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Dynamics on Ahlfors quasi-circles
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Abstract. The celebrated theory of Denjoy introduced a topological invariant distinguishing
C! and C? diffeomorphisms of the circle. A C? diffeomorphism of the circle cannot have an
infinite minimal set other than the circle itself. However, this is possible for C! diffeo-
morphisms. In dimension two there is a related invariant. distinguishing C? and C3
diffeomorphisms.

Theorem. Let O be a quasi-circle contained in a surface. If I is an infinite minimal isometry
set in Q for a C3 diffeomorphism, then I equals Q. There exists a C? diffeomorphism of the
annulus with a minimal Cantor set contained in a quasi-circle.
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1. Introduction

Poincaré¢ and Birkhoff proved that a measure preserving homeomorphism of the
two-dimensional annulus which twists the two boundary components in opposite
directions must have fixed points in the interior of 4. What is known as KAM theory
emerged from this and is currently being developed and refined. (See [7], [8] and [9],
for example.) The theory produces global topological and dynamical conclusions from
local assumptions— C? differentiability and infinitesimal ‘twisting’. The C* hypothesis
is sharp; there exist counterexamples in the C2 + § category. (See [6].) In this paper
we consider a problem with some rudimentary resemblance to twist theory.

Let f be a C" diffeomorphism of the two-dimensional annulus A =S x [-1,1] to
itself which is repelling at one boundary component 4* = §* x {1} and attracting at
the other 4~ =S' x {—1}. Suppose f has no periodic points in int(4,). If one orbit
‘gets across’, must they all? That is, if the a-limit set of x, is in 4* and its w-limit set
isin A~ for some X €4, then is this true for every X eA? There is growing evidence
that the answer is in the affirmative for r = 3. We pose an equivalent version of this
question.

2. The north pole, south pole conjecture

Suppose f:S2 —+ 52 is a C? diffeomorphism with the north pole N a repeller, the south
pole S an attractor and no other periodic points. If one orbit is asymptotic to both
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S and N then f is dynamically equivalent to the standard north pole, south pole
diffeomorphism.

Formally, the conclusion means that f is the time one map of the gradient flow on S2.

A C diffeomorphism f:M — M is of class C"*? if the rth derivative satisfies a
J-Holder condition. That is, there exists C >0 such that | D"f, —D'f, | <C|x—y [
for x, yeM.

There exist counter-examples to the NP-SP conjecture if f is C2*°. (See [5], [4]
and [3].) We show in this paper that C? is a natural bound to these examples. Hence
the NP-SP conjecture concerns the topological-dynamical invariants that might
distinguish C2*% and C3.

We find the coordinates of the annulus more convenient to work with and put this
spherical formulation aside.

A non-empty, closed, invariant set I" of a homeomorphism f is said to be minimal
if it is closed and contains no smaller non-empty, closed, invariant sets.

If there is a counter-example to the NP-SP conjecture then there exists a C’
diffeomorphism f of the annulus without periodic points which has one orbit
asymptotic to both boundary components and one orbit whose closure I' stays
bounded away from dA. Furthermore, I may be taken to be a minimal set. In [4] it
is shown that the existence of such a diffeomorphism implies the existence of a C”
Seifert counter-example. That is, there exists a C" vector field on the three-sphere S>
with neither zeroes nor closed integral curves. Hence the NP-SP conjecture is
‘contained’ in the Seifert conjecture.

A recent theorem of John Franks is useful in analyzing the dynamics of f.

Theorem (Franks). Let f:A— A be a homeomorphism of the open annulus A and xeA.
Let g be a lift of f to the universal cover Rx[ —1,1] of A and y a lift of x. Let y, denote
the first component of g"(y). If there exists a rational number p/q with

lim?* <? <fim2"

n g n
then there exists a point ze A with f%(z) =z.

By the theorem of Franks, I' must be an infinite, perfect minimal set which has
irrational rotation number—the cyclic order is preserved by f. Certainly I" could not
be a circle, otherwise no orbit would get across it; however, it is not known if I" must
be a Cantor set.

3. The Denjoy Cantor sets

The reader might be reminded of the Denjoy’s theory where the critical degree of
differentiability is 2 and the dimension is 1. Denjoy [1] found that the degree of
differentiability of a circle difffomorphism f influences its topological type. If f is C?
and has no periodic points then f has simple dynamics—it is topologically conjugate
to a rotation through an irrational angle. This is not the case in the C'*? category.

Suppose ' = §! is a Cantor set. If there exists a homeomorphism f:5* - S! for
which I' is minimal, then the pair (f,T') is a Denjoy Cantor set. Denjoy Cantor sets
provide the key ingredient to classifying homeomorphisms of the circle. Poincaré
defined the rotation numbers and showed that all homeomorphisms of the cirtle have
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them. Furthermore, any homeomorphism of the circle with irrational rotation number
a is either topologically conjugate to a rigid rotation through o or has a minimal
Cantor set. Denjoy proved that these examples can all exist as C! diffeomorphisms
but not C? (actually C! ** is impossible). We call these examples Denjoy Cantor sets.
More generally, a homeomorphism ¢g:I” — I, I contained in an n-manifold M is also
called a Denjoy Cantor set if the pair (g, I") is topologically conjugate to a Denjoy
Cantor set (f,I') in S*. That is, there exists an embedding h:T" — M such that /(") =T"
and h-f=g-h.

It is not completely understood under what circumstances Denjoy Cantor sets can
exist. Hall [2] showed that it is possible to have a Denjoy Cantor set in a C* annular
diffeomorphism. However, it is attracting, and so no orbit is asymptotic to both
boundary components. Do there exist C* diffeomorphisms f of 4 with no periodic
points, a Denjoy Cantor set (f,I') and one orbit asymptotic to both boundary
components? We consider some possibilities.

There are two features of I for us to study—its structure as a subset of 4 and the
properties of the first derivative of f at T, the distortion of f at T

Using the methods of Denjoy, one can rule out any Denjoy Cantor set I” contained
in a smooth Jordan curve as long as f is C2 It is not possible for I' to have totally
arbitrary topological structure since minimality implies homogeneity. A natural
question arises—how wild can I' be?

In Denjoy’s theory, the simplest C! examples have first derivative, the identity at
the minimal Cantor set. It is quite easy to show there are no C? diffeomorphisms of
the circle with this condition at the Cantor set: Let L, denote the intervals
complementary to I, indexed so that f(L,)=L,,,. Let a,=|L,|. Since f is C!, we
can apply the mean value theorem and continuity of the first derivative to conclude
that a,/a,,, — 1 as n— o0. If f were C2, we could apply the mean value theorem to
[’ and use continuity of the second derivative to conclude that
i
_ On+r

a'l

-0 asn- oo,

It follows that ) a, = oo, contradicting the finite arc length of S*.

The same proof extends to R? and shows there are no C? annular diffeomorphisms
with the first derivative the identity and the second derivative the 0 bilinear
transformation at a square rectifiable Denjoy Cantor set.

4. Isometry sets

In this paper we consider a large class of ‘simplest” examples. We assume that the
first derivative of f at each point of I is an isometry for some Riemannian metric on
A. The isometry may vary from point to point. We call I' an isometry set. Note that
this isometry condition on I', even for the usual metric on A, is weaker than the
identity hypothesis. The annulus may be replaced by any Riemannian manifold M.

We need a little more background before we can state the main results.

Smooth curves Q are n-rectifiable for all n = 1. That is, there exists a constant L >0
such that ¥ |x; — x;,,|" < L for all partitions x, < x, <--<x; <X;,,; <+ of Q. A
curve is square rectifiable if it is 2-rectifiable. One can. similarly define the notion of
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n-rectifiable for subsets of curves or for any set on which there is a well-defined order.
In particular, we may consider whether Denjoy Cantor sets are n-rectifiable.
Topological curves and Cantor sets may be so wild that they fail to be n-rectifiable,
for any n. However, additional restrictions guarantee that curves be square-rectifiable.

A curve Q is called a quasi-curve if there exists K > 0 such that if x, yeQ, the arc
connecting x and y is contained in a disc of radius Kd(x, y). A quasi-circle is a Jordan
curve which is the union of quasi-arcs. We prove

PROPOSITION
Quasi-arcs are square rectifiable.
Theorem. Let f be a C? diffeomorphism of a compact Riemannian n-manifold M and

I’ = M a minimal isometry set. If T is a Denjoy Cantor set then I is not square rectifiable.

The Proposition and Theorem imply the following

COROLLARY

Let f be a C? diffeomorphism of the annulus A and Q < A a quasi-circle. If T < Q is an
infinite, minimal isometry set then I = Q.

Proof. Since T is an infinite minimal set, the rotation number of f|, is irrational.
Then I' can only be a Cantor set or all of Q.

These results depend on a general estimate for the asymptotic behaviour of pairs
of orbits of isometry minimal sets. This is an example of an estimate of ‘non-linear’
distortion.

Theorem. Let E be an isometry minimal set of a C* mapping f of a compact Riemannian
2-manifold M. If yeM and zeE then

i d(y, X,)? = co.
n=1

The proof of Denjoy’s result depends on the divergence of the Poincaré series for
C? maps f

IDf%I"

1

s

i

n

(See Sullivan [10], for example). In practice Df’; is sometimes replaced by d(x,, y,) for
s in the minimal set and y arbiirary in the manifold where d is the Riemannian metric
on M. The exponent is related to the degree of differentiability of f. If fis C, it is
natural to estimate the general dynamic sum

5, 9. X,y

even on higher dimensional manifolds. In this paper we restrict ourselves to
Riemannian two-manifolds and r = 3, although generalizations to higher dimensions
and degrees of differentiability are possible.
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5. Isometry and the second derivative

A linear transformation from one normed space to another, say T:E, — E,, is an
isometry if T is a bijection and
[ Tx|g, = lxlg, for all xeE,.

The quantity
p(T)=maX|: sup | Tx|lg,, sup 1/| TxIIEZ:|

Ixlg, =1 Ixlg, =1
measures how non-isometric is T. Then p(T)>1; T is an isometry if and only if
p(T)=1and T is a bijection.

Lemma 5.1. Let f be a C? diffeomorphism of a Riemannian m-manifold M and peM,
fixed. Suppose there exists p,—p such that T, f is an isometry respecting the given
Riemann structure g of M. Let f be the lift of f from M to T,M ~ R™ at p.

TM——T; .M
€XPp expfy Pn= epr_ l(pn)
M— M

Let p,=exp, ' (p,), then the sequence of linear maps
DONP: T,M—T,,M

is non-isometric only to the extent:
11— p(DF5,) = Ol P, 1)

Remarks. The norms on T,M and T,,M are g(p) and g(fp) respectively. The length

|11_7:|[ is also calculated with respect to g(p), although we could replace ||p,| with
d(p,, p) since

1P, |
d(p, p)

-1 asp,—p.
Proof. To calculate p((Df )E) one considers the pulled-up Riemann structure on T,M
and T,,M, namely
Jp:GpWps 1, 0) =T, exp, (), T, €xP, (1) Dexp, )
for all w,eT,M near O, and
for all u, veT,, (T,M)~ T,M
rp' GrpWsps V) =< T, €xPsp (), Ty, €XD;p (0) Dexpyy (-

The map Df at the point E: exp, ! (p,) is an isometry from the tangent space to
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T,M at P, €quipped with the ‘metric g’,,(IT,.; *) to the tangent space to T,,M at f(p,)

equipped with the metric G, ,(fp,; *)-

Let e',...,e™ be an orthonormal basis for T,M.

The map T,f:T,M —T,;,M is an isometry (being the limit of isometries) so
T,f(e"),...,T,f(e™) is an orthonormal basis at T;,M. Both these bases give rise to
g,-expressions for the metrics g, and g,, on T,M and T,M. Besides,

Gipw,) = g, (W, €, ) = 3, + O(||w, [1?)
g_ijfp(wfp) = gfp(wfp; Tpf(ei)’ Tpf(ej)) = 5ij + O(|| Wep Il 2)-
DB, (DN Dgirpy

=Y (i-th component of v)*> where v = (Df p.(4)

Thus

=Y §;;(i-th component of v)(j-th component of v)
=¥ G.ir»(fP,)(i-th component of v)(j-th component of v)

+ Y (8 — i,/ ) (fP,) (i-th component of v)(j-th component of v)
= ((DNsfw),  (DI)5(w),, (/p.)

+ Y04 fp)(?b:)(i-th component of v)(j-th component of v)

9rp

= () )+ OUL P 12 1 Df ()12
=|lul®>+ O(il p, |?)-constant [ u/|>.

Since f is a diffeomorphism and T, f is an isometry we have

Ipall/Ifpall > 1 as n—co.

Hence || Df,, | =1+ O(|p,I1%)* = 1+ O(|p,1|?). qed.

Let x, be a sequence of points in R". Suppose there exists a finite set of unit vectors
o', v2,...,o™ in R" which is the limit set of {x;/||x;{|}. If || x;l =0, we say that the
sequence x; converges to 0 from m directions v!, v?,...,0™

Lemma 5.2. Let g be a C? diffeomorphism of R". Suppose there exist points xeR"
converging to O from m directions v',...,v™ such that |1 — p(Dg)| = (|| x|?). Then
D?go(v, w)-Dgo(u) = 0 for u,v,wesp(v?,...,v™). If sp(v?,...,v™) = R" then D*go(r, w) = 0.

The author is grateful to M Shub and C Robinson for the following proof.

Proof. Observe that Dg, is an isometry since p(Dg,) = 1.

The set of linear transformations {Dgq 'Dg,} is tangent to the orthogonal metrices
at the identity (where x = 0). The antisymmetric metrices form the tangent space to
the orthogonal matrices based at the identity. Hence, if 4 = Dg, ! D?g,, then A(v) = A,
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is antisymmetric for vesp(v',...,v™}. Thus A, (w,)'w, = —w,-A4,(w,) for all vectors
w; and w,.

Letv,wesp {v',...,v™}. Then A (v) w= —v- A (W)= —v- 4, (0)=A, () v=A,(wW)v=
—w4,(v)=0. Write 4,(v)=x + yesp{v',...,v™} x R' where R' is the orthogonal
complement to sp {v,...,0™}. Then 0= A, (v)'x =x'x + y'x. Since y-x =0 we have
x+x =0.Thus x = 0and A,(v)eR’. Since A4, (v + w) = A,(v) + 24,(w) + 4,(w)eR’, then
A4 w)eR". Hence u* A,(w) =0 for all u,v, wesp {v},...,v™}. Note that if sp {v',...,0™} =
R" then A, w)=0.

Hence 0= u-Dgq *D?go(v, w) = (Dgou)°D?golv, w). If sp{v',...,0™} = R" then 0=
Dggy 'D?go(v, w). Since Dy, is an isometry, 0 = D2gy(v, w). qed.

Lemma 5.3. Let g be a C? diffeomorphism of R". Let E c R". Suppose there exist
points xeE converging to O where x is a limit point of E in the direction v,. Suppose
{v',...,v™} are limit vectors of v, as x—0. If |1 —p(Dg,)}=O0(|x||?) for all xeE
then D?go(v,w):Dgo(u)=0 for wu,v,wesp{v',....,v"}. If sp{v',...,0™} =R" then
D2g4(v,w)=0.

The proof is identical to that of Lemma 5.2.

6. Minimal isometry sets

DEFINITION

A set E = M is minimal under f if it is invariant and contains no invariant subsets.
A set E is an isometry set if Df is an isometry at each xeE.

Theorem 6.1. Let f:M — M be a C? mapping of a compact Riemannian 2-manifold M.
Let E = M be an isometry minimal set. Let y, ze E where z is in a local geodesic coordinate
chart about y. Then | Dfy(z — y) +$D*fy(z — y* I < ||z =y + Oz~ y||?).

Here, “(z — y)” refers to the vector ueR? such that exp, (u) = z; “Df,” and “D*f,”
are the first and second derivatives at 0 of the lift f: T,M - T, M.

Notice that Taylor’s theorem alone merely implies that || Df (z— y) +4D*f(z— y)*II <
lz—yl + 0z —y|?if Df,, is an isometry. The proof of Theorem 2.1 uses the dynamics
of f as well as the isometry condition on Df to sharpen the estimate.

Proof. We may assume that E is an infinite set, otherwise the result is trivial. It follows
that E is perfect since it is an infinite minimal set.

First, suppose there exists a point xeE with sequences p and g in E approaching
x from two directions.

Since f is C! (in fact C?) and E is invariant, each point f"(x) = x,, has limit points
in E from two directions. Since Df is an isometry at these points it follows from Lemma
5.1 and Lemma 5.2 that D*f=0 at x,. Since E is minimal, {x,} is dense in E. Since
yeE, D*f, =0. The estimate follows.

Now suppose there is no point in E with limit points from two directions. Then
for each xeE there is a unique unit vector v, along which points in E are converging
towards x. Either v, varies continuously or it does not. Suppose v, is not continuous
at p. Then there exist at least two distinct limits v and v” of v, as x—p. By
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Lemma 5.3 we have D2f, = 0. By the smoothness of f this discontinuity is preserved,
so D*f, =0 for each orbit point x = x, and hence for each xeE.

Suppose that v, is a continuous function of x. We know by Lemma 5.2 only that
D?f (v,,v,) Df (v) = 0. We need to estimate the dot product | D*f,(w, w)- Df,(w)| where
w=z—y.

(6.2) Let g:R*—> R? be C If v'D?go(v,v) = O then |w-D2go(w, w)| < O || w|[3-sin (w, v).
Proofof6.2. Assumev =(1,0)and w=(1, y). Then v-D?gq(v,v) = (1,0)(8%g,/0x0x, dg,/

dxdx)=0. Thus d%g,/0xdx = 0. Using the Hessian matrix to express D?gq(w,w) in
coordinates we obtain

g, o%g, | g\ g2, Pgs
dydx +y dx0y +y oy* ) ox? +y6y6x’

0%g, 9’y
+y (6x¢9y + oy*
Therefore there exist constants C > 0 and C’ > 0, depending on the second derivative

of g, such that |w-D?gy(w,w)| < C|y| < C’|sin(w,v)|. The estimate 6.2 follows from
the linearity of the dot product and the second derivative. Hence

|w-Dgo(w, w)| = ,(l,y)'(y

(6.3) [D?f(z — y)*-Df (2 — »)I < Oz~ y||* |sin(v,, 2 — y)I.

We next estimate |sin(v,,z — y)| for y,zeE. The function v, is continuous. It is
uniformly continuous by compactness of M. Since v, approximates (z — y)/||z — y| it
follows that |sin (v,,z — y)| <Ofz — y|. Hence, |D*f,(z — y)*Df(z— Y| < 0]z - y|I*.

(6.4) Ifa,beR? Jlal<1,]a'b|<O|al*and |b[<O |a|*then[a+b] <iiall+O]a|>

Proofof 6.4. Let ¢ be the unique vector such that a(b—c)=c'(b—c)=0. Then
[cosBf=|c|/|| b|| where Ois the angle between aand b. We have |a-b|=||a| {|b] |cos 8] <
Ofla]|*. Hence |la]l llc|| <Olja||* and thus | c|| <Ol a|>. Note | b~ c|| < ||b]| <Ojla |/
Since a'(b—c)=0 it follows that |la+(b—oc)|=/(lal*+b—cld<

JUlal? +Cllal*) < |lall +0fial)®. Hence la+bll<lla+®B -l +lcl <
llall +0(al>.
By (6.3) and (6.4) we conclude
IDffz =) +4D*fz -y < | z—yl + Oz —y?). q.ed.
COROLLARY 6.5

Let E be an isometry minimal set of a C* mapping f of a compact Riemannian 2-manifold
M. If yeM and zeE then

§, @ro =

Proof. Let yeM and zeE. Since E is compact, there exists a constant >0 and
geodesic coordinate charts U, = U, based at f(z) = z, with radius > u. We can assume
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that there exists a positive integer N such that y, lies in U, for n > N. Otherwise the
result is immediate. Assume n > N.

By Taylor’s theorem, since f is C? and E is compact, there exists a constant 4 >0
such that in the coordinates of the chart U,,

“ f(yn) - (f(zn) + sz,.(yn - zn) + %szz,.(yn - zn)z) ” < A

1yn— 24l
But
Hlszn n" zn) +%D2fz,.(yn _zn)z ” - Ilyn —Z, "l < A’
1yn— 24l
Hence
1£0) =D+ =2 _ .

"yn_'zn"3

Since f(¥,) = ys+, lies in U,,, we may replace f(v,) by y,.,. By the triangle
inequality

!'yn+l_zn+1” - ”yn_zn" < "yn+1 _(zn+1 _(yn_zn))”

SAII.
"yn'—zn":; = ”J’..—Zn”3

6.6 If a sequence of positive numbers a, — 0 satisfies

A, 1—a a
'—%IT—'J<A and “*1>B>0
a'l an
then
a0
Y a7l =00.

a

Proof of (6.6). Since a,— 0 it follows that

N
a a
— ="l,0 as N-ow.
a=18,+1 4y
Hence
ao
a
Y |1 ———|=c0.
n=1 Ay +1

By hypothesis (a,+/a,) > B and a, > (|a,., — a,l/4), so

1 B
-1 =
o >A >A

_ian+l a, a,

a,

ﬁ'_tl__l
a!l

11— 1-—

Ay Ayt

It follows from the comparison test that 3%, a, ™' = 0.
With (6.6) we may complete the proof of Corollary 6.5. Since Df is an isometry at
z,, there exists a constant B> 0 such that || y,+; —2Zy+( I/llyn — 2,/ > B. Let a,=

Iyn— 2zl and r=3. g.ed.

COROLLARY 6.7

Let f be a C? diffeomorphism of a compact Riemannian 2-manifold M and Q<M a
minimal isometry set. If Q is a Denjoy Cantor set then Q is not square-rectifiable.
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Proof. By definition, if Q is a Denjoy Cantor set in M there exists h:Q — S! mapping
Q onto a Denjoy Cantor set I' in S1. Let x, and y, be the inverse image of endpoints
of an interval complementary to I' in §!. Since f preserves the order of Q the intervals
(x,, yn) are each disjoint from Q and each other. By Corollary 6.5, 3 d(x,, y,)* = .
Thus Q is not square-rectifiable. q.ed.

DEFINITION

A Jordan curve @ in a Riemannian two-manifold is a quasi-circle if there exists a
positive constant K such that if x, yeQ then one of the arcs of Q connecting x and y
is contained in a disk of radius Kd(x, y).

PROPOSITION 6.8

A quasi-circle Q is square-rectifiable.

Proof. Let x, < x, <--- be a partition of Q.

Let a, =d(x,,x,.,) and B, the disk of radius a,/8K centered at x, where K is the
quasi-constant for Q. The result follows from compactness of Q if the B, are disjoint.
Suppose B, B,, # &. Then d(x,, x,) < (a, + a,)/8K < a,/4K, assuming a,, < a,. Since
Q is a quasi-circle, one of the arcs connecting x, and x,, is contained in a disk of
radius a,/4. Let z be a point in this arc equidistant from x, and x,. Then
d(x,,2) = d(x,,, z) < a,/2. Thus a, = d(x,, x,,) <d(x,,z) + d(z,, x,) < a,. ged.

COROLLARY 6.9

Let f be a C* diffeomorphism of a compact Riemannian 2-manifold M and Q<M a
minimal isometry set. If Q is a Denjoy Cantor set then Q is not square-rectifiable.
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