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Embedded Continued Fractals and 
Their Hausdorff Dimension 

J. Harr ison 

Abstract. A continued fractal Q. c R 2 is a curve which is associated to a real 
number a c [0, 1]. Properties of the continued fraction expansion of a appear 
as geometrical properties of Q.. It is shown how number theoretic properties 
of a affect topological and geometric properties of Q~ such as existence, con- 
tinuity, Hausdorff dimension, and embeddedness. 

Introduction 

A cont inued fractal is a curve Q~ in Eucl idean space R 2 associated to a real 
number  a ~ [0, 1]. Properties o f  the cont inued fraction expansion of  a appear  as 
geometrical  properties o f  Q~. For  example,  we know that a is a quadrat ic  irrational 
if and only if  a has per iodic  cont inued fraction. Its cont inued fractal is self-similar 
[see H4]. In this paper  we study how number  theoretic properties o f  a affect 
topological  and geometr ic  properties o f  Q~ such as existence, continuity,  Haus-  
dortI  dimension,  and embeddedness .  

Con t inued  fractals appear  as strange attractors in smooth  dynamical  systems. 
The first known example was the key element in the construct ion o f  a smooth  
C 2+~ vector  field on the three sphere S 3 with no zeros and no closed integral 
curves (see [H1] and [H3]) .  Cont inued  fractals can be Julia sets for diffeomor- 
phisms f of  the two-sphere S 2. They may be contrasted with the original fractal 
Julia sets o f  Julia, Fatou,  Sullivan et al., which arise f rom noninvertible mappings  
(see [B], for  example).  The invertibility o f f  gives it a basic posit ion in the world 
o f  two-dimensional  dynamics.  

1. The Embedding h: I--~R 2 

We give two descriptions o f  h. The first is geometric.  It provides a guide for 
p rogramming  computers  to draw h( I ) .  The second is analytic and is used for 
proving the theorems. 
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Notation 

Let R denote the real numbers and Q c R the rationals. Let 7r~ and 7r2 denote 
the projections onto the first and second factors of R 2, respectively. If x ~ R, 
define ( x ) =  x (rood 1), in t (x )=  x - ( x ) ,  and IIxl] = distance to the nearest integer. 
Let I = [ 0 ,  1). Any function h: I ~ R  2 canonically induces a function /~: $1~ 
S l •  1. (Define h*: R I ~ R  2 by h*(x)=h((x))+(int(x),O). This h* induces a 
function h: S~->S~• ~ via the identifications x ~ x + n  on R ~ and (x ,y)~ 
( x +  n, y) on R2.) For simplicity of notation, we work entirely with h: I ~  R 2. Fix 
a ~ R and define 

x. =(na),  n>-O. 

Normalizing Constants. Let g: Z + ~  R be a monotone decreasing function. For 
k >- 1, we define two normalizing constants: 

g (O)=Z  ( -1)"g(n) ,  n = 1 , . . . ,  k 

and 

mk=l+Y,g(n), n = O , . . . , k .  

The Computer Algorithm 

The algorithm depends only on the sequence xn and weights g(n).  Let x~o=0, 
xn~, . . . ,  xnk denote the first k +  1 terms of the sequence x~, ordered from left to 
right in I. Let 

I,, =(x,,,,x,,,+~), i = 0 t o k - 1 .  

In the plane, draw a horizontal line segment with left endpoint the origin (0, 0) 
and length mk[I~ol. Attach to its right endpoint a line segment sloping backward 
with fixed, acute angle ~r/4 and length g(nO/(cosz:/4)=v~g(n0. We call this 
segment a diagonal, Ak,,,. It points down if nl is even and up if nl is odd. Attach 
to the free endpoint of Ak.,,, forming the angle 7r/4, a horizontal line segment 
of  length mk]I,,I. Attach to the free endpoint of this second horizontal line a 
diagonal Ak,, 2 of length ,r again sloping backward with angle ~r/4 and up 
or down according to whether n2 is odd or even. Continue until k horizontal and 
diagonal lines have been drawn, one pair for each of the intervals I,,. Finally, 
draw a diagonal Ak,0 with endpoint the rightmost endpoint of the curve and length 
x/2g(0). Call the resulting curve Qk (see Figs. 1-3). 

We prove that for some ~ and g, there is a subsequence ki such that the curves 
Ok, converge to a limit curve Q. In this case we denote 

4 ,  = lim Ak,,,. 
i--*oO 

An Analytical Definition of Qk 

Let p: I-~ I be a monotonic, continuous mapping such that p-l(x,) is an interval 
! __ t An -- [y ' ,  zn], n --> 0, and p is 1 - 1 on the complement of the {A'}. (If  x, is dense, 



detail magnified 
750 times 

/ r 

Fig. 2. 

Fig. 1. Cont inued fractal for a = (x /5 -1 ) /2  = t h e  Golden Mean, g ( n ) =  0,7/n ~ n-< 5000. 

Cont inued fractal for x ,  = not, a = zr/2 (detail magnified 75 times), g ( n )  = 0.7/n ~ n -< 5000. 
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(a) (b) 

i 7 

(d )  (c) 

Fig. 3. Detai ls  of  con t inued  fractals:  (a) a = 21/4 (detail  magni f ied  10 t imes) ,  (b) a = 2 t/4 (detail  
magnif ied  2000 t imes) ,  (c) a = 71/4 (full curve),  (d) a = 71/4 (detail  magnif ied  10 t imes).  

then p is a Cantor function.) We define immersions hk: I ~ R  2, k>-l ,  so that 
hk(I) = Qk and h k ( A ' n )  = A n. Let XA denote the standard characteristic function. 
We also need a function d: I ~ R  2 which adjusts the location of hk(X) for x in 
a segment A'. It plays a very minor part in the estimates. (Indeed, the reader 
may assume d ( x ) =  0 without much loss.) 

{(0 [x-Y"'  i f x c A ~ '  d ( x ) =  -1 ) "g (n ) l z~_y , [  

if x ~ U A'~. 

Definition. Let W = [0, p(x)) .  Define hk: I ~ R 2 by 

k 

7rlhk(x) = mklW I -- ~ X w ( i a ) g ( n ) - I d ( x )  I, 
r l=0 

"n'2hk(X) = ~, X w ( ( 2 n + l ) a ) g ( 2 n + l ) -  Y, X w ( 2 n a ) g ( 2 n ) - d ( x ) .  
2 n + l ~ k  2 n ~ k  
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Define 

h = lim h k a s  k -  oo. 

It is not  hard to see that  if y . g ( n ) < o o ,  then h exists and is cont inuous.  If  
g(n) = 0% then the construct ion poses more  difficult and interesting problems. 

The critical exponent  o f  the series ~ g(n) is the Hausdorff  d imension in the 
embedded  examples. Hence,  the " longer"  the curve, the higher the Hausdorff  
d imension and the more  " u n f o l d e d "  the sequence x.  becomes.  

Remark. Qk may be defined for any 1-1 sequence x. and weight funct ion g(n). 
In this paper  we restrict ourselves to x.  = (ha) ,  mod  1. 

2. Number Theory Prerequisites 
Definition 2.1. Let a.  be a sequence o f  integers - 1  and 

I 11 
p.  a2 4 

q .  a2 q 1 
a 3 + . . . .  

a,, 

where (p . ,  q.) = 1. Then 

= lim p--~-~ 
..oo qn 

exists and is a positive irrational < 1. We write a = (a~, a2, a3 , . . .  ). The fractions 
p . / q .  are rational convergents of  a. The integers p~ and q~ satisfy the recursive 
relations: 

p o = 0 ,  p~=l ,  and p . = a . p . _ l + P . _ 2 ;  

q o = l ,  q~=al ,  and q . = a . q . _ ~ + q . _  2. 

Define ro = 1, r~ = a, and r.-1 = a.rn + r.+~. 

The first lemma follows readily from these definitions. 

Lemma 2.2. 
(i) q.r. + qn-lr.+l = 1. 

(ii) q.p,_~-p.q ,_~ = ( - 1 ) ' .  
(iii) Pn - q . a  = ( - 1 ) ' + ' r , + ~ .  
(iv) I f  a = [ c , c , c , . . . ]  then r,=c~". 
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Lemma 2.3. I f  a e R \ Q  has continued fraction expansion [a l , a2 , . . . ] ,  then for 
each n >- 1 

01-- = 2 
a,(an+l + (an+a, an+3, . . . )+(an , . . . ,  al)) 

where p , /  q~ is the nth convergent of a. 

Proof. See Lemma 1.5 of  [HN].  �9 

Let n ~ Z +. Define 

t, = q, + q,_l - 1. 

We define IV, to be the collection of intervals in I complementary to 
{(0a), ( l a ) , . . . ,  (t,a)}: each of these intervals is a W,-interval and (ja),  O<-j < - t,, 
is a Wn-point. By Lemma 2.2(iii) (q2,+~a) converges monotonically to 0 and (q2na> 
converges monotonically to 1. Let Io(n) be the W,-interval with endpoints (q,_~a) 
and an endpoint of  I and Jo(n) the W,-interval bounded by (q,,a) and the other 
endpoint of  I. Define 

R ~ ( x ) = x + a  ( m o d l ) .  

Lemma 2.4. The collection IV, consists of the first q, iterates of Io( n ) and the first 
q,-1 iterates of Jo(n) under the transformation R, .  In particular, all W,-intervals 
have length r, or r , . l .  

Proof. This follows from Lemma 2.2(i). (See also Lemma 1.5 of 

[H21.) �9 

Definition. 
exists c > 0 such that 

q 
- P  >q l§  forevery  q Q. 

a has Diophantine type 6 if 

= lim{tr: a satisfies a Diophantine condition or}. 

An irrational number  a satisfies a Diophantine condition t~ if there 

Estimates on the Discrepancy of (ha) 

The remainder of  this section is devoted to estimates of  "weighted discrepancy" 
which are fundamental  to the study of continued fractals. 

Theorem 2.5 

(i) Let c~ e R \ Q  and p /q  be a rational convergent of a. I f  J is an interval of I 
with IJI = II qa II, then for every 0 ~ s < t 

(xs(ia>-IJI) I <2. 
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(ii) Assume a c R \  Q has Diophantine type 6 and e > O. There exists C > 0 such 
that i f  U is an interval of  I and 0 < - s < t, then 

'21 (x~(io0_pU]) ] < C(t - s )  ~-<'/~+~. 

Proof. For  (i), see [K] or Theorem 2.2(i) o f  [H2]. (ii) follows immediately from 
Theorem 3.2 of  [KN,  p. 123]. �9 

The next lemma is used in weighted versions o f  Theorem 2.5. 

Lemma 2.6. Let C > 0 and f (  i) be a monotone increasing sequence of positive real 
numbers. Let b( i) be a sequence of real numbers satisfying 

I b(i) < C f ( N )  forall  j ,N>-O. 
i = j  

Let g( i) > 0 be a monotone decreasing sequence. Then: 

(i) 

(ii) 

'~ lb( i )g( i )  < - C f ( t - s ) g ( s )  forall O<-s<-t. 

Define n and r by 2" ~ t - 1 < 2 "+1 and 2 r -< s < 2 r+l. Then 

-< c f ( 2 ~ ) g ( 2  ") . 
i = S  A ~ r  

Proof. This is essentially " summat ion  by par ts ."  (For  details, see Proposi t ion 
2.3 of  [H2].)  �9 

Corollary 2.7. 
(i) Let a ~ R \  Q. I f J  c 1is an interval with I J[ = II q~a II and g: Z -> R + is monotone 

decreasing, then 

'~  (xj(iot)-IJ[)g(i)] < 2g(s) .  
i = 1  

(ii) Assume a ~ R \ Q  has Diophantine type & Let e > 0  and ~7 = 1 - ( 1 / ~ ) + e .  
There exists C > 0 such that i f  U is an arbitrary interval of  I and g( i) <- 1/i v 
where y > r /+  1/23, then 

'Y.~ (Xu(ic~)-IUl)g(i)  I < Cs ' -L  
i = s  

Proof.  (i) This follows immediately from Kesten 's  theorem (Theorem 2.5(i)) 
and summat ion  by parts  (Theorem 2.6(i)). 
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(ii) Let C1 be the constant depending on a and e obtained from Theorem 
2.5(ii). Apply Lemma 2.6(ii) to b ( i ) = x u ( i ~ ) - I U I ,  g(i) <- 1/U, and f ( i ) =  i n to 
obtain 

< C1 < CIC2s~-L 
i=s  i t=r  

Note that C2 depends on 6 since 1/26 < )t -~7. Let C = C~C2. Then C depends 
on a and e. �9 

3. Sufficient Conditions for Q to Exist  

Most irrational numbers are Diophantine. If  a has Diophantine type 6 we show 
that the curve Q generated by a monotone function g(n)<_ c /n  �9 and a exists 
and is continuous for y > 1 - 1/23. The Hausdortt dimension of Q is bounded 
above by 1 /y  if �89 y <  1 and by 1 if ;t -> 1. This bound is sharp since there are 
examples with Hausdorff dimension 1/3, for �89 y-< 1. 

We prove that the subsequence of Qtk converges to a limit curve where 
tk = qg + qk-~ -- 1. Henceforth, for simplicity of notation, set 

Qk = Qt~, 

hk = ht k, 

mlr .~- mtko  

Theorem 3.1. Let ce c R \  Q have Diophantine type 6. Assume y > 1 - 1/23. Let Qk 

be the sequence of  curves generated by g(n) --- c/n v and a. Then Q = lim Q~ exists 
and is continuous. 

Proof. Recall that Qk = h k ( I ) .  Let U be an interval in I with endpoints p < q. 
Define 

Hk = Hk( U) = zrlhk( q ) -  ~r~hk(p), 

Vk = Vk(U) = ~r2hk(q) - 7r2hk(p). 

See Fig. 4. 
In order to prove that hk converges uniformly to a continuous function h, it 

suffices to show that Hk and Vk converge uniformly over intervals of I. Let C be 
the constant of  Theorem 2.7(ii). Recall 

A', = (y ' ,  z',) = p-l(nct). 

In order to prove Theorem 3.1 we verify the uniform convergence of Hk and 
Vk over two basic types of intervals U with endpoints p < q: 

(3.1) p ~ U [ y ' , z ' )  and q ~ U ( y ' , z ' ] ;  

(3.2) [ p , q ] = [ y ' , z ' ]  for some n 6 Z .  

Uniform convergence over all intervals of  I follows. 
In the hypotheses we have 3' > 1 - 1/23, 6 -> 1. Choose e > 0 with 

y > 1 + e - 1 / 2 6 .  

Define 7/= l + e - 1 / &  
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Preliminary Estimate. Let c = 1. Recall the normal iz ing constant  

m k = l + ~ g ( n ) + ( - 1 ) " g ( n ) ,  n = l  . . . .  ,tk. 

Then 

t~-" +2q~ -v.  
r a g < l +  < 1  

1 - 3 '  1 - y  

Since rkqk < 1 (by L e m m a  2.2) it follows that  mkrk ~ 0 as k ~  oo. Therefore ,  for  
/3 > 0, there exists N such that  if  tk >- N, then 

max{ mkrk, 2 Ct'Z -r , 2tk-r}-- </3.  
3 

Proof of  the Uniform Convergence of  ilk. Let U be an interval o f  type (3.1) with 
endpoints  p < q. Then d(q)  = 0. Let W = i n t ( p ( U ) )  and N < tj < tk. It follows that  

(3.3) I lk (U)  = 1 I W I -  ~ xw(na)g(n) ,  
n=rn 

where m = rain{n: (ha) ~ int( W)}. (Whenever  m > tk, the last sum is zero.) Assume 
m <- tj < tk. Apply  Theo rem 2.7(ii). Then 

I ~ - H k [  = Y~ ( I W [ - x w ( n a ) ) g ( n )  < C t 2 - "  < ft. 
n=tj 

Assume tj < tk < m. Then ]W I -< tk. Since the last sum in (3.3) is 0 for  both  ~ and 
Hk w e  have 

I ~  - Hkl = Imj - m d  I w] < mktk <ft. 

I f  tj < m <- tk, let l satisfy tj --< h < m --< tt+l --< tk. Then I W[-< ft. The last sum in (3.3) 
for  ~ is zero so 

I ,k 'k xw(n~)g(n) r ~ - H k l :  Wl Y g ( , ) +  E 
n = t j + l  n = h + l  

'l tk I 
= [W[ 2 g (n )+ Y. ( [ W l - x w ( n a ) ) g ( n )  I n=tj-~l n=tl+l 

< mtrt + Ct7 -~ (by Theorem 2.7(ii)) 

</3. 

Thus Hk converges uni formly  over  the intervals U of  type (3.1). 
Now assume U c A ' .  In general,  if n<--h then IHll<-g(n). I f  n >  tt, then 

]HtI <- mlrl. Therefore ,  if  tj < tk < n, 

I ~  - Hk] < max{I/-/~l, [Hkl}, 

-< max{m??, mark} 

</3. 
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If  n_< b <  tk, then [I-Ij--Hkl=O. Finally, if t~<n<_ tk, 

I ~  - nkl < max{l~l ,  IHd} 

-< max{mfj, g(n)} 
< max{mjrj, g(b)} 

</3. 

Proof of Uniform Conference of I/',. Let U c  I be an interval of type (3.1) and 
W = int(p(U)) .  Then 

(3.4) Vk = F, X w ( ( 2 n + l ) a ) g ( 2 n + l ) -  Y~ Xw(2na)g(2n). 
2 n + l < t k  2n <--tl~ 

Let N < tj < tk. Then 

IVj-  Vd = ,~<2~,<-tk Xw((2n+ l )a)g(2n+ l ) -  ,,<z,~,~,~' Xw(2na)g(2n)l 

= I ,,<2~,_<,k (xw((2n + 1)~)-IWl)g(2n + 1) 

I 

+ E ( IWl-Xw(2na) )g(2n)  
t j ' < 2 n ~ t  k 

+lWl Y~ (g(2n + 1 ) -  g(2n)) 1. 
tj < 2 n , 2 n +  l <-- tk 

Apply the triangle inequality and Theorem 2.7(ii) to estimate the first two sums. 
(The third sum is bounded by 2g( j )  since I Wl < 1.) Thus 

I vj - vkl < 2 c t u ~ + 2 g ( t j )  </3. 

Suppose U =  A'. Then V~ is zero for tt < n. If n-< 6 then Vt is a constant 
depending only on U. It is bounded by g(n). Therefore, if n -< t~ < tk or tj < tk < n, 
then IVj - Vd=O. If  6<n<<-tk, then I V k - - E l = l v ~ l < g ( n ) < g ( j ) < / 3 .  Hence Vk 
converges uniformly. 

The proof  for arbitrary c > 0 is similar. 1 

4. Embedded Continued Fractals and Number Theory 

It is more delicate to show Q is embedded. In [H2] there is a proof for a = ~/2- 1. 
Here, we give a new proof  for a class of numbers containing o~. The definition 
of g given below makes it possible to provide sharp estimates for the embedding. 

Definition of g. Let a ~ R\  Q, c > 0, and �89 < y < 1. Define 

g(n) = ca kv for qk-l <-- n < qk. 

Theorem 4.1. Assume ~ = [ N, N, N, . . . ], N even. There exists constants CN > 0 
and T N < I  such that if  O<C<CN and T N < T < I ,  then h=hv,  c:/-->R 2 is an 
embedding onto Q. 
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Proof. The idea of the proof  is fairly simple. The line segment I is covered by 
Wk-intervals. Let J be one of these. We may assume IJI = ot k, otherwise it appears 
as a Wk+~-interval. See Lemmas 2.4 and 2.'2(iv). Assume that J includes the 
endpoint with larger index, n, say. Then qk_l < -- n < q k .  Let j , = p - l ( j ) .  Define 
H = H(J ' )  and V= V(J') as in the previous section. If H >  V then the two 
diagonals attached to the endpoints of h(J ' )  are disjoint. By induction the curve 
is embedded (see Fig. 4). �9 

Let W denote the covering of  I by Wk-intervals, k-> 1. 

Theorem 4.2. 

(i) There exist CN>0 and � 8 9  so that IH /V[>  I for all 0<C<CN,  
TN<T<I a n d J c  W. 

(ii) I H / V I is uniformly bounded: given c and T, there exists L > 0 with I H / V I < L, 
for all J c W. 

Remark. We only need Theorem 4.2(i) for this proof; Theorem 4.2(ii) is needed 
later in the estimates for the Hausdorff dimension of  Q. 

Proof of Theorem 4.2. 
where 

It follows from Theorems 3.1 and 3.3 that H = a k.~_ A + B 

qk_l--1 
A = a  k ~ g(i) 

i=1 
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B =  ~ ( I J [ - x j ( ( i a ) ) ) g ( i ) .  
i = q k -  1 

A = cak[ (q ,  - qo)a ~ + ( q 2 -  ql) a2" +" "" + (qk-1 -- q k - a ) a ( k - ' ~ ]  . 

TO compu te  A, we need  some s imple ,  p r e l imina ry  facts: by  Lemmas  2.2(iii) 
and  2.3, 

1 1 

q , ( N + a + p , / q , )  q ~ ( N + 2 a + e ~ ) '  
a ~ + l = l q ~ a - p . [ =  

where  [e. [ < 2 /q2 .  There fo re  

0l-(n+l) 

q n - ( N  + 2a + e , ) ,  

since a = [ N ,  N, N , . . . ] ,  - 1 =  N + a .  Hence  

,~-"(N+,~- 1)(1+ ~o) 
q ~ - q , - 1 -  ( N + 2 a )  ' 

where  f t ,  ~ 0. Let A = ca k~. It is s t ra igh t forward  to verify that  as k-~ oo 

A N + a - 1  
(4.1) - -  

A ( N + 2 a ) ( a ~ ' - m - 1 ) "  

We next  es t imate  B; let b ( i ) =  t J t -  Xs(( ia)) .  We a p p l y  s u m m a t i o n  by  parts :  

B = l im[b(qk-1)  +" �9 "+ b(q,, ,)]g(q,,)  + b(qk-1)[g(qk-~) -- g(qk-~ + 1)] 

+ [b(qg-O + b(qk-~ + 1)][g(qk_~ + 1) - g(qk-~ + 2)] 

+" " �9 + [ b ( q k - 0  +" " "+ b(q,,, - 1)][g(qm - 1) - g(qm)]. 

N o w  ~ b(i )  is b o u n d e d  (accord ing  to Kes ten ' s  Theorem 2.5(i)) and  g (q~)  ~ 0, 
so the first te rm vanishes  in the limit.  Note  that  g ( i ) - g ( i - 1 ) =  0 unless  i =  qj. 

Also,  g(q,,, - 1) = g(qm-l ) .  Hence ,  

B = [b(qk-~) +" �9 �9 + b(qk - 1)][g(qk-1) -- g(qk)]  

+[b(qk -~ )+"  " "+ b(qk+~-- 1)][g(qk)--g(qg+~)]+" " "- 

Next  we subst i tu te  the  ident i ty  g ( q , , - t ) - g ( q , ) =  a 'V(  1 - a S )  �9 Assume that  k is 
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even. Accord ing  to Theorem 4.2 o f  [ H N ] ,  we know 

qn--I qn--I qk_l--I 

Y~ b ( i ) =  Y, b ( i ) - ~  b(i)=qk_l(+Ct"+l--ak),  
i~qk_ 1 i=0 i=0 

+ if n is even, - if n is odd.  I f  k is odd,  we get 

qk_l( + a "+1 -- a k) = qk_l(+0( "+1 -- ak) ,  

- -  if n is even, + if n is odd. We write these in terms of  a, using the above 
identities and get 

(_1 + 0( "+~-k ) 
b ( i ) -  

( N + 2 a + e k ) '  

+ if and only if k and n have the same sign. Putting all o f  this together  yields 

a ~ - I  
B [ ( -0(  + 1)0( ~ + ( - a 3 +  1)c~k+2~ + �9 �9 + (0(~+ 1)0( ~k+'~ 

N + 20( + ek 

"~ ( 0 ( 4 +  1)aY(k+3)+ �9 . .] 

a V _ l  r _ a  l+3'k + ot 2+'r(k+l) t~ "k ] 

- - [ N + 2 - ~ + e k ] ~  1 - - a  2+2" + l - - a ' J "  

Thus 
B a - a v ( a 2 +  0() + 2 a 2 + 2 v -  1 

(4.2) -- 
A ( N + 2 a ) ( 1  _ 0(2+2v) 

Last o f  all, we estimate V/A. Recall (3.4). We have 

CX3 

V =  • [(xs(na), n o d d ) -  (xj(na) ,  n even)]g(n) .  
n=qk-i  

Since N is even, the sequence q, alternates parity, starting with qo = 1, ql = 2, 
q,+~=2q,+q,_~. Therefore,  if k - 1  is odd,  qk-~ is even. Thus the diagonals 
at tached to J are parallel. This will pose no difficulty for the embedding.  (See 
Fig. 5.) We study the case with k -  1 even: 

I V / c  [ = a kv  _ 2 [  a ( k + l ) z '  + 0 ( ( k + 3 ~ '  + . . . ] = 0( kv  _ 2a(k+l)z,/ (1 _ a2~). 

Hence I V/AI ~ 1 - 2 a ~ / ( 1  - a2~). 

Let YN be the solution for  the limit equat ion H~ V = 1. As N--~ co, YN ~ 1. I f  
YN < Y < 1, there is kN such that if k > kN, then I H / V  I > 1. The choice o f  the 

constant  c affects H for k small. Recall 

H / A  = (a k + A + B) /A  = a k,-~>/c + (A + B)IA > a"~'-~'~l c. 

We know that I V/,~ I < C for  some C > 0 and all k > O. It suffices to find c so that 

akt~-~')/c>C for  k<-kN. 
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Fig. 5 

It will follow that IH/V I > 1 for all k and that h is an embedding. Fix cN = 
akN~l-v~/C. So ak~-V~/CN > C for k - k N .  Then IH/VI > 1 for 3'N < 7 < 1 and 
0 <  c < cN. It is easy to see that IH/A I is uniformly bounded for fixed c and 3'. 
Hence IH/V I is uniformly bounded. 

This completes Theorem 4.2. [ ]  

Remarks. The constant YN is sharp. That is, if y <  YN, then H/A> 1 for k 
sufficiently large. It follows that Q is not embedded for such 3,. 

Proof of Embedding. Begin with YN and cN of Theorem 4.2. Let J be a 
Wk-interval and H = H ( J ) ,  V = V(J),  and A = A(J) be defined as above. Recall 
that J contains the endpoint  with the largest index. We have IH/VI> 1. Let 
T = T(J) be the parallelogram determined by the endpoints of h(int(J)) ,  see Fig. 
5. By Theorem 4.2, the smaller diagonal attached to the end of  h(int(J))  is 
contained in T. This is the fundamental  geometric observation for it implies that 
h(J) c T. 

Let x and y e L Let k be the first integer such that p(x) and p(y) are separated 
by a Wk-point. Then p(x)~ Jl and p ( y ) ~  J2 where J~ and J2 are Wk-intervals. 
The chain of  Wk-parallelograms T are disjoint by Theorem 4.2. Therefore 
h(x) ~ h(y). 

5. Hausdorff Dimension of Q 

Let Q be the curve generated by ~ = [N, N, N , . . . ] ,  and let c and y be as in the 
previous section. 

Definition. Given a metric space X, for each nonnegative real number  s there 
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is a cor responding  s-dimensional  Hausdorff  measure P-s defined as follows. Let 
B c X be an arbitrary set. The zero-dimensional  measure /zoB is the number  o f  
points in B. For  s > 0, a > 0, let 

tz~,~B = inf  Y. [d iam(B,) ]  ", 
i 

where the infimum is taken over all covers {Bi} o f  B such that diam(B,)  < a for 
each i. Then 

/zsB = lim /zs.,B. 
q ~ O  + 

A set B has Hausdorff dimension s iff ~rB = 0 for all r > s and ~rB = oo for all 
r <  s. I f  d i m ( B ) =  s, then/~sB is the Hausdorffmeasure of  B within its dimension. 

Let F denote  the Can to r  set Q\[,_J {int A } .  

Theorem 5.1. The Hausdorff dimension of  F is 1/3'. The Hausdorff measure of  F 
within its dimension is a positive, real number. 

Proof. Let Io = I \{(na)}.  Define g: Io ~ 112 by g = h o p-~ 

Claim. There exist constants A1, A2, A3, and K1 such that: 

(1) I f J  is a Wk-interval, k---0, then 

a2lJ[ v < [g(J)l < AIIJIL 

(2) I f  J is an arbitrary interval o f  S 1, then 

Jg(J)] > a3[JI ~. 

(3) I f  p, q e Q, the arc connect ing p and q is contained in a disk o f  radius 
Kid(p ,  q). Hence if B c 1t 2 is a disk with B ~ g(Io) # ~ ,  then 

cl(g-~( K~B) ) = interval D g-~( B). 

Proof of  Claim. (1) By (4.1) and (4.4), H ~ CA for some C > 0. The definitions 
imply A = cak~ = clJIL Finally, Theorem 4.2 implies IH/VI  is bounded  away from 
0 and co. This establishes (1). 

(2) Let I be a Wk-interval contained in J, where k is minimal. Then 

(2N + 1)111 > I11 > ili 

since any 2 N  + 1 adjacent  Wk-interval contains a Wk_rinterval.  Then 

Ig(J)[-> Ig(I)l > aeJlJ v > a3lJI ~ 

for some m 3. 
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(3) The proof  that Q is embedded proves this claim (3) that Q is a quasi-circle: 
let p-= h(x) and q -  h(y) ~ Q. As before h(x) lies in T(JI) or its left attached 
diagonal and h(y) lies in T(J2) or its right attached diagonal. The arc connecting 
h(x) and h(y) is contained in the union D of these sets. Then there is a constant 
K~ such that d(x, y)> KI[D[. 

By (1) the cover U g(J), J~ Wk, satisfies 

E Ig(J)l '/~'-~ Alt/r E IJI ~ A~/r. 

Hence ~ffy(g(Io)) < oe implying 

1 
dim(g (Io)) -< - .  

Y 

Suppose that d im(g(Io))~  1/y. Then/~1/Y(g(Io)) ---0. Then there is a cover of 
g(Io) by disks B~ such that ~, ]B,I ~/~' < 6 for any 8. Notice that Y~ IKiB, I '/~" < KIll;'8. 
Consider the cover {K~B~}. Using (3) for each i we pick J~ such that 

g-l(B,)  c J~ c cl(g-I(K,B~)). 

Therefore by (2) we have 

A3lJil ~ < Ig(J , ) l -  K,IB, I. 
i / , , /  Hence IJil < (K,IBiI/A3) . Since U Ji covers S0 we have 

1 ~ E  IJ, I ~ (KllA3) 1/~ E IB, I '/~. 

This contradicts the assumption that ~zl/r = 0. From the preceding paragraph we 
have 0 < tz~l,r(g(Io))< oo. The theorem follows since cl(g(Io))= F, [] 
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