Embedded Continued Fractals and Their Hausdorff Dimension

J. Harrison

Abstract

A continued fractal $Q_{\alpha} \subset \mathbf{R}^{2}$ is a curve which is associated to a real number $\alpha \in[0,1]$. Properties of the continued fraction expansion of α appear as geometrical properties of Q_{α}. It is shown how number theoretic properties of α affect topological and geometric properties of Q_{α} such as existence, continuity, Hausdorff dimension, and embeddedness.

Introduction

A continued fractal is a curve Q_{α} in Euclidean space \mathbf{R}^{2} associated to a real number $\alpha \in[0,1]$. Properties of the continued fraction expansion of α appear as geometrical properties of Q_{α}. For example, we know that α is a quadratic irrational if and only if α has periodic continued fraction. Its continued fractal is self-similar [see H4]. In this paper we study how number theoretic properties of α affect topological and geometric properties of Q_{α} such as existence, continuity, Hausdorff dimension, and embeddedness.

Continued fractals appear as strange attractors in smooth dynamical systems. The first known example was the key element in the construction of a smooth $C^{2+\varepsilon}$ vector field on the three sphere S^{3} with no zeros and no closed integral curves (see [H1] and [H3]). Continued fractals can be Julia sets for diffeomorphisms f of the two-sphere S^{2}. They may be contrasted with the original fractal Julia sets of Julia, Fatou, Sullivan et al., which arise from noninvertible mappings (see [B], for example). The invertibility of f gives it a basic position in the world of two-dimensional dynamics.

1. The Embedding $\boldsymbol{h}: \boldsymbol{I} \rightarrow \mathbf{R}^{\mathbf{2}}$

We give two descriptions of h. The first is geometric. It provides a guide for programming computers to draw $h(I)$. The second is analytic and is used for proving the theorems.

[^0]Key words and phrases: Continued fractions, Diophantine type, Fractals, Hausdorff dimension.

Notation

Let \mathbf{R} denote the real numbers and $Q \subset \mathbf{R}$ the rationals. Let π_{1} and π_{2} denote the projections onto the first and second factors of \mathbf{R}^{2}, respectively. If $x \in \mathbf{R}$, define $\langle x\rangle=x(\bmod 1), \operatorname{int}(x)=x-\langle x\rangle$, and $\|x\|=$ distance to the nearest integer. Let $I=[0,1)$. Any function $h: I \rightarrow \mathbf{R}^{2}$ canonically induces a function $\tilde{h}: S^{1} \rightarrow$ $S^{1} \times \mathbf{R}^{1}$. (Define $h^{*}: \mathbf{R}^{1} \rightarrow \mathbf{R}^{2}$ by $h^{*}(x)=h(\langle x\rangle)+(\operatorname{int}(x), 0)$. This h^{*} induces a function $\tilde{h}: S^{1} \rightarrow S^{1} \times \mathbf{R}^{1}$ via the identifications $x \sim x+n$ on \mathbf{R}^{1} and $(x, y) \sim$ $(x+n, y)$ on \mathbf{R}^{2}.) For simplicity of notation, we work entirely with $h: I \rightarrow \mathbf{R}^{2}$. Fix $\alpha \in \mathbf{R}$ and define

$$
x_{n}=\langle n \alpha\rangle, \quad n \geq 0 .
$$

Normalizing Constants. Let $g: Z^{+} \rightarrow \mathbf{R}$ be a monotone decreasing function. For $k \geq 1$, we define two normalizing constants:

$$
g(0)=\sum(-1)^{n} g(n), \quad n=1, \ldots, k
$$

and

$$
m_{k}=1+\sum g(n), \quad n=0, \ldots, k
$$

The Computer Algorithm

The algorithm depends only on the sequence x_{n} and weights $g(n)$. Let $x_{n_{0}}=0$, $x_{n_{1}}, \ldots, x_{n_{k}}$ denote the first $k+1$ terms of the sequence x_{n}, ordered from left to right in I. Let

$$
I_{n_{t}}=\left(x_{n_{i}}, x_{n_{i+1}}\right), \quad i=0 \text { to } k-1 .
$$

In the plane, draw a horizontal line segment with left endpoint the origin $(0,0)$ and length $m_{k}\left|I_{n_{0}}\right|$. Attach to its right endpoint a line segment sloping backward with fixed, acute angle $\pi / 4$ and length $g\left(n_{1}\right) /(\cos \pi / 4)=\sqrt{2} g\left(n_{1}\right)$. We call this segment a diagonal, $\Delta_{k, n_{1}}$. It points down if n_{1} is even and up if n_{1} is odd. Attach to the free endpoint of $\Delta_{k, n_{1}}$, forming the angle $\pi / 4$, a horizontal line segment of length $m_{k}\left|I_{n_{1}}\right|$. Attach to the free endpoint of this second horizontal line a diagonal $\Delta_{k, n_{2}}$ of length $\sqrt{2} g\left(n_{2}\right)$ again sloping backward with angle $\pi / 4$ and up or down according to whether n_{2} is odd or even. Continue until k horizontal and diagonal lines have been drawn, one pair for each of the intervals $I_{n_{i}}$. Finally, draw a diagonal $\Delta_{k, 0}$ with endpoint the rightmost endpoint of the curve and length $\sqrt{2} g(0)$. Call the resulting curve Q_{k} (see Figs. 1-3).

We prove that for some α and g, there is a subsequence k_{i} such that the curves $Q_{k_{i}}$ converge to a limit curve Q. In this case we denote

$$
\Delta_{n}=\lim _{i \rightarrow \infty} \Delta_{k_{i}, n}
$$

An Analytical Definition of Q_{k}

Let $\rho: I \rightarrow I$ be a monotonic, continuous mapping such that $\rho^{-1}\left(x_{n}\right)$ is an interval $\Delta_{n}^{\prime}=\left[y_{n}^{\prime}, z_{n}^{\prime}\right], n \geq 0$, and ρ is $1-1$ on the complement of the $\left\{\Delta_{n}^{\prime}\right\}$. (If x_{n} is dense,

Fig. 1. Continued fractal for $\alpha=(\sqrt{5}-1) / 2=$ the Golden Mean, $g(n)=0.7 / n^{0.7}, n \leq 5000$.

Fig. 2. Continued fractal for $x_{n}=n \alpha, \alpha=\pi / 2$ (detail magnified 75 times), $g(n)=0.7 / n^{0.7}, n \leq 5000$.

Fig. 3. Details of continued fractals: (a) $\alpha=2^{1 / 4}$ (detail magnified 10 times), (b) $\alpha=2^{1 / 4}$ (detail magnified 2000 times), (c) $\alpha=7^{1 / 4}$ (full curve), (d) $\alpha=7^{1 / 4}$ (detail magnified 10 times).
then ρ is a Cantor function.) We define immersions $h_{k}: I \rightarrow \mathbf{R}^{2}, k \geq 1$, so that $h_{k}(I)=Q_{k}$ and $h_{k}\left(\Delta_{n}^{\prime}\right)=\Delta_{n}$. Let χ_{A} denote the standard characteristic function. We also need a function $d: I \rightarrow \mathbf{R}^{2}$ which adjusts the location of $h_{k}(x)$ for x in a segment Δ_{n}^{\prime}. It plays a very minor part in the estimates. (Indeed, the reader may assume $d(x)=0$ without much loss.)

$$
d(x)= \begin{cases}(-1)^{n} g(n) \frac{\left|x-y_{n}^{\prime}\right|}{\left|z_{n}^{\prime}-y_{n}^{\prime}\right|} & \text { if } x \in \Delta_{n}^{\prime} \\ 0 & \text { if } x \notin \bigcup \Delta_{n}^{\prime} .\end{cases}
$$

Definition. Let $W=[0, \rho(x))$. Define $h_{k}: I \rightarrow \mathbf{R}^{2}$ by

$$
\begin{gathered}
\pi_{1} h_{k}(x)=m_{k}|W|-\sum_{n=0}^{k} \chi_{W}\langle i \alpha\rangle g(n)-|d(x)|, \\
\pi_{2} h_{k}(x)=\sum_{2 n+1 \leq k} \chi_{W}\langle(2 n+1) \alpha\rangle g(2 n+1)-\sum_{2 n \leq k} \chi_{W}\langle 2 n \alpha\rangle g(2 n)-d(x) .
\end{gathered}
$$

Define

$$
h=\lim h_{k} \quad \text { as } \quad k \rightarrow \infty .
$$

It is not hard to see that if $\sum g(n)<\infty$, then h exists and is continuous. If $\sum g(n)=\infty$, then the construction poses more difficult and interesting problems. The critical exponent of the series $\sum g(n)$ is the Hausdorff dimension in the embedded examples. Hence, the "longer" the curve, the higher the Hausdorff dimension and the more "unfolded" the sequence x_{n} becomes.

Remark. $\quad Q_{k}$ may be defined for any 1-1 sequence x_{n} and weight function $g(n)$. In this paper we restrict ourselves to $x_{n}=\langle n \alpha\rangle, \bmod 1$.

2. Number Theory Prerequisites

Definition 2.1. Let a_{n} be a sequence of integers ≥ 1 and

$$
\frac{p_{n}}{q_{n}}=\left[\frac{1}{a_{2}+\frac{1}{a_{2}+\frac{1}{a_{3}+\cdots \frac{1}{a_{n}}}}}\right]
$$

where $\left(p_{n}, q_{n}\right)=1$. Then

$$
\alpha=\lim _{n \rightarrow \infty} \frac{p_{n}}{q_{n}}
$$

exists and is a positive irrational <1. We write $\alpha=\left(a_{1}, a_{2}, a_{3}, \ldots\right)$. The fractions p_{n} / q_{n} are rational convergents of α. The integers p_{n} and q_{n} satisfy the recursive relations:

$$
\begin{array}{ll}
p_{0}=0, & p_{1}=1, \quad \text { and } \quad p_{n}=a_{n} p_{n-1}+p_{n-2} \\
q_{0}=1, & q_{1}=a_{1}, \quad \text { and } \quad q_{n}=a_{n} q_{n-1}+q_{n-2} .
\end{array}
$$

Define $r_{0}=1, r_{1}=\alpha$, and $r_{n-1}=a_{n} r_{n}+r_{n+1}$.

The first lemma follows readily from these definitions.

Lemma 2.2.

(i) $q_{n} r_{n}+q_{n-1} r_{n+1}=1$.
(ii) $q_{n} p_{n-1}-p_{n} q_{n-1}=(-1)^{n}$.
(iii) $p_{n}-q_{n} \alpha=(-1)^{n+1} r_{n+1}$.
(iv) If $\alpha=[c, c, c, \ldots]$ then $r_{n}=\alpha^{n}$.

Lemma 2.3. If $\alpha \in \mathbf{R} \backslash Q$ has continued fraction expansion [a_{1}, a_{2}, \ldots], then for each $n \geq 1$

$$
\left|\alpha-\frac{p_{n}}{q_{n}}\right|=\frac{1}{a_{n}^{2}\left(a_{n+1}+\left(a_{n+2}, a_{n+3}, \ldots\right)+\left(a_{n}, \ldots, a_{1}\right)\right)},
$$

where p_{n} / q_{n} is the nth convergent of α.
Proof. See Lemma 1.5 of [HN].
Let $n \in \mathbf{Z}^{+}$. Define

$$
t_{n}=q_{n}+q_{n-1}-1
$$

We define W_{n} to be the collection of intervals in l complementary to $\left\{\langle 0 \alpha\rangle,\langle 1 \alpha\rangle, \ldots,\left\langle t_{n} \alpha\right\rangle\right\}$: each of these intervals is a W_{n}-interval and $\langle j \alpha\rangle, 0 \leq j \leq t_{n}$, is a W_{n}-point. By Lemma 2.2 (iii) $\left\langle q_{2 n+1} \alpha\right\rangle$ converges monotonically to 0 and $\left\langle q_{2 n} \alpha\right\rangle$ converges monotonically to 1 . Let $I_{0}(n)$ be the W_{n}-interval with endpoints $\left\langle q_{n-1} \alpha\right\rangle$ and an endpoint of I and $J_{0}(n)$ the W_{n}-interval bounded by $\left\langle q_{n} \alpha\right\rangle$ and the other endpoint of I. Define

$$
R_{\alpha}(x)=x+\alpha \quad(\bmod 1)
$$

Lemma 2.4. The collection W_{n} consists of the first q_{n} iterates of $I_{0}(n)$ and the first q_{n-1} iterates of $J_{0}(n)$ under the transformation R_{α}. In particular, all W_{n}-intervals have length r_{n} or r_{n+1}.

Proof. This follows from Lemma 2.2(i). (See also Lemma 1.5 of [H2].)

Definition. An irrational number α satisfies a Diophantine condition σ if there exists $c>0$ such that

$$
\left|\alpha-\frac{p}{q}\right|>\frac{c}{q^{1+\sigma}} \quad \text { for every } \quad \frac{p}{q} \in Q
$$

α has Diophantine type δ if

$$
\delta=\underline{\lim }\{\sigma: \alpha \text { satisfies a Diophantine condition } \sigma\}
$$

Estimates on the Discrepancy of $\langle n \alpha\rangle$
The remainder of this section is devoted to estimates of "weighted discrepancy" which are fundamental to the study of continued fractals.

Theorem 2.5

(i) Let $\alpha \in \mathbf{R} \backslash Q$ and p / q be a rational convergent of α. If J is an interval of I with $|J|=\|q \alpha\|$, then for every $0 \leq s<t$

$$
\left|\sum_{i=s}^{1-1}\left(\chi_{J}\langle i \alpha\rangle-|J|\right)\right|<2
$$

(ii) Assume $\alpha \in \mathbf{R} \backslash Q$ has Diophantine type δ and $\varepsilon>0$. There exists $C>0$ such that if U is an interval of I and $0 \leq s<t$, then

$$
\left|\sum_{i=s}^{t-1}\left(\chi_{U}\langle i \alpha\rangle-|U|\right)\right|<C(t-s)^{1-(1 / \delta)+\varepsilon} .
$$

Proof. For (i), see [K] or Theorem 2.2(i) of [H2]. (ii) follows immediately from Theorem 3.2 of [KN, p. 123].

The next lemma is used in weighted versions of Theorem 2.5 .

Lemma 2.6. Let $C>0$ and $f(i)$ be a monotone increasing sequence of positive real numbers. Let $b(i)$ be a sequence of real numbers satisfying

$$
\left|\sum_{i=j}^{j+N-1} b(i)\right|<C f(N) \quad \text { for all } j, N \geq 0
$$

Let $g(i)>0$ be a monotone decreasing sequence. Then:

$$
\begin{equation*}
\left|\sum_{i=s}^{i-1} b(i) g(i)\right| \leq C f(t-s) g(s) \quad \text { for all } \quad 0 \leq s \leq t \tag{i}
\end{equation*}
$$

(ii) Define n and r by $2^{n} \leq t-1<2^{n+1}$ and $2^{r} \leq s<2^{r+1}$. Then

$$
\left|\sum_{i=s}^{t-1} b(i) g(i)\right| \leq C\left|\sum_{\lambda=r}^{n} f\left(2^{\lambda}\right) g\left(2^{\lambda}\right)\right| .
$$

Proof. This is essentially "summation by parts." (For details, see Proposition 2.3 of [H2].)

Corollary 2.7.

(i) Let $\alpha \in \mathbf{R} \backslash Q$. If $J \subset I$ is an interval with $|J|=\left\|q_{n} \alpha\right\|$ and $g: \mathbf{Z} \rightarrow \mathbf{R}^{+}$is monotone decreasing, then

$$
\left|\sum_{i=1}^{t-1}\left(\chi_{J}\langle i \alpha\rangle-|J|\right) g(i)\right|<2 g(s) .
$$

(ii) Assume $\alpha \in \mathbf{R} \backslash Q$ has Diophantine type δ. Let $\varepsilon>0$ and $\eta=1-(1 / \delta)+\varepsilon$. There exists $C>0$ such that if U is an arbitrary interval of I and $g(i) \leq 1 / i^{\gamma}$ where $\gamma>\eta+1 / 2 \delta$, then

$$
\left|\sum_{i=s}^{1-1}\left(X_{U}\langle i \alpha\rangle-|U|\right) g(i)\right|<C s^{\eta-\gamma}
$$

Proof. (i) This follows immediately from Kesten's theorem (Theorem 2.5(i)) and summation by parts (Theorem 2.6(i)).
(ii) Let C_{1} be the constant depending on α and ε obtained from Theorem 2.5(ii). Apply Lemma 2.6(ii) to $b(i)=\chi_{U}\langle i \alpha\rangle-|U|, g(i) \leq 1 / i^{\gamma}$, and $f(i)=i^{\eta}$ to obtain

$$
\left|\sum_{i=s}^{t-1} b(i) g(i)\right|<C_{1}\left|\sum_{\lambda=r}^{n} 2^{\lambda(\eta-\gamma)}\right|<C_{1} C_{2} s^{\eta-\gamma}
$$

Note that C_{2} depends on δ since $1 / 2 \delta<\lambda-\eta$. Let $C=C_{1} C_{2}$. Then C depends on α and ε.

3. Sufficient Conditions for Q to Exist

Most irrational numbers are Diophantine. If α has Diophantine type δ we show that the curve Q generated by a monotone function $g(n) \leq c / n^{\gamma}$ and α exists and is continuous for $\gamma>1-1 / 2 \delta$. The Hausdorff dimension of Q is bounded above by $1 / \gamma$ if $\frac{1}{2}<\gamma<1$ and by 1 if $\lambda \geq 1$. This bound is sharp since there are examples with Hausdorff dimension $1 / \gamma$ for $\frac{1}{2}<\gamma \leq 1$.

We prove that the subsequence of $Q_{t_{k}}$ converges to a limit curve where $t_{k}=q_{k}+q_{k-1}-1$. Henceforth, for simplicity of notation, set

$$
\begin{aligned}
Q_{k} & =Q_{t_{k}}, \\
h_{k} & =h_{t_{k}}, \\
m_{k} & =m_{t_{k}} .
\end{aligned}
$$

Theorem 3.1. Let $\alpha \in \mathbf{R} \backslash Q$ have Diophantine type δ. Assume $\gamma>1-1 / 2 \delta$. Let Q_{k} be the sequence of curves generated by $g(n) \leq c / n^{\gamma}$ and α. Then $Q=\lim Q_{t_{k}}$ exists and is continuous.

Proof. Recall that $Q_{k}=h_{k}(I)$. Let U be an interval in I with endpoints $p<q$. Define

$$
\begin{aligned}
H_{k} & =H_{k}(U) \\
V_{k} & =\pi_{1} h_{k}(q)-\pi_{1} h_{k}(p)
\end{aligned}=\pi_{2} h_{k}(q)-\pi_{2} h_{k}(p) .
$$

See Fig. 4.
In order to prove that h_{k} converges uniformly to a continuous function h, it suffices to show that H_{k} and V_{k} converge uniformly over intervals of I. Let C be the constant of Theorem 2.7(ii). Recall

$$
\Delta_{n}^{\prime}=\left(y_{n}^{\prime}, z_{n}^{\prime}\right)=\rho^{-1}\langle n \alpha\rangle
$$

In order to prove Theorem 3.1 we verify the uniform convergence of H_{k} and V_{k} over two basic types of intervals U with endpoints $p<q$:

$$
\begin{align*}
& p \notin \bigcup\left[y_{n}^{\prime}, z_{n}^{\prime}\right) \text { and } \quad q \notin \bigcup\left(y_{n}^{\prime}, z_{n}^{\prime}\right] ; \tag{3.1}\\
& {[p, q] \subset\left[y_{n}^{\prime}, z_{n}^{\prime}\right] \quad \text { for some } \quad n \in \mathbf{Z} .} \tag{3.2}
\end{align*}
$$

Uniform convergence over all intervals of I follows.
In the hypotheses we have $\gamma>1-1 / 2 \delta, \delta \geq 1$. Choose $\varepsilon>0$ with

$$
\gamma>1+\varepsilon-1 / 2 \delta
$$

Define $\eta=1+\varepsilon-1 / \delta$.

Preliminary Estimate. Let $c=1$. Recall the normalizing constant

$$
m_{k}=1+\sum g(n)+(-1)^{n} g(n), \quad n=1, \ldots, t_{k} .
$$

Then

$$
m_{k}<1+\frac{t_{k}^{1-\gamma}}{1-\gamma}<1+\frac{2 q_{k}^{1-\gamma}}{1-\gamma} .
$$

Since $r_{k} q_{k}<1$ (by Lemma 2.2) it follows that $m_{k} r_{k} \rightarrow 0$ as $k \rightarrow \infty$. Therefore, for $\beta>0$, there exists N such that if $t_{k} \geq N$, then

$$
\max \left\{m_{k} r_{k}, 2 C t_{k}^{\eta-\gamma}, 2 t_{k}^{-\gamma}\right\} \leq \frac{\beta}{3}
$$

Proof of the Uniform Convergence of H_{k}. Let U be an interval of type (3.1) with endpoints $p<q$. Then $d(q)=0$. Let $W=\operatorname{int}(\rho(U))$ and $N<t_{j}<t_{k}$. It follows that

$$
\begin{equation*}
\left(H_{k}(U)=1+\sum_{n=0}^{t_{k}} g(n)\right)|W|-\sum_{n=m}^{t_{k}} \chi_{W}\langle n \alpha\rangle g(n), \tag{3.3}
\end{equation*}
$$

where $m=\min \{n:\langle n \alpha\rangle \in \operatorname{int}(W)\}$. (Whenever $m>t_{k}$, the last sum is zero.) Assume $m \leq t_{j}<t_{k}$. Apply Theorem 2.7(ii). Then

$$
\left|H_{j}-H_{k}\right|=\left|\sum_{n=t_{j}}^{i_{k}}\left(|W|-\chi_{W}\langle n \alpha\rangle\right) g(n)\right|<C t_{j}^{n-\gamma}<\beta .
$$

Assume $t_{j}<t_{k}<m$. Then $|W| \leq t_{k}$. Since the last sum in (3.3) is 0 for both H_{j} and H_{k} we have

$$
\left|H_{j}-H_{k}\right|=\left|m_{j}-m_{k}\right||W|<m_{k} t_{k}<\beta .
$$

If $t_{j}<m \leq t_{k}$, let l satisfy $t_{j} \leq t_{l}<m \leq t_{l+1} \leq t_{k}$. Then $|W| \leq r_{l}$. The last sum in (3.3) for H_{j} is zero so

Thus H_{k} converges uniformly over the intervals U of type (3.1).
Now assume $U \subset \Delta_{n}^{\prime}$. In general, if $n \leq t_{l}$ then $\left|H_{l}\right| \leq g(n)$. If $n>t_{l}$, then $\left|H_{l}\right| \leq m_{l} r_{i}$. Therefore, if $t_{j}<t_{k}<n$,

$$
\begin{aligned}
\left|H_{j}-H_{k}\right| & <\max \left\{\left|H_{j}\right|,\left|H_{k}\right|\right\}, \\
& \leq \max \left\{m_{j} r_{j}, m_{k} r_{k}\right\} \\
& <\beta .
\end{aligned}
$$

If $n \leq t_{j}<t_{k}$, then $\left|H_{j}-H_{k}\right|=0$. Finally, if $t_{j}<n \leq t_{k}$,

$$
\begin{aligned}
\left|H_{j}-H_{k}\right| & <\max \left\{\left|H_{j}\right|,\left|H_{k}\right|\right\} \\
& \leq \max \left\{m_{j} r_{j}, g(n)\right\} \\
& <\max \left\{m_{j} r_{j}, g\left(t_{j}\right)\right\} \\
& <\beta .
\end{aligned}
$$

Proof of Uniform Conference of V_{n}. Let $U \subset I$ be an interval of type (3.1) and $W=\operatorname{int}(\rho(U))$. Then

$$
\begin{equation*}
V_{k}=\sum_{2 n+1 \leq \iota_{k}} \chi_{w}\langle(2 n+1) \alpha\rangle g(2 n+1)-\sum_{2 n \leq t_{k}} \chi_{w}\langle 2 n \alpha\rangle g(2 n) . \tag{3.4}
\end{equation*}
$$

Let $N<t_{j}<t_{k}$. Then

$$
\begin{aligned}
\left|V_{j}-V_{k}\right|= & \left|\sum_{t_{j}<2 n+1 \leq t_{k}} \chi_{W}\langle(2 n+1) \alpha\rangle g(2 n+1)-\sum_{t_{j}<2 n \leq t_{k}} \chi_{W}\langle 2 n \alpha\rangle g(2 n)\right| \\
= & \mid \sum_{t_{j}<2 n+1 \leq t_{k}}\left(\chi_{W}\langle(2 n+1) \alpha\rangle-|W|\right) g(2 n+1) \\
& +\sum_{t_{j}<2 n \leq t_{k}}\left(|W|-\chi_{W}\langle 2 n \alpha\rangle\right) g(2 n) \\
& +|W| \sum_{t_{j}<2 n, 2 n+1 \leq t_{k}}(g(2 n+1)-g(2 n)) \mid
\end{aligned}
$$

Apply the triangle inequality and Theorem 2.7 (ii) to estimate the first two sums. (The third sum is bounded by $2 g(j)$ since $|W|<1$.) Thus

$$
\left|V_{j}-V_{k}\right|<2 C t_{j}^{\eta-\gamma}+2 g\left(t_{j}\right)<\beta .
$$

Suppose $U \subset \Delta_{n}^{\prime}$. Then V_{l} is zero for $t_{l}<n$. If $n \leq t_{l}$ then V_{l} is a constant depending only on U. It is bounded by $g(n)$. Therefore, if $n \leq t_{j}<t_{k}$ or $t_{j}<t_{k}<n$, then $\left|V_{j}-V_{k}\right|=0$. If $t_{j}<n \leq t_{k}$, then $\left|V_{k}-V_{j}\right|=\left|V_{k}\right|<g(n)<g(j)<\beta$. Hence V_{k} converges uniformly.

The proof for arbitrary $c>0$ is similar.

4. Embedded Continued Fractals and Number Theory

It is more delicate to show Q is embedded. In [H2] there is a proof for $\alpha=\sqrt{2}-1$. Here, we give a new proof for a class of numbers containing α. The definition of g given below makes it possible to provide sharp estimates for the embedding.

Definition of g. Let $\alpha \in \mathbf{R} \backslash Q, c>0$, and $\frac{1}{2}<\gamma<1$. Define

$$
g(n)=c \alpha^{k y} \quad \text { for } \quad q_{k-1} \leq n<q_{k} .
$$

Theorem 4.1. Assume $\alpha=[N, N, N, \ldots], N$ even. There exists constants $c_{N}>0$ and $\gamma_{N}<1$ such that if $0<c<c_{N}$ and $\gamma_{N}<\gamma<1$, then $h=h_{\gamma, c} ; I \rightarrow \mathbf{R}^{2}$ is an embedding onto Q.

Fig. 4

Proof. The idea of the proof is fairly simple. The line segment I is covered by W_{k}-intervals. Let J be one of these. We may assume $|J|=\alpha^{k}$, otherwise it appears as a W_{k+1}-interval. See Lemmas 2.4 and 2.2(iv). Assume that J includes the endpoint with larger index, n, say. Then $q_{k-1} \leq n<q_{k}$. Let $J^{\prime}=\rho^{-1}(J)$. Define $H=H\left(J^{\prime}\right)$ and $V=V\left(J^{\prime}\right)$ as in the previous section. If $H>V$ then the two diagonals attached to the endpoints of $h\left(J^{\prime}\right)$ are disjoint. By induction the curve is embedded (see Fig. 4).

Let W denote the covering of I by W_{k}-intervals, $k \geq 1$.

Theorem 4.2.

(i) There exist $c_{N}>0$ and $\frac{1}{2}<\gamma_{N}<1$ so that $|H / V|>1$ for all $0<c<c_{N}$, $\gamma_{N}<\gamma<1$ and $J \in W$.
(ii) $|H / V|$ is uniformly bounded: given c and γ, there exists $L>0$ with $|H / V|<L$, for all $J \in W$.

Remark. We only need Theorem 4.2(i) for this proof; Theorem 4.2(ii) is needed later in the estimates for the Hausdorff dimension of Q.

Proof of Theorem 4.2. It follows from Theorems 3.1 and 3.3 that $H=\alpha^{k}+A+B$ where

$$
A=\alpha^{k} \sum_{i=1}^{q_{k-1}-1} g(i)
$$

and

$$
B=\sum_{i=q_{k-1}}^{\infty}\left(|J|-\chi_{J}(\langle i \alpha\rangle)\right) g(i)
$$

By the choice of g,

$$
A=c \alpha^{k}\left[\left(q_{1}-q_{0}\right) \alpha^{\gamma}+\left(q_{2}-q_{1}\right) \alpha^{2 \gamma}+\cdots+\left(q_{k-1}-q_{k-2}\right) \alpha^{(k-1) \gamma}\right] .
$$

To compute A, we need some simple, preliminary facts: by Lemmas 2.2(iii) and 2.3,

$$
\alpha^{n+1}=\left|q_{n} \alpha-p_{n}\right|=\frac{1}{q_{n}\left(N+\alpha+p_{n} / q_{n}\right)}=\frac{1}{q_{n}\left(N+2 \alpha+\varepsilon_{n}\right)},
$$

where $\left|\varepsilon_{n}\right|<2 / q_{n}^{2}$. Therefore

$$
q_{n}=\frac{\alpha^{-(n+1)}}{\left(N+2 \alpha+\varepsilon_{n}\right)}
$$

since $\alpha=[N, N, N, \ldots], \alpha^{-1}=N+\alpha$. Hence

$$
q_{n}-q_{n-1}=\frac{\alpha^{-n}(N+\alpha-1)\left(1+\beta_{n}\right)}{(N+2 \alpha)}
$$

where $\beta_{n} \rightarrow 0$. Let $\Delta=c \alpha^{k \gamma}$. It is straightforward to verify that as $k \rightarrow \infty$

$$
\begin{equation*}
\frac{A}{\Delta} \rightarrow \frac{N+\alpha-1}{(N+2 \alpha)\left(\alpha^{\gamma-1}-1\right)} \tag{4.1}
\end{equation*}
$$

We next estimate B; let $b(i)=|J|-\chi_{J}(\langle i \alpha\rangle)$. We apply summation by parts:

$$
\begin{aligned}
B=\lim \left[b\left(q_{k-1}\right)\right. & \left.+\cdots+b\left(q_{m}\right)\right] g\left(q_{m}\right)+b\left(q_{k-1}\right)\left[g\left(q_{k-1}\right)-g\left(q_{k-1}+1\right)\right] \\
& +\left[b\left(q_{k-1}\right)+b\left(q_{k-1}+1\right)\right]\left[g\left(q_{k-1}+1\right)-g\left(q_{k-1}+2\right)\right] \\
& +\cdots+\left[b\left(q_{k-1}\right)+\cdots+b\left(q_{m}-1\right)\right]\left[g\left(q_{m}-1\right)-g\left(q_{m}\right)\right] .
\end{aligned}
$$

Now $\sum b(i)$ is bounded (according to Kesten's Theorem 2.5(i)) and $g\left(q_{m}\right) \rightarrow 0$, so the first term vanishes in the limit. Note that $g(i)-g(i-1)=0$ unless $i=q_{j}$. Also, $g\left(q_{m}-1\right)=g\left(q_{m-1}\right)$. Hence,

$$
\begin{aligned}
B=\left[b\left(q_{k-1}\right)\right. & \left.+\cdots+b\left(q_{k}-1\right)\right]\left[g\left(q_{k-1}\right)-g\left(q_{k}\right)\right] \\
& +\left[b\left(q_{k-1}\right)+\cdots+b\left(q_{k+1}-1\right)\right]\left[g\left(q_{k}\right)-g\left(q_{k+1}\right)\right]+\cdots .
\end{aligned}
$$

Next we substitute the identity $g\left(q_{n-1}\right)-g\left(q_{n}\right)=\alpha^{n \gamma}\left(1-\alpha^{\gamma}\right)$. Assume that k is
even. According to Theorem 4.2 of [HN], we know

$$
\sum_{i=q_{k-1}}^{q_{n}-1} b(i)=\sum_{i=0}^{q_{n}-1} b(i)-\sum_{i=0}^{q_{k-1}-1} b(i)=q_{k-1}\left(\pm \alpha^{n+1}-\alpha^{k}\right),
$$

+ if n is even, - if n is odd. If k is odd, we get

$$
q_{k-1}\left(\pm \alpha^{n+1}-\alpha^{k}\right)=q_{k-1}\left(\pm \alpha^{n+1}-\alpha^{k}\right)
$$

- if n is even, + if n is odd. We write these in terms of α, using the above identities and get

$$
\sum b(i)=\frac{\left(-1 \pm \alpha^{n+1-k}\right)}{\left(N+2 \alpha+\varepsilon_{k}\right)}
$$

+ if and only if k and n have the same sign. Putting all of this together yields

$$
\begin{aligned}
B= & \frac{\alpha^{\gamma}-1}{N+2 \alpha+\varepsilon_{k}}\left[(-\alpha+1) \alpha^{\gamma k}+\left(-\alpha^{3}+1\right) \alpha^{\gamma(k+2)}+\cdots+\left(\alpha^{2}+1\right) \alpha^{\gamma(k+1)}\right. \\
& \left.+\left(\alpha^{4}+1\right) \alpha^{\gamma(k+3)}+\cdots\right] \\
= & {\left[\frac{\alpha^{\gamma}-1}{N+2 \alpha+\varepsilon_{k}}\right]\left[\frac{-\alpha^{1+\gamma k}+\alpha^{2+\gamma(k+1)}}{1-\alpha^{2+2 \gamma}}+\frac{\alpha^{\gamma k}}{1-\alpha^{\gamma}}\right] . }
\end{aligned}
$$

Thus

$$
\begin{equation*}
\frac{B}{\Delta} \rightarrow \frac{\alpha-\alpha^{\gamma}\left(\alpha^{2}+\alpha\right)+2 \alpha^{2+2 \gamma}-1}{(N+2 \alpha)\left(1-\alpha^{2+2 \gamma}\right)} . \tag{4.2}
\end{equation*}
$$

Last of all, we estimate V / Δ. Recall (3.4). We have

$$
V=\sum_{n=q_{k-1}}^{\infty}\left[\left(\chi_{J}\langle n \alpha\rangle, n \text { odd }\right)-\left(\chi_{J}\langle n \alpha\rangle, n \text { even }\right)\right] g(n) .
$$

Since N is even, the sequence q_{n} alternates parity, starting with $q_{0}=1, q_{1}=2$, $q_{n+1}=2 q_{n}+q_{n-1}$. Therefore, if $k-1$ is odd, q_{k-1} is even. Thus the diagonals attached to J are parallel. This will pose no difficulty for the embedding. (See Fig. 5.) We study the case with $k-1$ even:

$$
|V / c|=\alpha^{k \gamma}-2\left[\alpha^{(k+1) \gamma}+\alpha^{(k+3) \gamma}+\cdots\right]=\alpha^{k \gamma}-2 \alpha^{(k+1) \gamma} /\left(1-\alpha^{2 \gamma}\right) .
$$

Hence $|V / \Delta| \rightarrow 1-2 \alpha^{\gamma} /\left(1-\alpha^{2 \gamma}\right)$.
Let γ_{N} be the solution for the limit equation $H / V=1$. As $N \rightarrow \infty, \gamma_{N} \rightarrow 1$. If $\gamma_{N}<\gamma<1$, there is k_{N} such that if $k>k_{N}$, then $|H / V|>1$. The choice of the constant c affects H for k small. Recall

$$
H / \Delta=\left(\alpha^{k}+A+B\right) / \Delta=\alpha^{k(1-\gamma)} / c+(A+B) / \Delta>\alpha^{k(1-\gamma)} / c
$$

We know that $|V / \Delta|<C$ for some $C>0$ and all $k>0$. It suffices to find c so that

$$
\alpha^{k(1-\gamma)} / c>C \quad \text { for } \quad k \leq k_{N} .
$$

Fig. 5
It will follow that $|H / V|>1$ for all k and that h is an embedding. Fix $c_{N}=$ $\alpha^{k} N^{(1-\gamma)} / C$. So $\alpha^{k(1-\gamma)} / c_{N}>C$ for $k \leq k_{N}$. Then $|H / V|>1$ for $\gamma_{N}<\gamma<1$ and $0<c<c_{N}$. It is easy to see that $|H / \Delta|$ is uniformly bounded for fixed c and γ. Hence $|H / V|$ is uniformly bounded.

This completes Theorem 4.2.
Remarks. The constant γ_{N} is sharp. That is, if $\gamma<\gamma_{N}$, then $H / \Delta>1$ for k sufficiently large. It follows that Q is not embedded for such γ.

Proof of Embedding. Begin with γ_{N} and c_{N} of Theorem 4.2. Let J be a W_{k}-interval and $H=H(J), V=V(J)$, and $\Delta=\Delta(J)$ be defined as above. Recall that J contains the endpoint with the largest index. We have $|H / V|>1$. Let $T=T(J)$ be the parallelogram determined by the endpoints of $h(\operatorname{int}(J))$, see Fig. 5. By Theorem 4.2, the smaller diagonal attached to the end of $h(\operatorname{int}(J))$ is contained in T. This is the fundamental geometric observation for it implies that $h(J) \subset T$.

Let x and $y \in I$. Let k be the first integer such that $\rho(x)$ and $\rho(y)$ are separated by a W_{k}-point. Then $\rho(x) \in J_{1}$ and $\rho(y) \in J_{2}$ where J_{1} and J_{2} are W_{k}-intervals. The chain of W_{k}-parallelograms T are disjoint by Theorem 4.2. Therefore $h(x) \neq h(y)$.

5. Hausdorff Dimension of Q

Let Q be the curve generated by $\alpha=[N, N, N, \ldots]$, and let c and γ be as in the previous section.

Definition. Given a metric space X, for each nonnegative real number s there
is a corresponding s-dimensional Hausdorff measure μ_{s} defined as follows. Let $B \subset X$ be an arbitrary set. The zero-dimensional measure $\mu_{0} B$ is the number of points in B. For $s>0, \alpha>0$, let

$$
\mu_{s, \alpha} B=\inf \sum_{i}\left[\operatorname{diam}\left(B_{i}\right)\right]^{s},
$$

where the infimum is taken over all covers $\left\{B_{i}\right\}$ of B such that $\operatorname{diam}\left(B_{t}\right)<\alpha$ for each i. Then

$$
\mu_{s} B=\lim _{q \rightarrow 0^{+}} \mu_{s, \alpha} B .
$$

A set B has Hausdorff dimension s iff $\mu_{r} B=0$ for all $r>s$ and $\mu_{r} B=\infty$ for all $r<s$. If $\operatorname{dim}(B)=s$, then $\mu_{s} B$ is the Hausdorff measure of B within its dimension.

Let Γ denote the Cantor set $Q \backslash \bigcup\left\{\right.$ int $\left.\Delta_{n}\right\}$.
Theorem 5.1. The Hausdorff dimension of Γ is $1 / \gamma$. The Hausdorff measure of Γ within its dimension is a positive, real number.

Proof. Let $I_{0}=I \backslash\{\langle n \alpha\rangle\}$. Define $g: I_{0} \rightarrow \mathbf{R}^{2}$ by $g=h \circ \rho^{-1}$.

Claim. There exist constants A_{1}, A_{2}, A_{3}, and K_{1} such that:
(1) If J is a W_{k}-interval, $k \geq 0$, then

$$
A_{2}|J|^{\gamma}<|g(J)|<A_{1}|J|^{\gamma} .
$$

(2) If J is an arbitrary interval of S^{1}, then

$$
|g(J)|>A_{3}|J|^{\gamma} .
$$

(3) If $p, q \in Q$, the arc connecting p and q is contained in a disk of radius $K_{1} d(p, q)$. Hence if $B \subset \mathbf{R}^{2}$ is a disk with $B \cap g\left(I_{0}\right) \neq \varnothing$, then

$$
\operatorname{cl}\left(g^{-1}\left(K_{1} B\right)\right) \supset \text { interval } \supset g^{-1}(B)
$$

Proof of Claim. (1) By (4.1) and (4.4), $H \rightarrow C \Delta$ for some $C>0$. The definitions imply $\Delta=c \alpha^{k \gamma}=c|J|^{\gamma}$. Finally, Theorem 4.2 implies $|H / V|$ is bounded away from 0 and ∞. This establishes (1).
(2) Let I be a W_{k}-interval contained in J, where k is minimal. Then

$$
(2 N+1)|I|>|J|>|I|
$$

since any $2 N+1$ adjacent W_{k}-interval contains a W_{k-1}-interval. Then

$$
|g(J)| \geq|g(I)|>A_{2}|I|^{\gamma}>A_{3}|J|^{\gamma}
$$

for some A_{3}.
(3) The proof that Q is embedded proves this claim (3) that Q is a quasi-circle: let $p=h(x)$ and $q=h(y) \in Q$. As before $h(x)$ lies in $T\left(J_{1}\right)$ or its left attached diagonal and $h(y)$ lies in $T\left(J_{2}\right)$ or its right attached diagonal. The arc connecting $h(x)$ and $h(y)$ is contained in the union D of these sets. Then there is a constant K_{1} such that $d(x, y)>K_{1}|D|$.

By (1) the cover $\bigcup g(J), J \in W_{k}$, satisfies

$$
\sum|g(J)|^{1 / \gamma} \leq A_{1}^{1 / \gamma} \sum|J| \leq A_{1}^{1 / \gamma} .
$$

Hence $\mu_{1} / \gamma\left(g\left(I_{0}\right)\right)<\infty$ implying

$$
\operatorname{dim}\left(g\left(I_{0}\right)\right) \leq \frac{1}{\gamma}
$$

Suppose that $\operatorname{dim}\left(g\left(I_{0}\right)\right) \leqslant 1 / \gamma$. Then $\mu_{1} / \gamma\left(g\left(I_{0}\right)\right)=0$. Then there is a cover of $g\left(I_{0}\right)$ by disks B_{i} such that $\sum\left|B_{i}\right|^{1 / \gamma}<\delta$ for any δ. Notice that $\sum\left|K_{i} B_{i}\right|^{1 / \gamma}<K_{1}^{1 / \gamma} \delta$. Consider the cover $\left\{K_{1} B_{i}\right\}$. Using (3) for each i we pick J_{i} such that

$$
g^{-1}\left(B_{i}\right) \subset J_{i} \subset \operatorname{cl}\left(g^{-1}\left(K_{1} B_{i}\right)\right)
$$

Therefore by (2) we have

$$
A_{3}\left|J_{i}\right|^{\gamma}<\left|g\left(J_{i}\right)\right| \leq K_{i}\left|B_{i}\right| .
$$

Hence $\left|J_{i}\right|<\left(K_{1}\left|B_{i}\right| / A_{3}\right)^{1 / \gamma}$. Since $\bigcup J_{i}$ covers I_{0} we have

$$
1 \leq \sum\left|J_{i}\right| \leq\left(K_{1} / A_{3}\right)^{1 / \gamma} \sum\left|B_{i}\right|^{1 / \gamma}
$$

This contradicts the assumption that $\mu_{1 / \gamma}=0$. From the preceding paragraph we have $0<\mu_{1 / \gamma}\left(g\left(I_{0}\right)\right)<\infty$. The theorem follows since $\operatorname{cl}\left(g\left(I_{0}\right)\right)=\Gamma$.

Acknowledgment. This research was partially supported by Air Force Grant No. F49620-87-C-0118.

References

[B] P. Blanchard (1984): Complex analytic dynamics on Riemann sphere. Bull. Amer. Math. Soc., 11:85-141.
[HW] G. H. Hardy, E. M. Wright (1974): Introduction to the Theory of Numbers. Oxford: Clarendon Press.
[H1] J. HARrison (1985): Continued fractals and the Seifert conjecture, Bull. Amer. Math. Soc., 13:147-153.
[H2] J. Harrison (1988): Denjoy fractals. Topology.
[H3] J. Harrison (1988): $C^{2+\varepsilon}$ Counterexamples to the Seifert conjecture. Topology.
[H4] J. HARRISON (to appear): Geometry of algebraic continued fractals. Proc. London Math. Soc.
[HN] J. HARRISON, A. NORTON (to appear): Diophantine type and the Denjoy-Koksma inequality.
[K] H. KESTEN (1966/67): On a conjecture of Erdös and Szusz related to uniform distribution mod 1, Arithmetica, 12:193-212.
[Kh] Khintchine (1963): Continued Fractions, translated by P. Wynn. Groningen: Nordhorff.
[KN] L. Kuipers, H. Neiderreiter (1974): Uniform Distribution of Sequences, New York: Wiley.

J. Harrison
Department of Mathematics
University of California
Berkeley
California 94720
U.S.A.

[^0]: Date received: September 11, 1987. Communicated by Michael F. Barnsley. AMS classification: 11A55, 28A05.

