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Dynamics on Ahlfors quasi-circles 
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Abstract. The celebrated theory of Denjoy introduced a topological invariant distinguishing 
C l and C 2 diffeomorphisms of the circle. A C 2 diffeomorphism of the circle cannot have an 
infinite minimal set other thart the circle itself. However, this is possible for C 1 diffeo- 
morphisms. In dimension two there is a related invariant, distinguishing C 2 and C 3 
diffeomorphisms. 

Theorem. Let Q be a quasi-circle contained in a surface. If F is an infinite minimal isometry 
set in Q for a C 3 diffeomorphism, then F equals Q. There exists a C 2 diffeomorphism of the 
annulus with a minimal Cantor set contained in a quasi-circle. 
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1. Introduction 

Poincar6 and  Birkhoff  p roved  that  a measure  preserving h o m e o m o r p h i s m  of the 
two-d imens iona l  annulus  which twists the two b o u n d a r y  c o m p o n e n t s  in oppos i t e  
direct ions mus t  have fixed poin ts  in the in ter ior  of  A. W h a t  is k n o w n  as K A M  theory  
emerged from this and  is cur ren t ly  being deve loped  and  refined. (See [7],  [8]  and  I-9], 
for example.)  The theory  p roduces  g loba l  topo log ica l  and  dynamica l  conclus ions  from 
local a s s u m p t i o n s - - C  3 differentiabi l i ty and  infini tesimal ' twist ing' .  The  C 3 hypothes is  
is sharp;  there exist coun te rexamples  in the C 2 + 6 category.  (See [6-1.) In  this pape r  
we consider  a p rob lem with some r u d i m e n t a r y  resemblance  to twist theory.  

Let f be a C r d i f feomorphism of  the two-d imens iona l  annu lus  A = S 1 x [ -  1, 1] to 
itself which is repell ing at  one b o u n d a r y  c o m p o n e n t  A § = S 1 x {1} and  a t t r ac t ing  at  
the o ther  A -  = S  1 x { - 1 } .  Suppose  f has no per iodic  po in ts  in int(A0). If one orb i t  
'gets across ' ,  mus t  they all? Tha t  is, if the ~t-limit set of  x o is in A § and  its to-limit set 
is in A -  for some XoeA, then is this true for every XeA? There  is g rowing  evidence 
that the answer  is in the aff i rmative for r = 3. W e  pose  an  equiva lent  vers ion of  this 
question. 

2. The north pole, south pole conjecture 

Suppose f : S 2 ~  S 2 is a C a d i f feomorphism with the nor th  pole  N a repeller,  the south  
pole S an a t t r ac to r  and  no o ther  per iod ic  points .  If  one orb i t  is a sympto t i c  to  bo th  
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S and N then f is ffynamically equivalent to the standard north pole, south pole 
diffeomorphism. 

Formally, the conclusion means that f is the time one map of the gradient flow on S 2. 
A C' diffeomorphism f : M ~ M  is of class C "+~ if the rth derivative satisfies a 

6-H61der condition. That is, there exists C > 0 such that II D'fx - D'fy II < C II x -  y 116 
for x, y e M.  

There exist counter-examples to the NP-SP conjecture if f is C TM. (See [51 [4] 
and [3].) We show in this paper that C 3 is a natural bound to these examples. Hence 
the NP-SP conjecture concerns the topological-dynamical invariants that might 
distinguish C 2 +8 and C 3. 

We find the coordinates of the annulus more convenient to work with and put this 
spherical formulation aside. 

A non-empty, closed, invariant set F of a homeomorphism f is said to be minimal 
if it is closed and contains no smaller non-empty, closed, invariant sets. 

If there is a counter-example to the NP-SP conjecture then there exists a C' 
diffeomorphism f of the annulus without periodic points which has one orbit 
asymptotic to both boundary components and one orbit whose closure F stays 
bounded away from t~A. Furthermore, F may be taken to be a minimal set. In [4] it 
is shown that the existence of such a diffeomorphism implies the existence of a C' 
Seifert counter-example. That is, there exists a C' vector field on the three-sphere S 3 
with neither zeroes nor closed integral curves. Hence the NP-SP conjecture is 
'contained' in the Seifert conjecture. 

A recent theorem of John Franks is useful in analyzing the dynamics of f .  

Theorem (Franks). Let f :A ~ A be a homeomorphism of the open annulus A and xeA .  
Let g be a lift o f f  to the universal cover R x [ -  1, i] of A and y a lift of x. Let Yn denote 
the first component of g"(y). I f  there exists a rational number p/q with 

lira y~ ~< P ~< l-i~m y~ 
n q n 

then there exists a point zEA with fq(z)= z. 

By the theorem of Franks, F must be an infinite, perfect minimal set which has 
irrational rotation number-- the  cyclic order is preserved by f .  Certainly F could not 
be a circle, otherwise no orbit would get across it; however, it is not known if F must 
be a Cantor set. 

3. The Denjoy Cantor sets 

The reader might be reminded of the Denjoy's theory where the critical degree of 
differentiability is 2 and the dimension is 1. Denjoy [1-1 found that the degree of 
differentiability of a circle diffeomorphism f influences its topological type. If f is C 2 
and has no periodic points then f has simple dynamics-- i t  is topologically conjugate 
to a rotation through an irrational angle. This is not the case in the C x +~ category. 

Suppose F c S 1 is a Cantor set. If there exists a homeomorphism f : S  1 --*S ~ for 
which F is minimal, then the pair (f,  F) is a Denjoy Cantor set. Denjoy Cantor sets 
provide the key ingredient to classifying homeomorphisms of the circle. Poincar~ 
defined the rotation numbers and showed that all homeomorphisms of the circle have 
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them. Furthermore, any homeomorphism of the circle with irrational rotation number 
is either topologically conjugate to a rigid rotation through g or has a minimal 

Cantor set, Denjoy proved that these examples can all exist as C a diffeomorphisms 
but not C z (actually C a § is impossible). We call these examples Denjoy Cantor sets. 
More generally, a homeomorphism g:F' ~ F', F' contained in an n-manifold M is also 
called a Denjoy Cantor set if the pair (g, F') is topologically conjugate to a Denjoy 
Cantor set (f,  F) in S a. That  is, there exists an embedding h:F ~ M such that h(F) = F' 
and h'f  = #.h. 

It is not completely understood under what circumstances Denjoy Cantor sets can 
exist. Hall [21 showed that it is possible to have a Denjoy Cantor set in a C ~ annular 
diffeomorphism. However, it is attracting, and so no orbit is asymptotic to both 
boundary components. Do there exist C 3 diffeomorphisms f of A with no periodic 
points, a Denjoy Cantor set (f,  F) and one orbit asymptotic to both boundary 
components? We consider some possibilities. 

There are two features of F for us to s tudy-- i ts  structure as a subset of A and the 
properties of the first derivative of f at F, the distortion of f at F. 

Using the methods of Denjoy, one can rule out any Denjoy Cantor set F contained 
in a smooth Jordan curve as long as f is C 2. It is not possible for F to have totally 
arbitrary topological structure since minimality implies homogeneity. A natural 
question ar ises--how wild can F be? 

In Denjoy's theory, the simplest C a examples have first derivative, the identity at 
the minimal Cantor set. It is quite easy to show there are no C z diffeomorphisms of 
the circle with this condition at the Cantor set: Let L, denote the intervals 
complementary to F, indexed so that f (Ln)=  Ln+a. Let an= [Lnl. Since f is C a, we 
can apply the mean value theorem and continuity of the first derivative to conclude 
that a./a.+~--, 1 as n ~  oo. If f were C 2, we could apply the mean value theorem to 
f '  and use continuity of the second derivative to conclude that 

an 

an+ a 

an 
�9 0 as n ~ .  

It follows that ~ a, = ~ ,  contradicting the finite arc length of S a. 
The same proof extends to R 2 and shows there are no C 3 annular diffeomorphisms 

with the first derivative the identity and the second derivative the 0 bilinear 
transformation at a square rectifiable Denjoy Cantor set. 

4. lsometry sets 

In this paper we consider a large class of 'simplest' examples. We assume that the 
first derivative o f f  at each point of F is an isometry for some Riemannian metric on 
A. The isometry may vary from point to point. We call F an isometry set. Note that 
this isometry condition on F, even for the usual metric on A, is weaker than the 
identity hypothesis. The annulus may be repla~d by any Riemannian manifold M. 

We need a little more background before we can state the main results. 
Smooth curves Q are n-rectifiable for all n >/1. That is, there exists a constant L > 0 

such that Z l x i - x i + l l n < L  for all partitions xl <x2<. . '<x~<x i+l  <.-" of Q. A 
curve is square rectifiable if it is 2-rectifiable. One can. similarly define the notion of 
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n-rectifiable for subsets of curves or for any set on which there is a well-defined order. 
In particular, we may consider whether Denjoy Cantor sets are n-rectifiable. 
Topological curves and Cantor sets may be so wild that they fail to be n-rectifiable, 
for any n. However, additional restrictions guarantee that curves be square-rectifiable. 

A curve Q is called a quasi-curve if there exists K > 0 such that if x, y~Q, the arc 
connecting x and y is contained in a disc of radius Kd(x, y). A quasi-circle is a Jordan 
curve which is the union of quasi-arcs. We prove 

PROPOSITION 

Quasi-arcs are square rectifiable. 

Theorem. Let f be a C s diffeomorphism of a compact Riemannian n-manifold M and 
F ~ M a minimal isometry set. I f  F is a Denjoy Cantor set then F is not square rectifiable. 

The Proposition and Theorem imply the following 

COROLLARY 

Let f be a C a diffeomorphism of the annulus A and Q c A a quasi-circle, l f  F c Q is an 
infinite, minimal isometry set then F = Q. 

Proof Since F is an infinite minimal set, the rotation number of f i r  is irrational. 
Then F can only be a Cantor set or all of Q. 

These results depend on a general estimate for the asymptotic behaviour of pairs 
of orbits of isometry minimal sets. This is an example of an estimate of 'non-linear' 
distortion. 

T h e o r e m .  Let E be an isometry minimal set of a C 3 mappino f of  a compact Riemannian 
2-manifold M. l f  y ~ M  and z~E then 

d(y,,,  x . )  2 = oo. 
n = l  

The proof of Denjoy's result depends on the divergence of the Poincar6 series for 
C 2 maps f 

Y IOf"l 1. 
n = l  

(See Sullivan [10], for example). In practice Df"~ is sometimes replaced by d(x,, y,) for 
s in the minimal set and y arbitrary in the manifold where d is the Riemannian metric 
on M. The exponent is related to the degree of differentiability of f .  If f is C', it is 
natural to estimate the general dynamic sum 

~] d(y,,, X,,)'- 1 
n = I  

even on higher dimensional manifolds. In this paper we restrict ourselves to 
Riemannian two-manifolds and r = 3, although generalizations to higher dimensions 
and degrees of differentiability are possible. 



Dynamics on Ahlfors quasi-circles 117 

5. lsometry and the second derivative 

A linear transformation from one normed space to another, say T : E ~ -  E2, is an 
isometry if T is a bijection and 

II TxJl~ = IlxllE, for all xeE1. 

The quantity 

p (T)=max  I sup [ITxltE~, sup 1/[[TxIIE~] 
L IIx[Iz~ = 1 ]lxllE~ = 1 

measures how non-isometric is T. Then p(T)>>. 1; T is an isometry if and only if 
p(T) = 1 and T is a bijection. 

Lemma 5.1. Let f be a C 2 diffeomorphism of a Riemannian m-manifold M and p~M, 
fixed. Suppose there exists p .~p  such that Twf  is an isometry respecting the given 
Riemann structure g of M. Let f be the lift o f f  from M to TpM ~ R* at p. 

7 
T,M TfrM 

,xp, ,wY, /~. = expv X(p.) 

f 
M M 

Let/~n = exp,- 1 (p.), then the sequence of linear maps 

(Dr)/3.: T p M -  TIpM 

is non-isometric only to the extent: 

L 1 - p(DT~.) l  = O(ll p .  II 5) 

Remarks. The norms on TvM and TyvM are g(p) and g(fp) respectively. The length 

liP. I1 is also calculated with respect to g(p), although we could replace lip, II with 
d(p,, p) since 

E 

II pn II - - - ~  1 as pn_.,p. 
d(p,, p) 

Proof. To calculate p((Df)p.) one considers the pulled-up Riemann structure on TpM 
and TfvM, namely 

Op: ~v(wv; u, v) = ( Twp expv (u), Twp expp (V))ewp ~w~) 

for all wvETpM near Op and 

for all u, vETwp(TpM) ,~ TpM 

~JSv: gsv(wsv; u, v) = ( T~,~, exps v (u), Tw,p expf v (v)),xp,~ (~,p). 

The map D f  at the point p. = exp;  1 (p.) is an isometry from the tangent space to 
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TpM at p., equipped with the metric Oo(P.; *) to the tangent space to TIoM at f(p.) 
equipped with the metric OIo(fPn; *). 

Let e~,.., ,e" be an orthonormal basis for ToM. 
The map T j : T o M - - T r  is an isometry (being the limit of isometrics) so 

T j ( e  1) . . . . .  T j ( e ' )  is an orthonormal basis at TspM. Both these bases give rise to 
9~iexpressions for the metrics 9o and 0ip on T~M and TsoM. Besides, 

Thus 

~jp(wo) = ~o(wo; e i, e/) = 6ij + O( [I wo l[ 2) 

~/Jp(wl, ) = ~io(w/o; Tpf(ei), Tpf(eJ)) = 6/j + O( II wlo II 2). 

((of)p.(u), (of)p.(u)).~ m 

= ~(i- th component of v) 2 where v = (Df)p.(u) 

= ~, 6ii(i-th comtlonent of v)(j-th component of v) 

= ~, #ijlo(fp,)(i-th component of v)(j-th component of v) 

+ ~ ( 6 0 -  #ofp)(fP,)( i'th component of v)(j-th component of v) 

= ((Df)Fju), (of)~u))a~p(fPn) 

+ ~ ( 6 ~ -  #ijyo)(fp.)(i-th component of v)(j-th component of v) 

= < u, u >a,tp,~ + O( II fP.  112). H Ofo. (u)II 2 

=/lull 2 + O(llp, 112)'constant Ilull 2. 

Since f is a diffeomorphism and T j  is an isometry we have 

- -  I 

flp~ll/llfP, ll-~ l as n ~ o o .  

_ _  w - -  

Hence II Dfo. II - -  (1 + o(11 p.  112) j/~ = 1 + 0(11 p. lit). q.e.d. 

Let xx be a sequence of points in R n. Suppose there exists a finite set of unit vectors 
v 1, v 2 . . . . .  v '~ in R" which is the limit set of {xJII xi[I }. If II xi II ~ 0 ,  we say that the 
sequence xi converges to 0 from m directions v ~, v 2 . . . . .  v M. 

Lemma 5.2. Let # be a C 2 diffeomorphism of  R n. Suppose there exist points x~R n 
conver#ino to 0 from m directions v 1 .. . .  ,v m such that I1-p(D#x)[ =0([Ixl[~). Then 
D2Oo(V, w)'Dgo(u) = 0 for u, v, w~sp(v 1 .. . .  ,vm). I f  sp (v 1 . . . .  ,v m) ~- R" then D2go(t ,, w) = O. 

The author is grateful to M Shub and C Robinson for the following proof. 

Proof Observe that Dg o is an isometry since p(Dgo)= 1. 

The set of linear transformations {Dg o ~Dgx} is tangent to the orthogonal metrices 
at the identity (where x = 0). The antisymmetric metrices form the tangent space to 
the orthogonal matrices based at the identity. Hence, irA = Dgo XD2go, then A(v) = A v 
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is antisymmetric for vEsp(v 1 . . . . .  vm}. Thus  Av(Wl)'W 2 = --Wl'Av(w2) for all vectors  
w~ and w2. 

Let v, w~sp {v l , . . . ,  vm}. Then  Av(v ). w = - v.Av(w) = -- v.A~(v) = Aw(v ). v = A v(w)'v = 
-w.Av(v)=O. Write A~(v)= x + yesp{v  1 . . . . .  v m} x R l where R ~ is the o r thogona l  
complement to sp {v ~ . . . . .  vm}. Then  0 = Av(V)'X = x . x  + y.x.  Since y .x  = 0 we have 
x. x = 0. Thus x = 0 and  A~(v)~ R I. Since Av + w(v -}- w) = Av(v) + 2Ao(w) + Aw(w)e R t, then 
A~(w)eR ~. Hence u.A~(w) = 0 for all u, v, w~sp {v 1 . . . . .  v~}. Note  that  i f sp  {v ~ . . . . .  v m} - 
R" then A~(w)= O. 

Hence 0 = u'Dffo IDZffo(v, w) = (DOou)oD20o(v, w). I f  sp {v 1 . . . . .  v ' }  - R" then 0 = 
DgolDego(v, w). Since Dgo is an isometry,  0 = D2go(v, w). q.e.d. 

Lemma 5.3. Let g be a C 2 diffeomorphism of R n. Let E ~ R". Suppose there exist 
points x6E  converging to 0 where x is a limit point of E in the direction vx. Suppose 
{v I . . . . .  v '~} are limit vectors of  v,, as x ~ O .  I f  1 1 - p ( D g ~ ) l = O ( l l x l l  2) for all x 6 E  
then D2go(v,w).Dgo(u)=O for u,v ,w~sp{v 1 . . . . .  vm}. I f  sp{v ~ . . . .  , v ' }~ -R"  then 
D2 Oo(V, w) = O. 

The proof  is identical to tha t  of  L e m m a  5.2. 

6. Minimal isometry sets 

D E F I N I T I O N  

A set E c M is minimal under  f if it is invar iant  and  contains  no invar iant  subsets. 
A set E is an isometry set if Df is an isometry  at  each x6E.  

Theorem 6.1. Let f :M ~ M be a C 3 mapping of  a compact Riemannian 2-manifold M. 
Let E c M be an isometry minimal set. Let y, z eE  where z is in a local geodesic coordinate 
chart about y. Then II Dfy(z - y) + �89 - y)2 II ~< tl z - y II + 0(11 z -  y II a). 

Here, " ( z - y ) "  refers to the vector  ueR  2 such tha t  expy(u )=  z; "Dfy" and "D2fy '' 
are the first and second derivatives at 0 of  the lift f :  TyM ~ TIyM. 

Notice that  Taylor 's  theorem alone merely implies that  II Dfy(z -  y)+ �89 II ~< 
II z - y It + 0( II z - y II 2) ifDfy is an isometry.  The  p roo f  of  T h e o r e m  2.1 uses the dynamics  
of f as well as the isometry  condi t ion on Df to sharpen the estimate.  

Proof. We may  assume tha t  E is an infinite set, otherwise the result is trivial. It  follows 
that E is perfect since it is an  infinite minimal  set. 

First, suppose  there exists a point  x~E with sequences p and  q in E approach ing  
x from two directions. 

Since f is C 1 (in fact C 3) and E is invariant,  each point  i f (x )  = x ,  has limit points  
in E from two directions. Since D f  is an i sometry  at  these points  it follows f rom L e m m a  
5.1 and L e m m a  5.2 that  DZf= 0 at  x, .  Since E is minimal ,  {x,} is dense in E. Since 
y6E, D2fy = 0. The  est imate follows. 

Now suppose  there is no point  in E with limit points  f rom two directions. Then  
for each x~E there is a unique unit  vector  vx a long which points  in E are converging 
towards x. Either  vx varies cont inuously  or  it does not. Suppose  vx is not  cont inuous  
at p. Then there exist at  least two distinct limits v' and  v" of  v~ as x ~ p .  By 
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Lemma 5.3 we have D2fp = 0. By the smoothness o f f  this discontinuity is preserved, 
so D2f~ = 0 for each orbi t  point  x = x,  and hence for each xeE.  

Suppose that v~ is a cont inuous function of x. We know by Lemma 5.2 only that  
D2f~(vx, v~)'Dfx(Vx) = 0. We need to estimate the dot  product  ID2fy(w, w)'Dfy(w)l where 
w = z - y .  

(6.2) Let g: R 2 ~ R 2 be C 2. I f  v" O2~7o(U, v)  = 0 then I w" D 2~O(W , W) I ~ Otl W tt 3. sin (PC, U). 

Proof 0f6.2. Assume v = (1, 0) and w = (1, y). Then v.D2go(V, u) = (1, 0)'(02g,/dxt~x, ~2g2/ 
dxdx) = 0. Thus  t3291/dxOx = 0. Using the Hessian matrix to express D2#o(W, w) in 
coordinates  we obtain 

iw D go(W,W)I= (1,y) i y * + y 

+ +y 2o,  l 

Therefore there exist constants  C > 0 and C' > 0, depending on the second derivative 
of g, such that  [w.D2go(W,W)[ <. CIIyll ~ C']sin(w,v)l. The estimate 6.2 follows from 
the linearity of the dot  product  and the second derivative. Hence 

(6.3) ID2fy(Z-y)2.Dfy(z-y)[<.  OIIz-yH3.1sin(vy, z - y ) [ .  

We next estimate [s in(v , , z -y)[  for y,z~E. The  function vy is continuous.  It is 
uniformly cont inuous by compactness of M. Since vy approximates  ( z -  y ) / l l z - y  II it 
follows that I sin (vy, z - Y) I ~< 0 ]] z - y II. Hence, I Defy(z - y)2.Dfy(z - y)] ~< 0 II z - y 114. 

(6.4) I f  a, b~R z, ttaH <~ 1, Ja.bl <~ OllaIt4 and lib II <~ 0 [lalI 2 then Ila+bll <~ [lall +Oil a[t 3. 

Proof of  6.4. Let c be the unique vector such that  a ' ( b - c ) = c . ( b - c ) = O .  Then 
I cos 0l = II c II/ll b It where 0 is the angle between a and b. We have ] a-b I = U a l[ lib [] f cos 0] ~< 
0 I[ a [I 4. H e n c e  IJ a II II c II ~< 0 II a IJ 4 and thus H c II ~< 0 I[ a II 3. Note  II b - c II ~ I[ b II ~< 0[[ a II 2. 
Since a ' ( b - c ) = O  it follows that [[a + ( b - c ) H  =x/( l la l /2  + l / b -  cll2) ~< 
x/(lla[I 2 + Ctla[14)<~ IJaH + 0[lall 3. Hence lla + bll ~< Ha+(b-c ) l l  + Ilcl[ ~< 
Ilai[ + 0liail 3. 

By (6.3) and (6.4) we conclude 

II of , (z  - y) + �89 y y  II ~< II z -  y II + o(ll z -  y It 3). q.e.d. 

C O R O L L A R Y  6.5 

Let E be an isometry minimal set of a C a mapping f of  a compact Riemannian 2-manifold 
M. I f  y e M  and zEE then 

(d(f"(Y),f~(z)))2=ov 
n = |  

Proof. Let y ~ M  and zeE. Since E is compact ,  there exists a constant  # > 0 and 
geodesic coordinate  charts Uzn = Un based at f .(z)  = zn with radius >/z. We can assume 
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that there exists a positive integer N such that y,  lies in U, for n >/N. Otherwise the 
result is immediate. Assume n f> N. 

By Taylor's theorem, since f is C 3 and E is compact ,  there exists a constant  A > 0 
such that in the coordinates of  the chart  U,,  

But 

Hence 

II f ( y . )  - ( f ( z . )  + Dfz.(y.  - z.) + �89 D2f~.(y. - z.) 2) II 

I lY , -Z ,  II 3 

III D L . ( y .  - z . )  + �89 O2 f z,,(yn - zn) 2 II - II y .  - z .  III 

IlY,,- z,,ll 3 
< A '  

II f (Y , )  -- ( f ( z , )  + (y, - z,))]l 

I lY. -  z.II 3 
< A". 

< A .  

Since f ( Y . ) = Y . + I  lies in U.+I  we may replace f (y . )  by Y.+I. By the triangle 
inequality 

II y . +  1 - ( z . .  ~ - ( y .  - z . ))  tl 
~< ~<A". 

I l y , - z ,  ll 3 [ l l y , + ~ -  z .+l  I I -  I l y , -  z, II 

6.6 I f  a sequence o f  positive numbers a.--,O satisfies 

then 

[a, + x -- a.[ < A and ao + a 
la, l" a, 

> B > 0  

f a~-I = oo. 
a=l 

Proof of  (6.6). Since a, ~ 0 it follows that  

Hence 

f l  a_. = a  1 
a = l a n  + l a N  

- - - ) o o  as N-~oo .  

f l l _  a, n= l ~ +  ~ 00. 

By hypothesis (a, + 1/a,) > B and a~ > (I a, + ~ - a, ]/A), so 

It follows from the comparison test that  ~',~= x a~- ~ = oo. 
With (6.6) we may complete the proof  of Corol lary 6.5. Since D f i s  an isometry at 

z,, there exists a constant  B > 0 such that II y,§ ~ - z,+ 1 tl/ll y ,  - z, II > B. Let a,  = 
II Y, - z, II and r = 3. q.e.d. 

COROLLARY 6.7 

Let f be a C 3 diffeomorphism o f  a compact Riemannian 2-manifold M and Q c M a 
minimal isometry set. I f  Q is a Denjoy Cantor set then Q is not square-rectifiable. 
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Proof. By definition, if Q is a Denjoy Cantor  set in M there exists h:Q ~ S ~ mapping 
Q onto a Denjoy Cantor  set F in S 1. Let Xo and Yo be the inverse image of endpoints 
of an interval complementary to F in $1. Since f preserves the order of  Q the intervals 
(x~,y~) are each disjoint from Q and each other. By Corollary 6.5, ~,d(xn, y~) 2 = oo. 
Thus Q is not square-rectifiable, q.e.d. 

D E F I N I T I O N  

A Jordan curve Q in a Riemannian two-manifold is a quasi-circle if there exists a 
positive constant K such that if x ,y~Q then one of the arcs of Q connecting x and y 
is contained in a disk of radius Kd(x, y). 

P R O P O S I T I O N  6.8 

A quasi-circle Q is square-rectifiable. 

Proof. Let xl < x2 < ' . "  be a partition of Q. 

Let an = d(xn,xn+l) and Bn the disk of radius aJ8K centered at xn where K is the 
quasi-constant for Q. The result follows from compactness of Q if the Bn are disjoint. 
Suppose Bn c~ Bm# ~ .  Then d(x,, x,O < (an + am)/8K <~ aJ4K, assuming am ~< an. Since 
Q is a quasi-circle, one of the arcs connecting xn and xm is contained in a disk of 
radius a J4. Let z be a point in this arc equidistant from xn and x~,. Then 
d(x~, z) = d(xm, z) < a J2. Thus a n = d(x~, xm) ~ d(xn, z) + d(z~, xm) < an. q.e.d. 

C O R O L L A R Y  6.9 

Let f be a C 3 diffeomorphism of a compact Riemannian 2-manifold M and Q ~ M a 
minimal isometry set. I f  Q is a Denjoy Cantor set then Q is not square-rectifiable. 
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