The result follows since polyhedral chains are dense in chainlets.

Geometric Hodge star

Recall the Hodge star operator � of differential forms ω. We next define a geometric
star operator on chainlets. If α is a simple k-vector in R

n , then �α is defined to be
the simple (n − k)-vector with (n − k)-direction orthogonal to the k-direction of α,
with complementary orientation and with M (α) = M (�α). The operator � extends
to k-element chains Ṗ by linearity. It follows immediately that �ω(p; �α) = ω(p;α).
(Indeed, we prefer to define �ω in this way, as dual to the geometric �.) Hence∫

Ṗ
ω =

∫
�Ṗ

�ω. According to Theorem 3·9 | � Ṗ |�r = |Ṗ |�r . We may therefore define
�A for any chainlet A of class Nr as follows: by Theorem 4·4 there exists k-element
chains {Ṗj} such that A = limj→∞ Ṗj in the r-natural norm. Since {Ṗj} forms a
Cauchy sequence we know {�Ṗj} also forms a Cauchy sequence. Its limit in the
r-natural norm is denoted �A. This definition is independent of the choice of the
sequence {Ṗj}. (See Figure 3 for an example.)
Theorem 4·5 (Star theorem). � : N r

k → N r
n−k is a norm-preserving linear operator

that is dual to the Hodge star operator on forms. It satisfies �� = (−1)k (n−k )I and

∫
�A

ω = (−1)k (n−k )
∫

A

�ω

σ

∗ σ

Fig. 3. Hodge star of a 1-simplex in 3-space.
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for all A ∈ N r

k and all (n − k)-forms ω of class Br, r � 1, defined in a neighbourhood of
sptA.

Proof. We first prove this for k-elements αp. Since αp is a 1-natural chainlet, we
may integrate ω over it. Hence∫

αp

ω = ω(p;α) = �ω(p; �α) =
∫

�αp

�ω.

It follows by linearity that
∫

Ṗ
ω =

∫
�Ṗ

�ω for any k-element chain Ṗ . Let A be a
chainlet of class Nr . It follows from Theorem 4·4 that A is approximated by k-
element chains A = limj→∞ Ṗj in the r-natural norm. We may apply continuity of
the integral (Theorem 3·5) to deduce∫

A

ω =
∫

�A

�ω.

The Hodge star operator on forms satisfies � � ω = (−1)k (n−k )ω. Therefore∫
A

�ω =
∫

�A

� � ω = (−1)k (n−k )
∫

�A

ω.

Geometric coboundary of a chainlet

Define the geometric coboundary operator

♦ : N r
k → N r+1

k+1

by

♦� (−1)nk+n+1 � ∂ � .

Since ∂2 = 0 and �� = ±I it follows that ♦2 = 0.
The following theorem follows immediately from properties of boundary ∂ and

star �. Let δ � (−1)nk+n+1 �d� denote the coboundary operator on differential forms.

Theorem 4·6 (Coboundary operator theorem). ♦ : N r
k → N r+1

k+1 is a nilpotent lin-
ear operator satisfying:

(i)
∫
♦A

ω = (−1)n+1
∫

A
δω for all ω defined in a neighbourhood of sptA;

(ii) �∂ = (−1)n+k 2+1♦�; and
(iii) |♦A|�r � |A|�r −1 for all chainlets A ∈ N r

k .

Geometric interpretation of the coboundary of a chainlet

This has a geometric interpretation seen by taking approximations by polyhedral
chains. For example, the coboundary of 0-chain Q0 in R

2 with unit 0-mass and
supported in a single point {p} is the limit of 1-chains Pk depicted in Figure 4.
The coboundary of a 1-dimensional unit cellQ1 inR

3 is approximated by a “paddle
wheel”, supported in a neighbourhood of σ.
IfQ2 is a unit 2-dimensional square inR

3 then its coboundary♦Q2 is approximated
by the sum of two weighted sums of oppositely oriented pairs of small 3-dimensional
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P1 P2 Q0

Fig. 4. Geometric coboundary of a point Q0 as a limit of polyhedra Pk .

balls, one collection slightly above Q2, like a mist, the other collection slightly below
Q2. A snake approaching the boundary of a lake knows when it has arrived. A bird
approaching the coboundary of a lake knows when it has arrived.

Geometric Laplace operator

The geometric Laplace operator

� : N r
k −→ N r+2

k

is defined on chainlets by

� � (∂ +♦)2 = (∂♦ +♦∂).

Theorem 4·7 (Laplace operator theorem). Suppose A ∈ N r
k and ω ∈ Br+2

k is
defined in a neighbourhood of sptA. Then �A ∈ N r+2

k ,

|�A|�r+2 � |A|�r ,

and ∫
�A

ω = (−1)n+1
∫

A

∆ω.

The geometric Laplace operator on chainlets requires at least the 2-natural norm.
Multiple iterations of ∆ require the r-natural norm for larger and larger r. For
spectral analysis and applications to dynamical systems the normed linear space
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N∞

k � limr→∞ N r
k with the operator

� : N∞
k → N∞

k

should prove useful. (See [H5] for further discussion of the direct limit space N∞
k .)

Geometric representation of differentiation of distributions

An r-distribution on R
1 is a bounded linear functional on functions f ∈ Br

0 (R
1)

with compact support. Given a one-dimensional chainlet A of class Nr , define the
r-distribution θA by θA (f )�

∫
A

f (x)dx, for f ∈ Br
0 (R

1).

Theorem 4·8. θA is linear and injective. Differentiation in the sense of distributions
corresponds geometrically to the operator �∂. That is,

θ�∂A = (θA )′.

Proof. Suppose θA = θB . Then
∫

A
f (x)dx =

∫
B

f (x)dx for all functions f ∈ Br
0 . But

all 1-forms ω ∈ Br
1 can be written ω = fdx. By Corollary 3·8 chainlets are determined

by their integrals and thus A = B.
We next show that θ�∂A = (θA )′. Note that �(f (x)dx) = f (x). Thus

θ�∂A (f ) =
∫

�∂A
f (x)dx =

∫
∂A

f =
∫

A
df

=
∫

A
f ′(x)dx = θA (f ′) = (θA )′(f ).

5. Extensions of theorems of Green and Gauss

Curl of a vector field over a chainlet

Let S denote a smooth, oriented surface with boundary in R
3, and F a smooth

vector field defined in a neighbourhood of S. The usual way to integrate the curl
of a vector field F over S is to integrate the Euclidean inner product of curlF with
the unit normal vector field of S obtaining

∫
S

curlF · ndA. By the curl theorem this
integral equals

∫
∂S

F · dσ.

We translate this into the language of chainlets and differential forms using the
Euclidean inner product.
Let ω be the unique differential 1-form associated to F by way of the Euclidean

dot product. The differential form version of curlF is �dω. The unit normal vector
field of S can be represented as the chainlet �S. Thus the net curl of F over S
takes the form

∫
�S

�dω. By the Star theorem (Theorem 4·5) and Stokes’ theorem for
chainlets. (Theorem 1·2), this integral equals

∫
S

dω =
∫

∂S
ω. The vector version of the

right-hand integral is
∫

∂S
F · ds. The following extension of Green’s curl theorem to

chainlets of arbitrary dimension and codimension follows immediately from Stokes’
theorem and the Star theorem, and is probably optimal.

Theorem 5·1 (Generalized Green’s curl theorem). Let A be a k-chainlet of class Nr

and ω a differential (k − 1)-form of class Br defined in a neighbourhood of sptA. Then∫
�A

�dω =
∫

∂A

ω.
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Proof. This is a direct consequence of Theorems 1·2 and 4·5.

It is not necessary for tangent spaces to exist for A or ∂A for this theorem to hold.

Divergence of a vector field over a chainlet

The usual way to calculate divergence of a vector field F across a boundary of a
smooth surface D in R

2 is to integrate the dot product of F with the unit normal
vector field of ∂D. According to Green’s Theorem, this quantity equals the integral
of the divergence of F over D. That is,∫

∂D

F · ndσ =
∫

D

divFdA.

Translating this into the language of differential forms and chainlets, we replace the
unit normal vector field over ∂D with the chainlet �∂D and divF with the differential
form d � ω. We next give an extension of the Divergence theorem to k-chainlets in
n-space. As before, this follows immediately from Stokes’ theorem and the Star
theorem, and is probably optimal.

Theorem 5·2 (Generalized Gauss divergence theorem). Let A be a k-chainlet of
class Nr , and ω a differential (n − k + 1)-form of class Br+1 defined in a neighbourhood
of sptA. Then ∫

�∂A

ω = (−1)(k−1)(n−k−1)
∫

A

d � ω.

Proof. This is a direct consequence of Theorems 1·2 and 4·5.

As before, tangent vectors need not be defined for the theorem to be valid and it
holds in all dimensions and codimensions.

Manifolds

The diffeomorphic image φ∗C in Euclidean space R
n of a k-cell C in R

n supports a
unique k-chainlet for which integrals of k-forms coincide. A simple proof of this uses
the implicit function theorem. The image is locally the graph of a smooth function
and all such graphs naturally support chainlets. Therefore, every diffeomorphism
φ: U → V of open sets in R

n induces a linear map from chainlets in U to chainlets in
V , commuting with the boundary and pushforward operators. If W is a coordinate
domain in a smooth manifold M , it then makes sense to speak of chainlets in W ,
meaning the image of a chainlet in R

n . Define a chainlet in M to be a finite sum of
chainlets in coordinate domains. Thus to each smooth manifold corresponds a family
of Banach spaces of chainlets.
Stokes’ theorem follows by using partitions of unity and the theorem for R

n . With
metrics, star, curl, divergence, etc. may be introduced.
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