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Abstract

We prove a generalized mirror conjecture for non-negative complete intersections in

symplectic toric manifolds. Namely, we express solutions of the PDE system describing

quantum cohomology of such a manifold in terms of suitable hypergeometric functions.

0. Introduction. Let X denote a non-singular compact Kähler toric
variety with the Picard number k. The variety X can be obtained by the
symplectic reduction of the standard Hermitian space CN by the action of
a subtorus T k in the torus TN of diagonal unitary matrices on a generic
level of the momentum map (see Section 3). The coordinate hyperplanes
in CN are TN -invariant, and their T k-reductions on the same level of the
momentum map define N compact toric hypersurfaces in X. We denote
u1, ..., uN the classes in H2(X) Poincare-dual to the fundamental cycles of
these hypersurfaces. It is known that H2(X) is a free abelian group of rank
k spanned by u1, ..., uN, that it multiplicatively generates the ring H∗(X),
and that the 1-st Chern class c(TX) of the tangent bundle to X is equal to
u1 + ...+ uN .

Let us consider the sum V of l ≥ 0 non-negative line bundles over X
with the 1-st Chern classes v1, ..., vl and denote Y the non-singular complete
intersection in X of dimension N − k − l defined by global holomorphic sec-
tions of these line bundles. The inclusion Y ⊂ X induces the homomorphism

∗Research is partially supported by Alfred P. Sloan Foundation and by NSF grant
DMS-9321915
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H2(X) → H2(Y ) The cohomology ring H∗(Y ) contains the subring multi-
plicatively generated by the classes u1, ..., uN. We denote this subring H∗(V).
It carries the Poincare pairing 〈f, g〉 =

∫

[Y ]
fg =

∫

[X ]
fgv1...vl non-degenerate

over Q. The 1-st Chern class c(TY ) of the tangent bundle to Y is equal to
u1 + ...+ uN − v1 − ...− vl.

Given a compact Kähler manifold Y , the Gromov - Witten theory [14]
associates to it the quantum cohomology algebra and the quantum cohomology
D-module.

Let us introduce the semigroup Λ ⊂ H2(Y ) of fundamental classes of
compact holomorphic curves in Y . The quantum cohomology algebra is
a skew - commutative associative deformation of the cohomology algebra
H∗(Y,Q[[Λ]]) with coefficients in a formal completion of the semigroup alge-
bra Q[Λ]. The structural constants 〈a ◦ b, c〉 of the quantum multiplication ◦
are formal series

∑

d∈Λ nd(a, b, c)q
d where qd is the element of the semigroup

ring corresponding to the homology class d ∈ Λ. The coefficient nd(a, b, c) has
the meaning of the number of holomorphic maps CP 1 → Y representing the
homology class d and sending 0, 1,∞ ∈ CP 1 to given cycles in Y Poincare-
dual to the classes a, b, c ∈ H∗(Y ) respectively. We refer to [5, 14] for variants
of actual definitions which employ intersection theory in Kontsevich’s com-
pactifications of moduli spaces of stable maps CP 1 → Y (see Section 1). In
particular nd(a, b, c) = 0 unless the total degree of the classes a, b, c equals
the real dimension of the fundamental class in the space of maps CP 1 → Y
representing the class d. This gives rise to the grading deg qd = 2

∫

[d]
c(TY )

in the quantum cohomology algebra.
In addition to the associativity identity the structural constants of the

quantum multiplication satisfy some integrability condition which can be
formulated as compatibility of certain system of linear differential equations.
Let (t1, ..., tk) denote coordinated on H2(Y ) with respect to a basis (p1, ..., pk)
of integral symplectic classes. The basis qd in the semigroup ring Z[Λ] can be
identified with qd1

1 ...q
dk

k = exp(t1d1 + ...+ tkdk) where (d1, ..., dk) are coordi-
nates of d ∈ H2(Y ) with respect to the dual basis. Denote t0 the coordinate
on H0(Y ). The operators pi◦ of quantum multiplication act on vector func-
tions s(t0, t) with values in H∗(Y,C). In these notations the integrability
condition reads:

~
∂

∂t0
s = s, ~

∂

∂ti
s = pi ◦ s, i = 1, ..., k,
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form a consistent system of linear PDEs.
Solutions s to the PDE system can also be interpreted in terms of in-

tersection theory on spaces of stable maps (see Section 1). The D-module
corresponding to this system is generated by a single formal vector-function
JY (t, ~−1) with coefficients in H∗(Y,Q) (see Section 1). It has the following
property [10]: whenever a scalar differential operator D(~∂/∂t, exp t, ~) with
coefficients in C[~][[Λ]] annihilates (all components of the vector-function)
JY , the symbol D(p◦, q, 0) vanishes in the quantum cohomology algebra of
Y .

A construction of JY in terms of intersection theory on moduli spaces of
stable maps is given in Section 1. By the very definition the function JY has
the the asymptotical expansion

JY = e(t0+p1t1+...+pktk)/~(1 + o(1/~)).

In applications to a toric complete intersection Y ⊂ X we will detect
degrees of holomorphic curves in Y by their degrees in X. This means that
Λ will denote the semigroup of classes of compact holomorphic curves in X,
t1, ..., tk will be coordinates on H2(X), and JY — a formal series in qi = eti.
Notice that in the case where v1, ..., vl are positive and dimY > 2, the map
H2(Y ) → H2(X) is an isomorphism and thus the notation JY has the same
meaning as before. However for semi-positive v1, ..., vl (and dimY > 1) the
map H2(Y ) → H2(X) can have a non-trivial kernel, and therefore JY is
obtained from the vector-function discussed in the previous paragraphs by
the restriction operation. 1

We will denote J the orthogonal projection of the vector-function JY to
the subalgebra H∗(V ,Q) ⊂ H∗(Y,Q).

Introduce the formal vector-function I(t, ~−1) with values in H∗(V ,Q):

(∗) I = e(t0+p1t1+...+pktk)/~
∑

d∈Λ

et1d1+...+tkdk ×

×
Πl

a=1Π
La(d)
m=−∞(va +m~) ΠN

j=1Π
0
m=−∞(uj +m~)

Πl
a=1Π

0
m=−∞(va +m~) ΠN

j=1Π
Dj(d)
m=−∞(uj +m~)

,

1I would like to thank V. Batyrev and B. Kim who pointed me to this subtlety in the
semi-positive case.
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where Dj(d) =
∫

[d]
uj, La(d) =

∫

[d]
va. The function I is the product of

e(t0+p log q)/~ with a power series in q = et supported in Λ and weighted-
homogeneous of degree 0 with respect to the grading

deg ~ = deg uj = deg va = 1, deg qd =

∫

[d]

c(TY ).

The function J has the same properties (see Section 1).

Theorem 0.1. Let Y be a non-singular toric complete intersection with
the non-negative 1-st Chern class c(TY ). Then the formal vector-functions
I and J with coefficients in H∗(V ,Q) coincide up to a triangular weighted-
homogeneous change of variables:

t0 7→ t0 + f0(q)~ + h(q), log qi 7→ log qi + fi(q)

where h, f0, f1, ..., fk are weighted-homogeneous power series supported in Λ−
0 and deg f0 = deg fi = 0.

Remarks. 1) Comparisson of the asymptotic expansions for the compo-
nents in H0(V ,Q) and H2(V ,Q) of the functions I and J in orders h0 and
h−1 uniquely determines the change of variables that transforms I to J (see
Section 7).

2) The assumption c(TY ) ≥ 0 guarantees that deg qd ≥ 0 for all d ∈
Λ− 0. If c(TY ) is positive, then the change of coordinates transforming I to
J reduces to the multiplication by exp(h(q)/~) where h(q) is a polynomial
supported at {d ∈ Λ|

∫

[d]
c(TY ) = 1}. Thus the functions I and J coincide

whenever this support is empty (for instance, if c(TY ) is a multiple of a
positive integer class).

3) In the opposite case
∑

va =
∑

uj the manifold Y is a Calabi-Yau toric
complete intersection (in the broad sense that c(TY ) = 0). Then deg qi = 0
for all i, h(q) = 0 and

exp f0 =
∑

d:Dj(d)≥0

qd L1(d)!...Ll(d)!

D1(d)!...DN(d)!
.

This and other components of the vector-function I are generalized hyperge-
ometric functions.

4



Example: toric manifolds themselves. Taking l = 0 in Theorem 0.1
we arrive at the case Y = X of Gromov – Witten theory on non-singular toric
symplectic manifolds with c(TX) ≥ 0. We describe further simplifications
which occur in this case.

(a) If the anti-canonical class of the toric manifold is positive then I = JX.
The proof consists in elementary verification of the asymptotoc expansion
I = exp((t0 + p log q)/~) (1 + o(1/~)). In particular, symbols of differential
operators annihilating I yield the relations

u
D1(d)
1 ...u

DN(d)
N = qd

in the quantum cohomology algebra of X (see Corollary 0.4 below). This
result agrees with the multiplicative structure in Floer cohomology of the
loop space LX constructed in [7] by the method of generating functions (and
based on discretization of loops) and with the results in [3, 16] on quantum
cohomology of positive toric manifolds.

(b) If the anti-canonical class of the toric manifold is semi-positive then

I = e(t0+p log q)/~ [1 + p1f1(q)/~ + ...+ pkfk(q)/~ + o(1/~)]

and differs from JX only by the change of variables log qi 7→ log qi +fi(q). We
illustrate this case by the following instructive example which also exhibits
symplectic invariance of Gromov – Witten theory.

Let X1 and X2 be the toric 3-folds obtained by projectivization of the
following 3-dimensional vector bundles over CP 1: O(−1)⊕O(−1)⊕O for X1

and O(−2)⊕O⊕O for X2. The bundles are topologically (and symplecticly)
equivalent and the manifolds X1 and X2 are symplectomorphic. They are
not isomorphic however as complex manifolds, and we shall see how the same
Gromov – Witten invariants emerge from different computational procedures.

The manifolds X1, X2 are obtained by factorization of C5 by the torus T 2
C

embedded into the 5-torus of diagonal matrices as prescribed by the matrices
M t

1 and M t
2 respectively:

M1 =

[

1 1 0 −1 −1
0 0 1 1 1

]

, M2 =

[

1 1 0 0 −2
0 0 1 1 1

]

.

The columns of the matrix M represent the classes u1, ..., u5 as linear combi-
nations of a basis p1, p2 inH2(X): for X1 we have u1 = u2 = p1, u3 = p2, u4 =
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u5 = p2 − p1. Using upper-case notations for X2 we get U1 = U2 = p1, U3 =
U4 = p2, U5 = p2 − 2p1. We refer the reader to Section 3 for a detailed com-
binatorial description of cohomological invariants of toric manifolds. Using
that description we find the multiplicative relations u1u2 = 0, u3u4u5 = 0
and U1U2 = 0, U3U4U5 = 0 in the cohomology algebra and observe that they
are effectively the same:

H∗(X) = Z[p1, p2]/(p
2
1, p

3
2 − 2p2

2p1).

The Kähler cone in both cases consists of p1t1 + p2t2 with t1, t2 > 0. The
anti-canonical class

∑

uj =
∑

Uj = 3p2, and the semigroup algebra Q[[Λ]]
of identifies with Q[[q1, q2]] with the grading deg q1 = 0, deg q2 = 3.

The series I corresponding to X1 has the form

I1 = e(t0+p1 log q1+p2 log q2)/~×

∞
∑

d1,d2=0

qd1

1 q
d2

2 Π0
m=−∞(p2 − p1 +m~)2

Πd1

m=1(p1 +m~)2 Πd2

m=1(p2 +m~) Πd2−d1

m=−∞(p2 − p1 +m~)2

It has the asymptotics exp((t0 + p log q)/~) [1 + o(1/~)] and thus coincides
with JX .

The series I1 is annihilated by the differential operators

∆1 = (~
∂

∂ log q1
)2 − q1(~

∂

∂ log q2
− ~

∂

∂ log q1
)2,

∆2 = ~
∂

∂ log q2
(~

∂

∂ log q2
− ~

∂

∂ log q1
)2 − q2.

Thus the relations

p2
1 = q1(p2 − p1)

2, p2(p2 − p1)
2 = q2

describe the quantum deformation of the cohomology algebra of X.
The series I corresponding to X2 has the form (we use the upper-case

notations Q1, Q2 instead of q1, q2):

I2 = e(t0+p1 logQ1+p2 logQ2)/~×

∞
∑

d1,d2=0

Qd1

1 Q
d2

2 Π0
m=−∞(p2 − 2p1 +m~)

Πd1

m=1(p1 +m~)2 Πd2

m=1(p2 +m~)2 Πd2−2d1

m=−∞(p2 − 2p1 +m~)
.
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It has the asymptotics exp((t0 + p logQ)/~) [1+ (2p1 − p2)f(Q1)/~ + o(1/~)]
where

f(Q1) =
∞

∑

d1=1

(2d1 − 1)!

(d1!)2
Qd1

1 .

We have to put therefore q1 = Q1 exp(2f(Q1)), q2 = Q2 exp(−f(Q1)).
In fact the inverse change of variables is given by the simple formulas

Q1 =
q1

(1 + q1)2
, Q2 = q2(1 + q1),

Q2
∂

∂Q2
= q2

∂

∂q2
, Q2

∂

∂Q2
− 2Q1

∂

∂Q1
=

1 + q1
1 − q1

(q2
∂

∂q2
− 2q1

∂

∂q1
).

With these formulas at hands it is straightforward to check that the change
of variables transforms the system of differential equations

~3(Q2
∂

∂Q2

)2(Q2
∂

∂Q2

− 2Q1
∂

∂Q1

) I = Q2 I

(Q1
∂

∂Q1
)2 I = Q1(Q2

∂

∂Q2
− 2Q1

∂

∂Q1
)(Q2

∂

∂Q2
− 2Q1

∂

∂Q1
− 1) I

satisfied by I = I2 to the system ∆1I = 0,∆2I = 0 satisfied by I = I1. This
guarantees that I2(Q(q)) = I1(q) and finally gives rise to the same description
of the quantum cohomology algebra. �

Our proof of Theorem 0.1 is based on an equivariant generalization of the
Gromov – Witten theory.

Let V be a holomorphic l - dimensional vector bundle over the n - dimen-
sional Kähler manifold X equivariant with repect to a hamiltonian Killing
action of a torus G. It was explained in [10] how to extend the Gromov –
Witten theory to the G - super - manifolds (X,V) of dimension (n, l) in the
case of convex V (i.e. bundles with all fibers spanned by global holomorphic
sections). 2

The equivariant quantum cohomology algebra of the super - manifold
(X,V) is a deformation of the cup - product in the equivariant cohomology al-
gebraH∗

G(X,Q) provided with the Poincaré pairing 〈f, g〉 =
∫

[X ]
fg Euler(V)

2The idea of the construction is due to M. Kontsevich (see [12, 10]) while the termi-
nology of super-manifolds in this context was introduced by A. Schwarz [17].
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with values inH∗
G(point) = H∗(BG,Q). Here the equivariant top Chern class

Euler(V) is assumed to be invertible over the field of fractions of the poly-
nomial algebra H∗(BG,Q) ≃ Q[λ1, ..., λdimG]. Respectively, the equivariant
quantum cohomology algebra and the quantum cohomology D-module of the
super-manifold are defined over this field of fractions. It is important how-
ever that the structural constants 〈a◦ b, c〉 and the components 〈JV , a〉 of the
corresponding solution vector-function are defined over the polynomial alge-
bra C[λ] (as some equivariant Poincaré pairings with the top Chern classes of
suitable vector bundles over the moduli spaces of stable maps to X, see Sec-
tion 1). In the non-equivariant limit to λ = 0 the algebra (H∗

G(X)/ker〈·, ·〉)
degenerates to H∗(V), and the corresponding structural constants and so-
lutions turn into their counterparts in the Gromov-Witten theory on the
complete intersection Y ⊂ X defined by a generic holomorphic section of
V . This allows to obtain Theorem 0.1 as the specialization to λ = 0 of the
following result about toric super-manifolds.

Let us consider the equivariant cohomology algebra H∗
T N (X) of the toric

manifold X = CN//T k provided with the action of the torus TN of diagonal
unitary matrices. The coefficient algebra H∗(BTN) of the equivariant theory
is canonically isomorphic to the algebra Z[λ1, ..., λN] of polynomial functions
on LieTN . The algebra H∗

T N (X) is multiplicatively generated over Z[λ] by
the equivariant counterpart p1, ..., pk ∈ H2(X) of a basis in H2(X). The
equivariant classes u1, ..., uN ∈ H2

G(X) Poincare-dual to the G-invariant toric
hypersurfaces corresponding to the coordinate hyperplanes in CN are some
linear combinations

uj =
k

∑

i=1

pimij − λj , j = 1, ..., N,

of these generators. The relations between the generators pi can be written
in the form (see Section 3):

uj1 ...ujr = 0, j1 < ... < jr,

whenever the toric hypersurfaces corresponding to uj1, ..., ujr have empty
intersection.

Let V denote the direct sum of l ≥ 0 non-negative TN -equivariant line
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bundles over X with the non-zero equivariant 1-st Chern classes

va =
k

∑

i=1

pilia − λ′a, a = 1, ..., l.

The variables (λ′, ..., λ′l) here stand for the generators of H∗(BT l) where the
torus T l acts fiberwise on the bundle V . (One may think of the toric super-
manifold (X,V) as of the symplectic reduction of the super-space (CN ,Cl)
by the torus T k embedded into the maximal torus G = TN ×T l by means of
the matrix (mij|lia).)

Denote JV(t0, log q, ~
−1) the solution formal vector-function of the equiv-

ariant Gromov – Witten theory on the super-manifold (X,V). Define another
formal vector-function IV(t0, log q, ~

−1) by the formal series (∗). Coefficients
of both formal functions are G-equivariant cohomology classes of X over
Q[λ, λ′]. In the limit (λ, λ′) = 0 the functions JV and IV yield J and I
respectively.

Theorem 0.2. Suppose that 1-st Chern class
∑

uj −
∑

va of the super-
manifold (X,V) is non-negative. Then JV coincides with IV up to a weighted-
homogeneous triangular change of variables:

t0 7→ t0 + f0(q)~ +
∑

λjgj(q) + h(q), log qi 7→ log qi + fi(q), i = 1, ..., k

where f0, fi, gj, h are weighted-homogeneous formal q-series with deg f0 =
deg fi = deg gj = 0, deg h = 1 supported at Λ − 0.

Corollary 0.3. Suppose that a linear differential operator
D(~∂/∂ log q, q, λ, ~) with coefficients in C[λ, ~][[Λ]] annihilates the vector-
function IV transformed to the new variables. Then the relation D(p◦, q, λ, 0)
= 0 holds in the quantum cohomology algebra of the super-manifold (X,V).
In particular, in the quantum cohomology algebra of the complete intersection
Y ⊂ X (with dimY > 1) we have 〈a,D(p◦, q, 0, 0) ◦ b〉 = 0 for any a, b ∈
H∗(V) ⊂ H∗(Y ).

Remarks. 4) The change of variables transforming IV to JV is uniquely
determined by the asymptotics of IV modulo ~−2.

5) The qd-term in 〈a, b◦pi1◦...◦pir〉 has the following enumerative meaning:
it is the (virtual) number of degree d holomorphic maps CP 1 → Y which
send a given generic configuration of r + 2 distinct points in CP 1 to the
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given generic cycles a, b and r given generic hypersurfaces Poincare-dual to
pi1 , ..., pir respectively.

6) Due to a somewhat subtle relationship between the quantum cohomol-
ogy algebras of Y and (X,V) it seems to be dangerous to deduce enumerative
corollaries about Y directly from differential equations for J (instead of JV or
JY ). We do not know counter-examples however. In many cases such corol-
laries can be justified by means of additional dimensional or Hodge-theoretic
arguments. In particular, if ⊕Hr,r(Y ) ⊂ H∗(V ,C) (for example if Y ⊂ X is a
hypersurface of odd dimension), we have 〈a, JY 〉 = 〈a, J〉 for all a ∈ H∗(Y ).
In this case D(p◦, q, 0) = 0 if the differential operator D(~∂/∂ log q, q, ~)
annihilates I transformed to the new variables as described in Theorem 0.1.

Consider now the differential equations satisfied by IV . Put

∂j =
∑

i

mij~∂/∂ log qi − λj , j = 1, ..., N,

∂ ′
a =

∑

i

lia∂/∂ log qi − λ′a, a = 1, ..., l.

For each d ∈ Λ with D1(d), ..., DN(d) ≥ 0 we introduce the differential oper-
ator (see [9]):

∆d = ΠjΠ
Dj(d)−1
m=0 (∂j −m~)− qdΠaΠ

La(d)
m=1 (∂ ′

a +m~).

It follows easily from the detailed description of the equivariant cohomology
algebra H∗

G(X) given in Section 3 that ∆dIV = 0. (In fact IV may satisfy
some stronger differential equations.)

Denote ∆̂d the polynomial

u
D1(d)
1 ...u

DN(d)
N − qdv

L1(d)
1 ...v

Ll(d)
l

in the quantum cohomology algebra of the non-negative toric complete in-
tersection Y ⊂ X.

Corollary 0.4. Suppose that for the toric complete intersection Y ⊂ X
we have JV = IV (for instance due to the causes described in Remark 2).
Then 〈a, b ◦ ∆̂d〉 = 0 for any a, b ∈ H∗(V) ⊂ H∗(Y ).

We would like to emphasise the hypergeometric character of the function
IV . It is easy to see that the differential operators ∆d annihilate also the
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following hypergeometric integrals:
∫

Γ⊂Eq

e(
P

uj−
P

va)/~ u
λ1/~

1 ...u
λN/~

N v
λ′

1/~

1 ...v
λ′

l/~

l ×

×
d log u1 ∧ ... ∧ d log uN ∧ dv1 ∧ ... ∧ dvl

d log q1 ∧ ... ∧ d log qk

.

Here Γq is a suitable real N − k + l-dimensional (non-compact) cycle in the
complex N − k + l-dimensional variety

Eq = {(u, v)|ΠN
j=1u

mij

j = qiΠ
l
a=1v

lia
a , i = 1, ..., k}

provided with the local coefficient system uλ/~vλ′/~.

Example: a mirror theorem. Partition the variables u1, ..., uN into
l + 1 groups and denote Fa the sum of uj in each group, a = 0, ..., l. Define
the matrix (lia) in such a way that va = Fa(u), a = 1, ..., l, correspond to
convex line bundles on X. In the limit λ′ = 0, λ = 0 the above integral
evaluated explicitly over Rl

+ in dv reduces to
∫

Γ′

q⊂X ′

q

eF0(u)/~
d log u1 ∧ ... ∧ d log uN

(1 − F1(u))...(1− Fl(u)) d log q1 ∧ ...∧ d log qk

where X ′
q = {u|Πju

mij

j = qi, i = 1, ..., k}. Further reduction by Cauchy
residue formula yields

(∗∗)

∫

γq⊂Y ′

q

eF0(u)/~
d log u1 ∧ ... ∧ d log uN

dF1 ∧ ... ∧ dFl ∧ d log q1 ∧ ... ∧ d log qk
.

Here γq can be understood as Morse-theoretic cycles of the function ReF0

restricted to the N − k − l-dimensional manifold

Y ′
q = {u|Πju

mij

j = qi, i = 1, ..., l, Fa(u) = 1, a = 1, ..., l} .

It is not hard to see that all components of the vector-function I are
described by such integrals with suitable γq.

3 This constitutes the content
of the mirror symmetry between the toric complete intersections Y and Y ′.

3In general the converse is not true — different toric manifolds X = CN//T k obtained
by the reduction on different generic levels of the momentum map have different cohomol-
ogy algebras H∗(V) and may give rise to different I whose integral representations differ
by the choice of cycles only.
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Indeed:

(a) In the case of a Calabi–Yau toric complete intersection Y we have
∑

uj =
∑

va and thus F0(u) = 0. The affine varieties X ′
q in this case can

be compactified (see [2]) to the toric varietiy X̂ ′ with the momentum poly-
hedron polar to that for X. The varieties Y ′

q are compactified to (singular)

Calabi–Yau complete intersections Ŷ ′
q ⊂ X̂ ′. The forms d log u/dv ∧ d log q

extend to holomorphic volume forms ωq on desingularizations of Ŷ ′
q . Thus

the components of the hypergeometric series I are identified with the pe-
riods

∫

γlog q
ωq responsible for variations of complex structures in a family

Calabi–Yau manifolds birationally isomorphic to Ŷ ′
q .

According to V.Batyrev [2] the q-family of Calabi–Yau manifolds is mirror
- symmetric to the original family of toric complete intersections Y , and
thus our Theorem 0.1 confirms the mirror conjecture for Calabi – Yau toric
complete intersections formulated in detail in [4].

(b) In the lecture [9] we suggested a generalisation of the mirror conjec-
ture beyond the class of Calabi – Yau manifolds. 4 In this generalization
the quantum cohomology D-module of a compact Kähler manifold Y should
be equivalent, up to some change of variables, to the D-module generated
by the oscillating integrals

∫

efq/~ωq defined by a suitable family (Y ′
q , ωq, fq)

of (possibly non-compact) complex algebraic manifolds Y ′
q (of the same di-

mension as Y ) provided with holomorphic volume forms ωq and holomorphic
phase functions fq. This generalisation was confirmed for toric Fano mani-
folds in [9], for Fano and Calabi–Yau projective complete intersections in [10]
and for flag manifolds of the series A in [11]. Thus Theorem 0.1 along with
the integral representation (∗∗) proves our generalized mirror conjecture for
non-negative toric complete intersections described at the beginning of this
example. �

The remaining part of the paper contains a proof of Theorem 0.2. It
exploits some general properties of equivariant Gromov – Witten invariants
of super-manifolds (X,V) described in [10] in the setting of convex Kähler
manifoldsX. Foundations of the Gromov – Witten theory for general X were
developed recently by several groups of authors (see for instance [14]). It
appears that these results admit straightforward equivariant generalizations.

4A similar generalization was recently proposed in [6].
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However there is no ready reference for such a generalization in the literature.
In Section 1 we describe the properties of the equivariant Gromov–Witten
theory we use in this paper in the axiomatic form. These properties have been
verified in [10] for convex X. Thus the proof of Theorems 0.1 and 0.2 given
in this paper is complete in the case of non-negative complete intersections in
products of projective spaces (such products are convex), and in the case of
more general toric manifolds still should be complemented by a verification
of the axioms.

The present work was started and finished during my visits to IHES and
respectively RIMS. I would like to thank these institutions and especially my
hosts — M. Kontsevich and K. Saito — for hospitality. I am also thankful
to V. Batyrev and B. Kim for sending in corrections and comments.

1. Moduli spaces of stable maps. Let (C, x) be a compact connected
complex algebraic curve with at most double singular points and with r
pairwise distinct non-singular marked points x = (x1, ..., xr). We will assume
that C has the arithmetic genus dimH1(C,O) = 0. Two holomorphic maps
(C, x) → M, (C ′, x′) → M of two such curves to a complex manifold Y
are called equivalent if they are identified by a holomorphic isomorphism
(C, x) → (C ′, x′). A holomorphic map (C, x) → M is called stable (see [12])
if it does not admit non-trivial infinitesimal automorphisms. A stable map
may have a non-trivial finite group of discrete automorphisms.

The degree of a holomorphic map (C, x) →M is defined as the homology
class d ∈ H2(M) it represents.

Denote Mr,d the set of equivalence classes of degree d genus 0 stable maps
(C, x) → M with r marked points. For a compact projective variety M the
set Mr,d has a natural structure of a compact complex algebraic variety (see
[12, 5]). We will call the spaces Mr,d the moduli spaces of stable maps.

If M is a homogeneous Kähler space of a compact semi-simple Lie group,
the moduli spaces Mn,d are known [5] to be non-singular orbifolds i.e. local
quotients of non-singular spaces by finite groups. In particular the spaces
have natural fundamental cycles providing Poincaré duality over Q. For gen-
eral M it is still convenient to think of the moduli spaces Mn,d as of singular
orbifolds i.e. local quotients of singular spaces by finite groups. The finite
groups in question are the discrete automorphism groups of stable maps, and
many local constructions in the moduli spaces become transparent only after
passing to their local “unquotient” coverings. Vector bundles and their char-
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acteristic classes provide important examples of the orbifold ideology. By a
vector bundle over Mn,d we mean a sheaf which is locally identified with the
sheaf of invariant sections of a natural local vector bundle on such coverings.
The structural group G of the bundle acts with at most finite stabilizers
on the total space of corresponding principal bundle P → Mn,d. In this
case the rational coefficient equivariant cohomology algebra H∗

G(P,Q) nat-
urally identifies with H∗(Mn,d,Q). Then the augmentation homomorphism
H∗(BG,Q) → H∗

G(P,Q) induced by the G-equivariant map P → pt defines
characteristic classes of the bundle. Talking about vector bundles over the
moduli spaces, their Euler and Chern classes we will always have this orbifold
subtlety in mind.

According to [15, 14] the moduli spaces Mn,d can be provided with virtual
fundamental cycles — rational homology classes of Mr,d satisfying the axioms
[13] of Gromov - Witten theory. We call the virtual fundamental cycles
Gromov - Witten classes. Both the axioms and their realization by means of
Gromov - Witten classes allow dependence of M on parameters.

Suppose that a compact Lie group G acts on a compact Kähler mani-
fold M by hamiltonian automorphisms of the Kähler structure. Then G acts
naturally on the Moduli spacesMr,d. Let B ⊂ BG be a finite-dimensional ap-
proximation to the classifying space BG of principalG-bundles, andMB → B
— the associated M-bundle. The bundle can be considered as a family of
compact Kähler manifolds. This allows one to construct parametric Gromov
- Witten classes in the moduli spaces (Mr,d)B → B. Exhausting BG by the
finite-dimensional approximations one can construct G-equivariant Gromov-
Witten classes [Mr,d]. The recent progress [15, 14] in foundations of Gromov
– Witten theory leaves little doubt that the “virtual fundamental class” ap-
proach is consistent with the axioms [13, 10] of equivariant Gromov – Witten
theory.

We describe below a variant of the axioms in the form convenient for
applications in the present paper.

(1) The equivariant Gromov - Witten class defines an H∗(BG,Q) - lin-
ear function

∫

[Mr,d ]
: H∗

G(Mr,d,Q) → H∗(BG,Q) of homogeneity degree

−2[(c1(TM ), d)+dimCM + r− 3]. The moduli spaces Mr,0 are isomorphic to
M × M̄r where M̄r is the Deligne - Mumford compactification of the moduli
space Mr of ordered r-tuples of distinct points on CP 1. The Gromov - Wit-
ten classes [Mr,0] are (equivariant) fundamental cycles of the manifolds Mr,0
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for r ≥ 3 and are not defined for r = 0, 1, 2.
Remark. It is crucial for applications in this paper that the equivari-

ant Gromov – Witten class is indeed defined over the polynomial algebra
H∗(BG,Q) and not over its field of fractions.

(2) There exist natural equivariant forgetting maps fgts : Mr+1,d → Mr,d

defined (see [12, 5]) by forgetting the marked point xs, 1 ≤ s ≤ r+1. The fiber
of fgts over the point represented by a stable map (C, x) → M is canonically
isomorphic to the quotient of C by the finite group of automorphisms of the
stable map.

(3) There exist natural equivariant evaluation maps evs : Mr,d → M
defined by evaluation of a stable map at the marked point xs. The 3-point
correlators

〈a, b, c〉 :=
∑

d

qd

∫

[M3,d]

ev∗
1(a) ev∗

2(b) ev∗
3(c)

are structural constants 〈a◦b, c〉 of a (super) commutative associative Frobe-
nius algebra structure on (H∗

G(M), 〈·, ·〉) with the unity 1. Here qd stands
for the element in the group ring of the lattice H2(M) corresponding to
d ∈ H2(M), and the (super) symmetric bilinear form 〈a, b〉 is the (equivari-
ant) Poincare pairing

∫

M
ab. The axiom means that the new H∗(BG,Q[[q]])-

bilinear multiplication ◦ on H∗
G(M,Q[[q]]) defined by

〈a ◦ b, c〉 := 〈a, b, c〉 ∀a, b, c ∈ H∗
G(M)

is associative, and that the class 1 ∈ H0
G(M) plays the role of the unity:

〈a, b, 1〉 = 〈a, b〉 ∀a, b ∈ H∗
G(M).

Here Q[[q]] is the formally completed semigroup algebra of the semigroup
of degrees d ∈ H2(M) of compact holomorphic curves in M . The algebra
(H∗

G(M,Q[[q]]), ◦) is called the (equivariant) quantum cohomology algebra
of M . Reduced modulo the maximal ideal in Q[[q]], it identifies with the
“classical” cohomology algebra H∗

G(M,Q) since M3,0 = M .
(4) Let d = (d1, ..., dk) denote coordinates of d with respect to a basis in

H2(M), and p1, ..., pk ∈ H2
G(M) represent the dual basis in H2(M)/H2(BG).

The H∗(BG) - linear operators pi◦ of quantum multiplication by pi satisfy

qi∂(pj◦)/∂qi = qj∂(pi◦)∂qj.
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These identities along with associativity and commutativity of the quantum
multiplication mean that the following linear system of parial differential
equations is consitent for any value of the parameter ~ 6= 0:

~
∂

∂t0
s = s, ~qi

∂

∂qi
s = pi ◦ s, i = 1, ..., k.

(5) When a runs an H∗(BG)-basis in H∗
G(M), the following formal vector

- functions sa run a basis of solutions to the above PDE system (see e. g.
[10]). Define the (equivariant) class sa of M (with appropriate coefficients)
by

∀b ∈ H∗
G(M) 〈sa, b〉 =

∫

M

e(t0+p1 log q1+...+pk log qk)/~ab+

∑

d6=0

qd

∫

[M2,d]

ev∗
1(e

(t0+p1 log q1+...+pk log qk)/~a)

~ − c
ev∗

2(b).

Here c is the (equivariant) 1-st Chern class of the following line bundle
over M2,d called the universal cotangent line at the 1-st marked point. The
forgetful map fgt3 : M3,d → M2,d (defined for d 6= 0) has the section
mk1 : M2,d → M3,d defined by marked point x1 in each fiber. The uni-
versal cotangent line is defined as the conormal bundle to the hypersurface
mk1(M2,d) in M3,d. The fiber of this bundle at the point represented by the
stable map (C, x1, x2) →M is the cotangent line T ∗

x1
C .

In particular, this axiom implies (see [10]) that whenever a differential
operator

D(~q1∂/∂q1, ..., ~qk∂/∂qk, q1, ..., qk, ~)

with coefficients in H∗(BG,C[[q, ~]]) annihilates simultaneously all functions
〈sa, 1〉, a ∈ H∗

G(M), the relation D(p1◦, ..., pk◦, q1, ..., qk, 0) = 0 defined by
the symbol of this operator holds true in the quantum cohomology algebra
of M . The vector-function JM mentioned in the introduction is defined by
∀a 〈sa, 1〉 = 〈a, JM〉.

(6) A holomorphic vector bundle V over M is called convex if each fiber
of V is generated by global holomorphic sections of V . The Gromov –
Witten theory of the super-manifold (M,V) is constructed by taking f 7→
∫

[Mr,d ]
f Euler(Vn,d) on the role of Gromov – Witten classes. Here Vn,d is the

vector bundle
Vr,d = (fgtr+1)∗(ev

∗
r+1(V)).
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over the moduli space Mn,d. The fiber of Vr,d over the point in Mr,d rep-
resented by the degree d stable map φ : (C, x) → M is H0(C, φ∗(V)) and
has the complex dimension (c1(V), d) since H1(C, φ∗(V)) = 0 due to the con-
vexity of the bundle. Evaluation at a marked point defines an epimorphism
Vn,d → V of the bundles over evs : Mn,d → M . This allows one to introduce
the correlators 〈a, b, c〉, 〈sa, b〉 for a, b, c from the quotientH∗(V) of H∗(X,Q)
by the kernel of the intersection form 〈a, b〉 =

∫

M
a b Euler(V) and thus to

define for the super-manifold (X,V) the quantum cohomology algebra and
the quantum cohomology D-module satisfying the analogues of the axioms
(3),(4),(5) of the super-manifold (X,V). Analogous axioms hold true in the
equivariant setting provided that the convex bundle V isG-equivariant. Then
Euler(·) means the equivariant Euler class. In particular, the vector-function
JV from Introduction is the counterpart of JM in the case of the (equivariant)
super-manifolds (X,V).

(7) Let Y be a non-singular submanifold in M defined as the zero locus of
a section of the convex vector bundle V . The inclusion i : Y ⊂ M identifies
the Frobenius algebra (H∗(V), a 7→

∫

M
a Euler(V)) with the image of the

homomorphism i∗ : H∗(M,Q) → H∗(Y,Q). Respectively, the inclusion of
the moduli spaces Yn,d → Mn,i∗d maps the Gromov – Witten class [Yn,d]
to the Gromov – Witten class corresponding to the super-manifold (X,V).
This implies that the correlators 〈a, b, c〉, 〈sa, b〉 for Y of the classes a, b, c
induced from M can be computed by integration over the Gromov – Witten
classes [Mn,d] against the Euler classes of Vn,d. In particular the orthogonal
projection J of the vector-function JY to i∗(H∗(M,Q)) identifies with (the
non-equivariant version of) JV .

(8) The Borel fixed point localization technique applies to the Gromov
- Witten classes [Mr,d]. Consider the action of the torus G on Mr,d. A
fixed point of this action is represented by a map φ : (C, x) → M such
that each irreducible component of C is mapped either to the fixed point
manifoldMG or onto a complex 1-dimensional orbit of GC. We will formulate
the axiom in the special case where both the set of fixed points MG and
the set of 1-dimensional orbits are finite. If it is the case, each connected
component of the fixed point set in Mr,d is (the quotient by a finite group of)
a product Π M̄n of Deligne-Mumford configuration spaces M̄n. Each factor
in this product parametrizes configurations of marked and singular points
on a 1-dimensional connected component of φ−1(MG) ⊂ C . On each of the
remaining irreducible components of C the map φ covers a compactified 1-
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dimensional orbit of G (with certain multiplicity in which case it ramifies at
the two compactifying fixed points). We will call these components edges of
the curve C .

The localization of the equivariant Gromov - Witten class [Mr,d] at the
fixed point component in Mr,d is

f 7→
1

|Aut|

∫

Π M̄n

f

Virtual Normal Euler Class
.

Here Aut is the automorphism group of a typical stable map φ from the fixed
point component in question.

In order to describe the Virtual Normal Euler Class consider the vector
spaces

Ni = Hi(C, φ∗(TM)), i = 0, 1, N2 = H0(C, TC[x]), N3 = ⊕yT
′
y ⊗ T ′′

y ,

where y runs double points of C situated on the edges, and T ′
y, T

′′
y are the

tangent spaces to the two components of C intersecting at y. Dimensions
of the spaces Ni do not change along the connected fixed point component
of Mr,d and thus they form vector bundles over Π M̄n. These bundles carry
natural infinitesimal actions of G. Indeed, this is obvoius for N0 and N1. The
differential φ∗ identifies the space N2 of infinitesimal automorphisms of (C, x)
with a G-invariant subspace in N0 due to stability of φ. For a double point
y on the edge C ′ where φ is an m-fold covering map, the space (TyC)⊗m

is identified with the tangent line to the closed 1-dimensional G-orbit at
a fixed point and thus inherits an infinitesimal action of G. The Virtual
Normal Euler Class is defined as the following combination of equivariant
Euler classes of the bundles Ni:

Euler(N0)Euler(N3)

Euler(N1)Euler(N2)
.

Remark. One can use this formula in order to define the Gromov - Witten
cycle in the equivariant theory. However the verification of the other axioms
and especially — the polynomiality property (1) of the Gromov - Witten
class to be defined over H∗(BG,Q) = Q[λ] — becomes then a nontrivial
combinatorial task.

2. Graph spaces and universal line bundles. Let X be a compact
projective manifold. For d ∈ H2(X) we call the graph space and denote by
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Gd(X) the moduli space of genus 0 holomorphic maps to CP 1 ×X of degree
(1, d). This space can be considered as a compactification of the space of
degree d holomorphic maps CP 1 → X. The automorphism group of CP 1

acts naturally on Gd(X).
Consider first the case X = CPN−1 = (CN − 0)/(C − 0). Denote by

Ld, d ∈ Z+, the projectivization Proj(CN ⊗ Sd(C2)) of the space of degree
d vector binary forms (P1(ζ : ξ) : ... : PN (ζ : ξ)). It is a projective space of
dimension Nd+N − 1 and carries a natural action of Aut(CP 1) = PSL2(C)
too.

We define the Aut(CP 1)-equivariant map µ : Gd(CP
N−1) → Ld. Consider

a stable degree (1, d) map ψ : C → CP 1 × CPN−1. There exist a unique
irreducible component C0 ∈ C such that ψ|C0

has degree (1, d′) where d′ ≤
d. The image ψ(C0) is the graph of a map CP 1 → CPN−1 of degree d′.
The map is given by the binary forms (P1 : ... : PN ) of degree d′ with no
common factors and determines the forms uniquely up to a non-zero constant
factor. The curve C −C0 has r connected components which are mapped to
CP 1 × CPN−1 with degrees (0, d1), ..., (0, dr), d1 + ...+ dr = d− d′, and the
image of i-th component is situated in the slice (ai : bi) × CPN−1. We put
µ([ψ]) = Πr

i=1(aiξ − biζ)
di(P1 : ... : Pr).

Proposition 2.1 ( see the Main Lemma in [10]).
The Aut(CP 1)-equivariant map µ : Gd(CP

N−1) → Ld is regular.

For a compact projective submanifold X ⊂ CPN−1 the graph space
Gd(X) is embedded into the space GD(CPN−1) where D = p(d) is the in-
tersection index of the class p ∈ H2(X) of hyperplane sections with the fun-
damental class of degree d curves. Consider the hyperplane line bundle over
the projective space LD and induce it to Gd(X) by the restriction of the map
µ. We will call it the universal line bundle corresponding to the embedding
of X to CPN−1. The universal line bundle is Aut(CP 1)-equivariant.

Let nowX be a compact projective manifold provided with a holomorphic
action of a compact Lie group G. Let us assume for simplicity that the 1-st
Chern class identifies the Picard group of X with H2(X). Represent a basis
in H2(X) over Q by the 1-st Chern classes of very ample G-equivariant line
bundles over X. The embeddings of X to projective spaces defined by holo-
morphic sections of these line bundles are G-equivariant. The universal line
bundles over Gd(X) corresponding to these embeddings are Aut(CP 1) × G
-equivariant in this case. We can now extend the construction of universal
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line bundles from ample to arbitrary elements of the Picard group by addi-
tivity. For a given equivariant line bundle over X with the G-equivariant 1-st
Chern class p ∈ H2

G(X) we will denote by the same letter p the Aut(CP 1)×G-
equivariant 1-st Chern class of the corresponding universal line bundle over
Gd(X). We will call p ∈ H2

PSL2(C)×G(Gd(X)) the universal class correspond-

ing to p ∈ H2
G(X).

In the sequel we will use S1-equivariant cohomology with respect to the
maximal torus S1 ⊂ PSL2(C). We will use the lifting of this action to C2

and to the spaces of binary forms defined in the way breaking the PSL2(C)-
symmetry:

(ζ, ξ) 7→ (exp(2πiφ) ζ, ξ).

If −p denotes the equivariant 1-st Chern class of the S1-equivariant Hopf
bundle defined by this lifting, then the equivariant integration over CP 1 and
LD is described respectively by the residue formulas

f(p, ~) 7→
1

2πi

∮

f(p, ~)dp

p(p + ~)
,

f(p, ~) 7→
1

2πi

∮

f(p, ~)dp

p(p− ~)(p− 2~)...(p−D~)
,

where Z[~] = H∗(CP∞) = H∗(BS1) stands for the coefficient ring of the
S1-equivariant cohomology theory.

Remark. The graph spaces can be considered as approximations to the
space of loops in X. In this interpretation the universal classes correspond
to S1-equivariant forms

(symplectic structure) + ~ (action functional)

on the loop space. Though heuristically important, such a relation with the
Floer theory on the loop space (see [8]) is technically avoidable. The same
applies to Proposition 2.1 (see the remark after Proposition 4.1).

3. Symplectic toric manifolds. Consider the standard real symplectic
space CN provided with the symplectic structure Im

∑

dz̄j ∧ dzj/2. The
maximal torus TN acts on CN by linear symplectic transformations z 7→
diag(exp2πix1, ..., exp2πixN)z. The momentum map J of this action maps
CN onto the closed 1-st orthant RN

+ in Lie∗TN .
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Consider a subtorus T k ⊂ TN . The momentum map of the action T k :
CN is the composition of J with the linear integral projection M : RN

+ →
Rk = Lie∗T k. Pick a regular value t of the momentum map and define the
symplectic orbifold X as the symplectic reduction X = C//tT

k = (M ◦
J)−1(t)/T k.

Denote by K ⊂ Rk the connected component containing t of the regular
value set. The orbifold X is canonically identified with the complex quotient
(M ◦ J)−1(K)/T k

C
. This quotient is a projective toric variety of dimension

N − k. It has no singularities of complex codimension 1.
The symplectic form on X depends on the choice of the momentum value

t ∈ K and is Kähler with respect to the complex structure. The action
of the quotient torus TN/T k on X preserves the form. The momentum
polyhedron of this action is the fiber M−1(t) in the orthant RN

+ . The orbifold
X is compact if and only if the polyhedron is compact or, equivalently, if
M−1(0) = {0}. If it is the case, we call X a compact symplectic toric variety.

Vice versa, a compact projective toric variety X with at most abelian
quotient singularities can be obtained as the above symplectic reduction
CN//tT

k with N equal to the number of hyperplane walls of the the mo-
mentum polyhedron. The polyhedron is described by N inequalities Hj ≥ cj
where Hj are reduced integral linear functions on Lie∗TN−k. These functions
define an embedding of the polyhedron onto a section of the 1-st orthant in
RN .

In the sequel we will assume that X is a compact symplectic toric variety
C//tT

k with the number of hyperplane walls of the momentum polyhedron
equal to N . We review below some basic properties of X (see [1, 7]).

(1) The variety X is non-singular if and only if all the k-dimensional faces
of the orthant RN

+ whose projection to Rk contain K are mapped to Rk with
the determinant ±1.

(2) The correspondence between the regular values t ∈ K of the mo-
mentum map and cohomology classes of Kähler symplectic forms is linear
and extends to an isomorphism Rk → H2(X,R). The isomorphism identifies
K with the Kähler cone of X, and the Picard group H2(X,Z) — with the
lattice Zk ⊂ Rk of characters of the torus T k. The 1-st Chern class of the
tangent sheaf TX is represented by the projection M(u1 + ... + uN ) of the
vector (1, ..., 1) ∈ RN .

(3) The cohomology algebra H∗(X,C) is multiplicatively generated by
Kähler classes and can be described as follows. In the space LieTN

C
dual
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to RN
C

consider the union X∗ of (N − k)-dimensional coordinate subspaces
— the orthogonal complements to those k-dimensional faces of RN

+ whose
projections to Rk contain K. Denote by J the ideal of X∗ in the alge-
bra C[u1, ..., uN] of regular functions on LieTN

C
. In the algebra C[p1, ..., pk]

of regular functions on LieT k
C

consider the ideal I induced from J by the
embedding LieT k

C
⊂ LieTN

C
. Then H∗(X,C) is canonically isomorphic to

C[p]/I. The isomorphism is induced by the correspondence between the in-
finitesimal characters uj and 1-st Chern classes of invertible sheaves on X.
This description is valid over Q, and for non-singular X — over Z.

(4) The algebra C[u]/J of regular functions on X∗ is similarly identified
with the equivariant cohomology algebra of X with respect to the action of
the quotient torus TN/T k. By definition, the equivariant cohomology algebra
of a G-space Y is the cohomology algebra of the homotopic quotient EG×G

Y and has the module structure over the ring H∗(BG) of G-characteristic
classes. In the case of a torus G the ring is identified with the polynomial
algebra on LieG. The C[LieTN/T k]-module structure on C[X∗] is defined
by the projection of X∗ along LieT k.

We will use the TN -equivariant cohomology algebra H∗
T N (X,C). Denote

by C[λ1, ..., λN] another copy of the characteristic class algebra H∗(BTN,C)
which will play the role of the coefficient ring of TN -equivariant theory
throughout the paper. Denote by (mij)

k
i=1

N
j=1 the matrix of the projec-

tion M : RN
+ → Rk. The C[λ]-algebra H∗

T N (X,C) is multiplicatively gen-

erated by (p1, ..., pk) satisfying the relations uj =
∑k

i=1 pimij − λj where
(u1, ..., uN) are the generators of C[X∗] = C[u]/J . For example, if M =
(1, ..., 1) then X = CPN−1, J = (u1...uN), and H∗

T N (X,C) is isomorphic to
C[p, λ]/((p− λ1)...(p− λN )). Here −p represents the equivariant 1-st Chern
class of the Hopf bundle over CPN provided with a natural lift of the torus
action. In general equivariant 1-st Chern classes of TN -equivariant invert-
ible sheaves on X are represented by integral linear combinations of uj. In
particular, u1 + ...+ uN represents the equivariant anti-canonical class of X.

(5) Integration over the fundamental cycle defines an H∗(BG)-linear
functional with values in H∗(BG) and the corresponding H∗(BG)-bilinear
Poincare pairing 〈f, g〉 =

∫

X
f ∧ g on the equivariant cohomology algebra

of a compact G-manifold. The Borel fixed point localization theorem gives
rize to the following explicit description of such integration in the case of the
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toric symplectic variety X:
∫

X

f(p, λ) =
∑

α

Resα
f(p, λ) dp1 ∧ ... ∧ dpk

u1(p, λ)...uN(p, λ)
.

Here the index α runs the set of fixed points of the torus action on X.
The fixed points correspond to the vertices of the momentum polyhedron
M−1(t) and therefore — to those k-faces of RN

+ whose projections to Rk

contain t. The orthogonal complement of such a face is given by k equations
uj1 = ... = ujk

= 0, j1 < ... < jk. The symbol Resα refers to the residue of
the k-form at the pole specified by the ordered set of equations

k
∑

i=1

pimijs = λs, s = 1, ..., k.

Permutations of the equations affect the sign of the residue.
We will denote p(α) = (p1(α), ..., pk(α)) the solution to this system of

linear equations and uj(α) the values of the linear functions uj =
∑

pimij−λj

at the point p(α). We will also identify in our notations the index α of the
fixed point of the TN -action on X with the corresponding vertex of the
momentum polyhedron and with the set {j1, ..., jk}.

Although the residues on the RHS are rational functions of λ, their sum
is a polynomial provided that f ∈ H∗

T N (X,C) is represented by a polynomial
f(p, λ). The equivariant Poincare pairing 〈f, g〉 =

∫

X
fg is non-degenerate

over Q[λ] (and even Z[λ] if X is non-singular). The value at λ = 0 of the
LHS represents

∫

X
f(p, 0) and gives rise to the ordinary Poincare pairing on

H∗(X).
Notice that the toric variety X and its properties have been described

entirely in terms of the N integer vectors Mu1, ...,MuN in Rk and the chosen
Kähler cone K ⊂ Rk.

We will assume further on that X denotes a non-singular compact sym-
plectic toric manifold.

A codimension l complete intersection Y ⊂ X is by definition the common
zero locus of holomorphic sections of l line bundles. Let v1, ..., vl be the
infinitesimal characters of TN which specify l equivariant line bundles La.
We will assume that La are non-negative, i.e. Mva ∈ K̄, and therefore that
the bundle V = ⊕aLa is convex.

23



We provide the bundle V with the additional action of the l-dimensional
torus T l acting fiberwise by scalar multiplication in each summand La. We
will study the equivariant Gromov - Witten theory of the pair (X, V) with
respect to the action of the torus T = TN × T l. The algebra

Q[λ1, ..., λN, λ
′
1, ..., λ

′
l] = H∗(BT,Q)

will play the role of the coefficient algebra of the theory. Now on we will as-
sume that uj, va, pi denote corresponding T -equivariant cohomology classes.
In particular the T -equivariant 1-st Chern classes of the line bundles La

and their fixed point localizations are represented by the linear combinations
va :=

∑

liapi − λ′a, and va(α) =
∑

liapi(α) − λ′a.
We introduce the T -equivariant integration over the virtual fundamental

class [Y ] of the corresponding (invariant) complete intersections:
∫

[Y ]

f :=

∫

X

f Euler(V) =
∑

α

Resα f(p, λ, λ′)
v1...vl dp1 ∧ ...∧ dpk

u1...uN
.

In the non-equivariant limit λ = 0, λ′ = 0 it reduces to the integration over
the fundamental class of non-singular comlete intersections Y ⊂ X as well as
the whole Gromov-Witten theory — to that for Y , according to the axiom
(7).

Degrees of compact holomorphic curves in X form the semigroup

Λ = {d ∈ H2(X)|(t, d) ≥ 0 ∀t ∈ K̄}.

The Kähler cone K̄ is the intersection ∩α∆α of images in Rk of k-faces in
RN

+ . Respectively, Λ coincides with the convex hull of the union ∪α∆∗
α of the

orthants ∆∗
α ⊂ Rk∗ polar to the orthants ∆α. We will denote by Z[[Λ]] the

formal completion of the semigroup ring Z[Λ] and represent an element d ∈ Λ
by the monomial qd = qd1

1 ...q
dk

k ∈ Z[Λ] where (d1, ..., dk) are coordinates of d
in (Zk)∗.

We will write d ≥ d′ if d− d′ ∈ Λ. It is a partial order on H2(X).
We will also use the notations

Dj =
∑

i

dimij, La =
∑

i

liadi

(which mask the actual dependence of these integers on the vector d).
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We complete this section with some notations and elementary informa-
tion about the 1-dimensional orbits of TN

C : X which will be exploited, in
accordance with the axiom (8), in the fixed point localization technique.

The 1-dimensional orbits correspond to the 1-dimensional edges of the
momentum polyhedron. The vertex α of the momentum polyhedron M−1(t)
is situated in the k-face {(T1, ..., TN)|Ts = 0, ∀s /∈ α} of RN

+ and connected
by one-dimensional edges to N − k other vertices β(α, j), j /∈ α, situated
in the (k + 1)-faces {(T1, ..., TN)|Ts = 0∀s /∈ α, s 6= j}. The edge itself
is the momentum polyhedron of the closure of a 1-dimensional toric orbit
Ck+1//tT

k in X isomorphic to CP 1. We denote by d(α, j) ∈ Λ the degree
of this CP 1 in X. The corresponding Ds(α, j) :=

∑

di(α, j)mis vanish for
k−1 values of the index s ∈ α∩β(α, j) and are equal to 1 for the two values
of s ∈ (α△β) = {j, j′}. We denote by La(α, j) the corresponding values
∑

di(α, j)lia of La. Notice that β and j′ ∈ α depend on and are uniquely
determined by a choice of α and j /∈ α.

For β = β(α, j) we have d(α, j) = d(β, j′) and

us(α) = us(β) +Ds(α, j)uj(α), va(α) = va(β) + La(α, j)uj(α),

In particular, uj(α) = −uj′(β).

4. The generating function. Let (X,V) be the nonsingular compact
toric symplectic manifold provided with the convex bundle equivariant with
respect to the action of T = TN × T l as described in the previous section.
Denote by Vd the vector bundle overGd(X) with the fiber H0(C, ψ∗π∗

2V) over
the point represented by the stable map φ : C → CP 1 × X. We will study
the following series:

G(z, q, ~;λ, λ′) =
∑

d∈Λ

qd

∫

[Gd(X)]

eP1z1+...+PkzkEuler(Vd).

Here (P1, ..., Pk) denote the universal classes inH2
T×S1(Gd(X),Q) correspond-

ing to the T -equivariant classes pi ∈ H2
T (X).

Proposition 4.1. The series G =
∑

gd,mq
dzm has polynomial coefficients

gd,m ∈ Q[~, λ, λ′].
Proof. The equivariant cohomology classes Pi and Euler(Vd) of Gd(X)

are defined over Q[~, λ, λ′], and the integration over the Gromov-Witten class
[Gd(X)] assumes values in Q[~, λ, λ′] by the axiom (1).
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Remark. The polynomiality property of gd,m is crucial for our proof of
Theorems 0.1, 0.2. However one can define the series G in terms of Gromov-
Witten theory on CP 1 × X (see [10] , Section 6) without mentioning the
universal classes Pi, and the polynomial property then follows directly from
the axiom (1). Thus our use of Proposition 2.1 is avoidable.

Proposition 4.2. (see [10]).

G(z, q, ~) =

∫

[Y ]

S(q exp(~z), ~) epz S(q,−~) ,

where S(q, ~;λ, λ′) is determined from the condition that for any a ∈ H∗
T (X)

∫

[X ]

S a =

∫

[X ]

Euler(V) a+
∑

d∈Λ−0

qd

∫

[X2,d]

ev∗
1(a) Euler(V2,d)

(~ − c)
.

Proof. The proposition is easily deduced (see [10]) by localization to fixed
points of the S1-action on Gd(X) and LD and from the following corollary
of the axiom (2):

∫

[X2,d ]

fgt∗2(A)

~ − c
=

∫

[X1,d]

A

~(~ − c)
.

Corollary 4.3. S = 1+ o(1/~) when written as a formal power series in
~−1.

Proof: Euler(V2,d) = fgt∗2(Euler(V1,d)).

Remark. The vector-function JV in Theorem 0.2 is defined in Section 1
as S exp((t0 +

∑

Pi log qi)/~).

Denote by Sα the restriction of the T -equivariant cohomology class S =
∑

d∈Λ Sα,dq
d to the fixed point α of the torus T action on X. The coefficients

Sα,d of the series Sα are rational functions of (~, λ, λ′).

Proposition 4.4. The series Sα satisfy the following recursion relations:

Sα(q, ~;λ, λ′) =
∑

d∈Λ

Rα,d(~
−1;λ, λ′)qd+

∑

j /∈α

∞
∑

n=1

qn dα,j
Cα,j(n)

n~ + uj(α)
Sβ(α,j)(q,−uj(α)/n;λ, λ′) ,
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where Rα,d are polynomials in ~−1 with coefficients in Q(λ, λ′), and the re-
cursion coefficients Cα,j(n) =

ΠaΠ
nLa(α,j)
m=1 (va(α) −muj(α)/n) Πs/∈α∪βΠm≤0(us(α) −muj(α)/n))

(n− 1)!(uj(α)/n)n−1) Πs/∈βΠm≤nDs(α,j)(us(α) −muj(α)/n)
.

Proof. We apply the fixed point localization technique to the action
of the torus T on X2,d. Consider a fixed point represented by the stable
map f : (C, x1, x2) → X and denote by C ′ the irreducible component of C
carrying the marked point x1. The contribution of this fixed point to Sα via
the localization formula described in the axiom (8) vanishes unless f(x1) = α.

If f(C ′) = α, then the contribution involves integration over the space
M̄r of configurations of r > 2 special points on the connected component of
f−1(α) containing x1. The universal cotangent line at the 1-st marked point
localizes to the line bundle over M̄r formed by the cotangent lines to C ′ at
x1. Since the action of T on this line bundle is trivial, the localization of the
Chern class c is nilpotent. Thus the contribution of such fixed points to the
localization formula is polynomial in 1/~.

If f(x1) = α but f(C ′) 6= α then f ′ := (f |C ′) is the degree n cover of
a 1-dimensional orbit of TC in X connecting the fixed point α with another
fixed point β = β(α, j). In this case f is glued from f ′ : (C ′, x1, x) → X and
a stable map f ′′ : (C ′′, x, x2) → X of degree d′′ = d − nd(α, j) with f ′(x) =
f ′′(x) = β. The localization of ~ − c in this case equals ~ + uj(α)/n. The
contribution of T ′

x⊗T ′′
x to the Virtual Normal Euler Class in the localization

axiom equals −uj(α)/n− c where c is the equivariant 1-st Chern class of the
universal cotangent line over X2,d′′ at the marked point x. The remaining
part of the Virtual Normal Euler Class is the product of such classes for f ′′

in X2,d′′ and for f ′ in X2,nd(α,j). The latter one can be easily computed by
using the quotient description of the tangent bundle to X = CN//T k as a
virtual direct sum of line bundles and is equal to 1/Cα,j(n). Also we have
|Autf | = n|Autf ′′| where n is the order of the cyclic automorphism group of
the n-fold cover f ′ : z 7→ zn.

The summation over all d′′, j /∈ α and n = 1, 2, ... gives rise to the
recursion relation. �

Proposition 4.5. The series S is uniquely determined by the following
properties:

(a) the recursion relations of Proposition 4.4,
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(b) the asymptotic condition S = 1 + o(1/~) of Corollary 4.3,
(c) the property from Proposition 4.1 of the series

∑

gd,mq
dzm =

∫

[Y ]

S(qe~z, ~)epzS(q,−~)

to have polynomial coefficients gd,m ∈ Q[~, λ, λ′].
Proof. Consider another solution S ′ to the same recursion relations (a)

with the same polynomials R′
α,d = Rα,d as in S for all 0 ≤ d < d0 and

satisfying the asymptotic condition (b). We will show that R′
α,d0

= Rα,d0
.

This would imply the uniqueness since, given all the polynomials Ra,d, the
recursion relations (a) allow one to recover the series S unambiguously.

Consider the qd0-term in G ′−G. The conditions (a),(b) imply that S ′−S =
Rqd0 + (higher order terms in q) and that qd0-term in G ′ − G is equal to

δ(R) =

∫

[Y ]

e(p+d0~)zR(~, λ) + epzR(−~, λ) ,

where the class R is defined by its localizations Rα = R′
α,d0

− Rα,d0
. From

(b) and (c) we know that R is a polynomial in 1/~ divisible by 1/~2 and that
the series δ =

∑

δmz
m has polynomial coefficients δm ∈ Q[~, λ, λ′].

A generic value of λ = (λ1, ..., λN) determines a linear function on the
momentum polyhedron RN

+ ∩ J−1(z) for each z ∈ K with pairwise distinct
values Hα at the vertices. Computing δ(A~−1 + B) modulo ~ for a generic
ray t 7→ tz we find

∑

α

eHαt(Aαt (z, d0) +Bα)Resα
v1...vl dp1 ∧ ...∧ dpk

u1...uN

.

Here v1(α)...va(α) 6= 0 for generic values of λ′, and (z, d0) > 0. Since the
functions exp(Hαt), t exp(Hαt) with distinctHα are linearly independent, we
conclude that δ(A/~ +B) = o(~) implies A = B = 0 in H∗

T (X,C(λ, λ′)) for
generic and therefore for all values of λ, λ′ and z. Applying this conclusion
to ~2rR(1/~, λ) with r > 0 and R(1/~) = A~−2r−1 + B~−2r + ... of degree
≤ (2r+1) we find that degR ≤ (2r−1) and by induction — that degR ≤ 1.
Now the assumption (b) that R has no terms of order ~0 and ~−1 implies
that R = 0. �

5. Toric map spaces. In this section we describe toric compactifications
of spaces of holomorphic maps CP 1 → X.
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For each d ∈ Λ consider the following complex space of N -dimensional
vector-polynomials in one complex variable ζ:

{(z1(ζ), ..., zN(ζ))| deg zj ≤ Dj}

The torus TN acts on this space componentwise. Denote Jd the momentum
map of the induced action of T k ⊂ TN , pick t ∈ K and introduce the
symplectic toric variety Xd = J−1

d (t)/T k. It is compact and nonsingular
whenever X is compact and nonsingular. Generic points in Xd represent
degree d holomorphic maps

CP 1 → X : ζ 7→ (z1(ζ), ..., zN(ζ))mod T k
C
.

The variety Xd is empty unless d ∈ ∪α∆∗
α.

The rotation ζ 7→ exp(2πiφ)ζ of CP 1 induces an S1-action on Xd. Fixed
points of the S1 × TN -action on Xd are isolated. The Borel localization
formula for Xd yields:
∫

Xd

f(p, ~, λ) =
∑

α:d∈∆∗

α

∑

r

Resα,r
f(p, ~, λ)dp1 ∧ ... ∧ dpk

Πj:Dj≥0(uj(uj − ~)(uj − 2~)...(uj −Dj~))
.

Here Resα,r refers to the residue at the point specified by the equations

uj1(p, λ) = r1~ , ..., ujk
(p, λ) = rk~ , j1 < ... < jk,

with {j1, ..., jk} = α and r runs the integer vectors

r = (r1, ..., rk) : 0 ≤ r1 ≤ Dj1 , ..., 0 ≤ rk ≤ Djk
.

The equivariant cohomology algebra of Xd is identified with the quotient of
C[p, ~, λ] by the kernel ideal of the corresponding Poincaré pairing.

The dimension of Xd may exceed the Riemann-Roch dimension dimX +
(c1(TX), d) = N − k + D1 + ... + DN of the space of degree d holomorphic
maps CP 1 → X if some Dj =

∑

dimij are negative. We introduce the virtual
fundamental class [Xd] of the Riemann-Roch dimension as the Poincaré-dual
to the equivariant Euler class of the following vector bundle over Xd.

Consider the complex space of the vector polynomials in the variable ζ−1

defined by

{(z1(ζ
−1), ..., zN(ζ−1))|zj(0) = 0, deg zj < −Dj} .
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We introduce the TN -equivariant locally free sheaf on Xd = J−1
d (t)/T k as-

sociated with the componentwise action of T k ⊂ TN on this space. The
rotation of ζ defines an S1-equivariant structure on the sheaf. At generic
points ψ : CP 1 → X of Xd the sheaf coincides with the obstruction sheaf
H1(CP 1, ψ∗(TX)).

The Borel localization formula gives rise to the following description of
integration over the virtual fundamental class:
∫

[Xd]

f =
∑

α:d∈∆∗

α

∑

r

Resα,r dp1 ∧ ... ∧ dpk f(p, ~, λ)ΠN
j=1

Π−1
m=−∞(uj −m~)

Π
Dj

m=−∞(uj −m~)
.

Consider now the convex bundle V = ⊕aLa. For a generic degree-d map
ψ : CP 1 → X the space H0(CP 1, ψ∗La) can be identified with the space of
polynomials {y(ζ)| deg y ≤ La} where La =

∑

dilia. We introduce the vector
bundle of dimension La + 1 over Xd associated with the scalar action of T k

on this space via the character
∑

liapi. The direct sum of these bundles
over a = 1, ..., l is equivariant with respect to S1 × TN × T l where S1 acts
by rotations of ζ, and T l acts by scalr multiplication componentwise on
the direct summands. The S1 × T -equivariant Euler class of this bundle is
Πa va(va − ~)...(va − La~) where va =

∑

liapi − λ′a. We define the virtual
fundamental class [Yd] as the Poincaré-dual to this Euler class:

∫

[Yd]

f :=

∫

[Xd]

f(p, ~, λ, λ′)ΠaΠ
La

m=0(va(p, λ) −m~) .

For polynomial f ∈ Q[p, ~, λ, λ′] the integration over [Yd] assumes poly-
nomial values in Q[~, λ, λ′].

6. The hypergeometric series. We will study here the generating
function

Φ(z, q) =
∑

d∈Λ

qd

∫

[Yd]

ep1z1+...+pkzk

which is a formal power series in z with coefficients in the formal completion
of the semigroup ring of Λ over the polynomial algebra Q[~, λ, λ′].

Proposition 6.1. The series Φ is weighted-homogeneous of degree l +
k −N with respect to the grading

deg zi = −1, deg ~ = deg λj = deg λ′a = 1, deg qi =
∑

j

mij −
∑

a

lia.
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Proof: This follows from grading in equivariant cohomology and the for-
mula N − k − l + (c1(TX), d) − (c1(V), d) for the complex dimension of the
virtual fundamental cycle [Yd].

Consider the formal q-series Ψ (which differs from IV in Theorem 0.2 by
the exponential factor exp((t0 + p log q)/~) only):

Ψ(q, ~;λ, λ′) =
∑

d∈Λ

qd ΠaΠm≤La(va +m~)ΠjΠm≤0(uj +m~)

ΠaΠm≤0(va +m~)ΠjΠm≤Dj
(uj +m~)

,

where uj =
∑

pimij−λj and va =
∑

pilia−λ′a are T -equivariant cohomology
classes of X, the integers Dj =

∑

dimij, La =
∑

dilia depend on d =
(d1, ..., dk), and m runs integer values starting from −∞. Coefficients of the
series Ψ are well-defined equivariant cohomology classes of X over the field
C(~, λ) of rational functions, and the whole series can be considered as an
equivariant cohomology class of X with appropriate coefficients. Notice that
a qd-term in Ψ has zero localization at the fixed point α unless d ∈ ∆∗

α.

Proposition 6.2 (compare with [8, 9, 10]).
∫

[Y ]

Ψ(q exp(~z), ~;λ, λ′)epzΨ(q,−~;λ, λ′) = Φ(z, q, ~, λ, λ′).

In particular, Φ((t − τ )/~, eτ , ~) is invariant under the change (t, τ, ~) 7→
(τ, t,−~).

Proof. We have
∫

[Y ]

Ψ(q exp(~z), ~)epzΨ(q,−~) =

∑

α

∑

d′,d′′∈∆∗
α

qd′+d′′ Resα e
(p+~d′)z dp1 ∧ ...∧ dpk ×

ΠaΠ
L′

a

m=−L′′
a
(va +m~) Πj[Πm≤0(uj +m~) Πm≥0(uj +m~)]

Πjuj[Πm≤D′

j
(uj +m~) Πm≥−D′′

j
(uj +m~)]

=
∑

α

∑

d∈∆∗

α

qd
∑

r

Resα,r e
pzdp1 ∧ ... ∧ dpk ×

ΠaΠ
0
m=−La

(va +m~) ΠjujΠm∈Z(uj +m~)

Πjuj[Πm≤0(uj +m~) Πm≥−Dj
(uj +m~)
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=
∑

α

∑

d∈∆∗
α

∑

r

Resα,r
epzdp1 ∧ ...∧ dpk ΠaΠ

La

m=0(va −m~) ΠjΠm<0(uj −m~)

ΠjΠm≤Dj
(uj −m~)

=
∑

d∈Λ

qd

∫

[Yd]

epz.

�

Consider the localizations Ψα(q, ~;λ, λ′) of the class Ψ at the fixed points:

Ψα =
∑

d∈∆∗

α

qdΠaΠ
La

m=1(va(α) +m~)

Πj∈αDj !~Dj
Πj /∈α

Πm≤0(uj(α) +m~)

Πm≤Dj
(uj(α) +m~)

.

Each qd-term in this series is a rational function of ~ and can be uniquely
written as the sum of simple fractions with poles at ~ = −uj(α)/n, j /∈
α, 0 < n ≤ Dj plus a Laurent polynomial in ~.

Proposition 6.3. The series Ψα satisfy the following recursion relations:

Ψα(q, ~;λ, λ′) =
∑

d∈∆∗

α

qdRα,d(~, λ, λ
′)+

∑

j /∈α

∑

n>0

qn d(α,j) Cα,j(n)

(uj(α) + n~)
Ψβ(q,−uj(α)/n;λ, λ′) ,

where β = β(α, j) and the coefficients Cα,j(n) =

ΠaΠ
nLa(α,j)
m=1 (va(α) −muj(α)/n) Πs/∈α∪βΠm≤0(us(α) −muj(α)/n)

(n− 1)!(uj(α)/n)n−1 Πs/∈βΠm≤nDs(α,j)(us(α) −muj(α)/n)
.

Proof. For generic λ, λ′ and β = β(α, j) denote by Zd
β the coefficient of

the series Ψβ at qd. The value of this coefficient at ~ = −uj(α)/n = uj′(β)/n
is equal to

ΠaΠm=1La(va(β)−muj(α)/n) ΠsΠm≤0(us(β)−muj(α)/n)

ΠsΠm≤Ds(us(β)−muj(α)/n)

It vanishes unless d ∈ ∆∗(β) and Dj′ + n ≥ 0. Due to the relations
us(β) = us(α) − Ds(α, j)uj(α), va(β) = va(α) − La(α, j)uj(α) we have
Zd

β(−uj(α)/n) =

ΠaΠ
La+nLa(α,j)
m>nLa(α,j) (va(α) −muj(α)/n) ΠsΠm≤nDs(α,j)(us(α) −muj(α)/n)

ΠsΠm≤Ds+nDs(α,j)(us(α) −muj(α)/n)
.
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Since Ds(α, j) = 0 for s ∈ α ∩ β and Dj(α, j) = Dj′(α, j) = 1, we have
Cα,j(n)Zd

β(−uj(α)/n) =

ΠaΠ
La+nLa(α,j)
m=1 (va(α) − m

n
uj(α)) Πs6=j,j′Πm≤0(us(α) − m

n
uj(α))

Π
Dj′+n

m=1 (−n−m
n

uj(α)) Π
Dj+n
m=1 m6=n(n−m

n
uj(α)) Πs6=j,j′Πm≤Ds+nDs(α,j)(us(α) − m

n
uj(α))

.

The last product is exactly the residue of the qd+nd(α,j)-term in the series
Ψα at the simple fraction with the pole ~ = −uj(α)/n. The vector d′ =
d+nd(α, j) is automatically in ∆∗

α, and additionally Dj +n ≥ n. Vice versa,
when d′ is in ∆∗

α, and for some j /∈ α and n ∈ N we have D′
j ≥ n, then

d = d′ − nd(α, j) is in ∆∗
β(α,j) and Dj′ + n = D′

j′ ≥ 0.
Thus the sum of simple fractions on the RHS of the recursion relations

reproduces all the simple fractions of the LHS with non-zero poles, and the
remaining part of each Zd′

α (~) is a Laurent polynomial of ~. Since the identity
between the q-series with coefficients in Q(~, λ, λ′) holds for generic values of
(λ, λ′) it holds in fact over Q(~, λ, λ′). �

Remark. The coefficients Cα,j(n) in the recurrence relations of Proposi-
tions 4.4 and 6.3 are the same. Although we obtained this fact by straight-
forward computations of both coefficients, the coincidence should not be
considered a miracle. The value of the coefficient Cα,j(n) in Proposition 4.4
is determined by localizations to fixed points represented by irreducible de-
gree n maps CP 1 → X. On the other hand, the graph spaces differ from the
toric map spaces only near stable maps of reducible curves. Perhaps the co-
incidence of the recurrence coefficients can be derived from this observation.

Consider now the case of complete intersections Y with non-negative 1-st
Chern class c1(TY ). This means that

∑

i

pi(
∑

j

mij −
∑

a

lia) ∈ K̄ .

A reformulation of this condition reads: deg qd ≥ 0 for all d ∈ Λ.
Put

Λ0 = {d ∈ Λ|
∑

La =
∑

Dj, Dj ≥ 0∀j = 1, ..., N},

Λ1 = {d ∈ Λ|
∑

Dj −
∑

La = 1, Dj ≥ 0∀j = 1, ..., N},

Λ′
0 = {d ∈ Λ|

∑

La =
∑

Dj}.
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Proposition 6.4. Suppose that TY is non-negative. Then

Ψ = Ψ(0) + Ψ(1)/~ + o(1/~),

Ψ(0) =
∑

d∈Λ0

L1!...Ll!

D1!...DN!
qd ,

Ψ(1) =
∑

d∈Λ1

L1!...Ll!

D1!...DN!
qd +

∑

a

ga(q)va −
∑

j

fj(q)uj,

where ga and fj are some power series
∑

d∈Λ′

0
Adq

d with coefficients Ad ∈ Q

and A0 = 0.
Proof. In the case of non-negative TY we have

∑

Dj ≥
∑

La for all d ∈ Λ.
The definition of Ψ(q, ~;λ, λ′) then shows that it can be written as a power
series in 1/~, and that the terms of order ~0 and ~−1 have the form described
in the proposition.

7. Equivalence transformations. We study further the case of com-
plete intersections Y with non-negative tangent sheaf.

Consider a series Z(q, ~;λ, λ′) ∈ H∗
T (Y,Q) of weighted-homogeneous de-

gree 0 with respect to the grading deg ~ = deg λ = deg λ′ = 1, deg qi =
∑

j mij −
∑

a lia which satisfies
(i) the recursion relation

Zα(q, ~;λ, λ′) =
∑

d∈Λ

Rα,d(~
−1;λ, λ′)qd+

∑

j /∈α

qn dα,j
Cα,j(n)

n~ + uj(α)
Zβ(α,j)(q,−uj(α)/n;λ, λ′) ,

where Rα,d are polynomials in ~−1 with coefficients in Q(λ, λ′) and the re-
cursion coefficients Cα,j(n) are described in Propositions 4.4 and 6.3;

(ii) the condition that the series

W =
∑

wd,mq
dzm :=

∫

[Y ]

Z(qe~z, ~)epzZ(q,−~)

has polynomial coefficients wd,m ∈ Q[~, λ, λ′].
In Section 4 we proved that the series S is uniquely determined by these

properties and the asymptotic condition of Corollary 4.3. In the previous

34



section we found a series Ψ which also has these properties but may differ
from S by the asymptotic condition. In this section we describe some trans-
formations of the series Z which preserve the properties (i),(ii) but change
the asymptotical expansion Z = Z(0) + Z(1)/~ + o(1/~).

Proposition 7.1. Let f =
∑

Λ′

0
fdq

d be a series with rational coefficients

fd ∈ Q and f0 6= 0. Then fZ satisfies the conditions (i),(ii).
Proof. Simultaneous multiplication of the localizations Zα by f obviously

preserves the the recursion relation of Proposition 4.4 and affects the se-
ries

∑

Rα,dq
d in such a way that the polynomiality property of Rα,d(1/~) is

preserved. This proves (i).
The multiplication of Z by f gives rise to the multiplication of the series

W by f(q exp(~z))f(q) which obviously preserves the polynomiality property
of the coefficients wd,m. This proves (ii).

Proposition 7.2. Let f =
∑

d∈Λ′

0∪Λ1
fdq

d be a series of weighted - homo-

geneous degree 1 where fd are linear inhomogeneous functions of λ, λ′ with
rational coefficients, and f0 = 0. Then exp(f/~)Z satisfies the conditions
(i),(ii).

Proof. We have

exp(−nf/uj(α)−f/~) = exp(−(n~+uj(α)f/uj(α)~) = 1+(n~+uj(α))gα,j,n,

where gα,j,n is a q-series with coefficients polynomial in ~−1 and rational in
(λ, λ′). This implies that exp(f/h)Zα satisfy the recursion relation (i) with
the new initial condition

ef/~
∑

d∈Λ

Rd,αq
d+

ef/~
∑

j /∈α

∞
∑

n=1

gα,j,n q
n dα,j Cα,j(n) Zβ(α,j)(q,−uj(α)/n;λ, λ′)

whose coefficients at qd are still polynomial in 1/~.
The transformation Z 7→ exp(f/~)Z multiplies the series W by exp g,

where g = (f(qe~z) − f(q))/~ has polynomial coefficients when written as a
power series in (q, z) since exp(~zd) − 1 is divisible by ~. �

Proposition 7.3.Let the linear combination fp = f1p1 + ... + fkpk of
the equivariant cohomology classes pi ∈ H∗

T (Y,Q) be given by the series
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fi =
∑

d∈Λ′

0
fi,dq

d with rational coefficients fi,d ∈ Q and fi,0 = 0. Then

exp(fp/~)Z(q exp f, ~;λ, λ′) satisfies the conditions (i),(ii).
Proof. For β = β(α, j) we have p(α) − p(β) = dα,juj(α) and therefore

exp[−fp(α)/~ − nfp(β)/uj(α)] =

en dα,jf exp[−fp(α)(n~ + uj(α))/(uj(α)~)] = en dα,jf + (n~ + uj(α))gα,j,n ,

where the series gα,j,n(q, ~
−1;λ, λ′) has the same properties as specified in

the proof of Proposition 7.2. This implies that the recursion relation for
efp/~Z(qef, ~) (with some initial conditions

∑

Rα,dq
d) follows from the re-

cursion relation obtained by the change q 7→ qef from (i) satisfied by Z.
The operation Z 7→ efpZ(qef , ~) transforms W (z, q) to

W (z +
f(qe~z) − f(q)

~
, qef)

and preserves the polynomiality property of the coefficients wd,m since coef-
ficients of the series fi(qe

~z) − fi(q) are divisible by ~. �

Using the notations from Proposition 6.4 we perform the following opera-
tions with the series Ψ which according to Propositions 7.1, 7.2, 7.3 preserve
the properties (i),(ii).

(1) Divide Ψ by Ψ(0); this transforms the asymptotic expansion Ψ =
Ψ(0) + Ψ(1)/~ + o(1/~) to

1 + ~−1 (H(q) +
∑

a

Ga(q)va −
∑

j

Fj(q)uj) + o(~−1),

where H = (
∑

d∈Λ1

L1!...Ll!
D1!...DN !

qd)/Ψ(0), and Ga = ga/Ψ
(0), Fj = fj/Ψ

(0).

(2) Divide Ψ/Ψ(0) by exp~−1(H +
∑

j Fjλj −
∑

aGaλ
′
a); this transforms

the asymptotic expansion to

Z = 1 + ~−1
∑

i

φipi + o(~−1) ,

where φi =
∑

a liaGa −
∑

j mijFj.

(3) Transform exp(−
∑

φipi/~)Z(q, ~) to the new variables Qi = qie
φi(q),

i = 1, ..., k; the resulting series S(Q, ~;λ, λ′) has the asymptotic expansion
1 + o(1/h).
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Corollary 7.4. Suppose that TY is non-negative. Then S(q, ~;λ, λ′) =
S(q, ~;λ, λ′).

Proof. The series S satisfies the conditions (a),(b),(c) of Proposition 4.5
which uniquely determine the series S.
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