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The objective of this paper is to describe some construction and applications of the

equivariant counterpart to the Gromov-Witten (GW) theory, i.e. intersection theory on

spaces of (pseudo-) holomorphic curves in (almost-) Kahler manifolds.

Given a Killing action of a compact Lie group G on a compact Kahler manifold X, the

equivariant GW-theory provides, as we will show in Section 3, the equivariant cohomology

space H∗
G(X) with a Frobenius structure (see [2]). We discuss applications of the equivariant

theory to the computation ([7],[11]) of quantum cohomology algebras of flag manifolds (Sec-

tion 5), to the simultaneous diagonalization of the quantum cup-product operators (Sections

7,8), to the S1-equivariant Floer homology theory on the loop space LX (see Section 6 and

[10],[9]) and to a “quantum” version of the Serre duality theorem (Section 12).

In Sections 9 — 11 we combine the general theory developed in Sections 1 — 6 with the

fixed point localization technique [3] in order to prove the mirror conjecture (in the form

suggested in [10]) for projective complete intersections.

By the mirror conjecture one usually means some intriguing relations (discovered by

physicists) between symplectic and complex geometry on a compact Kahler Calabi–Yau n-

fold and respectively complex and symplectic geometry on another Calabi-Yau n-fold called

the mirror partner of the former one. The remakable application [16] of the mirror conjecture

to enumeration of rational curves on Calabi–Yau 3-folds (1991, see the theorem below) raised

a number of new mathematical problems — challenging maturity tests for modern methods

of symplectic topology.
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On the other hand, in 1993 I suggested that the relation between symplectic and complex

geometry predicted by the mirror conjecture can be extended from the class of Calabi–Yau

manifolds to more general compact symplectic manifolds if one admits non-constant holo-

morphic functions on suitable non-compact Calabi–Yau manifolds in the role of the mirror

partners. According to this generalized form of the mirror conjecture Gromov–Witten in-

variants of a symplectic manifold can be reinterpreted in terms of oscillating integrals over

the mirror partner and saddle-point asymptotics of these integrals near critical points of the

holomorphic function.

We refer to [10, 9] for a detailed discussion of the generalized mirror conjecture supported

there by the examples of complex projective spaces and general toric symplectic manifolds.

In this paper we prove the conjecture (see Corollary 11.10, Corollary 10.8, Corollary 9.2 and

the remark following it) for complete intersections in CP n given by r equations of degrees

(l1, ..., lr) with l1 + ... + lr ≤ n + 1, that is for Fano (<) and Calaby–Yau (=) projective

complete intersections.

In particular we explain in Section 11 how to pass the following maturity test:

Theorem. Consider the Picard-Fuchs differential equation

(
d

dt
)4I = 5et(5

d

dt
+ 1)(5

d

dt
+ 2)(5

d

dt
+ 3)(5

d

dt
+ 4)I

satisfied by the periods

I(t) =

∫

γ3
t

du0 ∧ ...∧ du4

d(u0 + ...+ u4) ∧ d(u0...u4)

of the non-vanishing holomorphic 3-forms on the Calabi-Yau 3-folds Yt with Hodge numbers

h2,1 = 1, h1,1 = 101 given by the affine equations Yt : u0 + ...+ u4 = 1, u0...u4 = et.

Pick the basis I0, ..., I3 of solutions to this differential equation determined by

I0(t) + I1(t)P + I2(t)P
2 + I3(t)P

3 =
∞∑

d=0

e(P+d)tΠ
5d
m=1(5P +m)

Πd
m=1(P +m)5

( mod P 4).

Introduce the new variable T (t) = I1(t)/I0(t).

Then

I0
I0

+
I1
I0

(t(T ))P +
I2
I0

(t(T ))P 2 +
I3
I0

(t(T ))P 3 =
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ePT +
P 2

5

∞∑

d=1

ndd
3

∞∑

k=1

e(P+kd)T

(P + kd)2
( mod P 4),

where the components of the RHS form the basis of solutions to the differential equation

(
d

dT
)2 1

K(eT )
(
d

dT
)2 J = 0 with K(q) = 5 +

∞∑

d=1

ndd
3 qd

1 − qd
,

and nd is the virtual number of degree d rational curves in CP 4 situated on a generic degree

5 hypersurface X, a Calabi-Yau 3-fold with Hodge numbers h2,1 = 101, h1,1 = 1.

An analogous result holds for any non-singular Calabi-Yau 3-dimensional projective com-

plete intersection X.

The virtual numbers of rational curves on a Calabi-Yau 3-fold X are defined in several

equivalent ways in the quantum cohomology theory 1 and are equal to the algebraic numbers

of such curves on X provided with a generic almost Kahler structure. It is known that for

generic quintic hypersurfaces X ⊂ CP 4 the virtual number nd coincides with the number of

the degree d rational curves in CP 4 situated inX at least for d ≤ 9. The number n1 = 2875 of

straight lines on a generic quintic 3-fold has been known since the last century, n2 = 609250

and n3 = 317206375 were found (see [16]) several years ago, while n4 = 242467530000 was

predicted in [16] and confirmed in [3] (as an illustration of a method that allows in principle

to find each nd). The simultaneous description of all the numbers nd given in the theorem

was conjectured in [16] on the basis of physical ideas of mirror symmetry between the Calabi-

Yau manifolds X and Y whose Hodge diamonds happened to be mirror-symmetric to one

another.

As far as we know, our Theorem and its generalization to Calabi-Yau projective complete

intersections given in Section 11 provide the first examples of Calabi-Yau manifolds for which

predictions of the mirror symmetry are verified for rational curves of all degrees.

The results of Sections 9 – 11 can be immediately carried over to complete intersections

in products of projective spaces. The method can be also applied to complete intersections in

general toric varieties where however some generalization of our algebraic formalism and some

refinement in foundations of the equivariant Gromov – Witten theory would be necessary.

I am thankful to S. Barannikov, I. Grojnowski, B. Kim, D. Morrison, R. Plesser, N.

Reshetikhin, A. Schwartz, A. Varchenko for numerous stimulating discussions and especially

1see for instance [20, 19] and also [15, 14] where the problem of counting multiple covers is resolved.
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to M. Kontsevich who taught me his approach to Gromov – Witten theory. The proof of the

theorem formulated above has grown out of our joint attempt in Spring 95 to prove it using

the method [3] of summation over trees. The influence of our discussions on other results of

this paper is also significant.

1 Moduli spaces of stable maps

It was M. Gromov [8] who first suggested to construct (and constructed some) topological

invariants of a symplectic manifold X as bordism classes of spaces of pseudo-holomorphic

curves in X. Recently M. Kontsevich [3] suggested the concept of stable maps which gives

rise to an adequate compactification of these spaces. We recall here some basic facts from

[3] about these compactifications.

Let (C, p) be a compact connected complex curve with only double singular points and

with n ordered non-singular marked points (p1, ..., pn). Two holomorphic maps (C, p) →

X, (C ′, p′) → X to an almost-Kahler manifoldX are called equivalent if they can be identified

by a holomorphic isomorphism (C, p) → (C ′, p′). A holomorphic map (C, p) → X is called

stable if it does not have infinitesimal automorphisms (or, equivalently, if its automorphism

group is finite). In other words, a map is unstable if either it is constant on a genus 0

irreducible component of C with < 3 special (= marked or singular) points or if C is a torus,

carries no marked points and the map is constant.

According to Gromov’s compactness theorem [8], any sequence of holomorphic maps

C → X of a nonsingular compact curve C has a subsequence Hausdorff-convergent to a

holomorphic map Ĉ → X of (may be reducible) curve Ĉ of the same genus g and representing

the same total homology class d ∈ H2(X,Z). A refinement of this theorem from [3] says

that equivalence classes of stable maps C → X with given g, n, d form a single compact

Hausdorff space — the moduli space of stable maps — which we denote Xg,n,d. Here g =

dimH1(C,O) = 1 − χ(C\Csing)/2.

In the case X = pt the moduli spaces coincide with Deligne-Mumford compactifications

M̄g,n of moduli spaces of genus g Riemannian surfaces with n marked points. They are

compact nonsingular orbifolds (i.e. local quotients of nonsingular manifolds by finite groups)

and thus bear the rational fundamental cycle which allows one to build up an intersection

theory. In general, the moduli spaces Xg,n,d are singular and may have “wrong” dimension,
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and the idea of the program started in [4, 3] is to provide Xg,n,d with virtual fundamental

cycles insensitive to perturbations of the almost-Kahler structure on X. In some nice cases

however the spaces X0,n,d are already nonsingular orbifolds of the “right” dimension.

Beginning with this point we will use only genus zero stable maps and use the notation

Xn,d for the moduli spaces X0,n,d.

A compact complex manifold is called convex if it is a homogeneous space of its Lie

algebra of holomorphic vector fields.

Theorem 1.1 ([3, 6]) If X is convex then all non-empty moduli spaces Xn,d of genus 0

stable maps are compact nonsingular complex orbifolds of “right” dimension 〈c1(Tx), d〉 +

dimC X + n− 3.

Additionally, there are canonical morphisms Xn,d → Xn−1,d, Xn,d → M̄0,n, Xn,d → Xn

between the moduli spaces Xn,d called forgetful, contraction and evaluation (and defined by

forgetting one of the marked points, forgetting the map and evaluating the map at marked

points respectively). We refer to [3, 6] for details of their construction.

In the rest of this paper we will stick to convex manifolds; we comment however on

which results are expected to hold in greater generality. A number of recent preprints by B.

Behrend – B. Fantechi, J.Li – G. Tian, T. Fukaya – K. Ono shows that Kontsevich’s “virtual

fundamental cycle” program is being realized successfully and leaves no doubts that these

generalizations are correct. Still some verifications are necessary in order make them precise

theorems.

2 Equivariant correlators

The Gromov-Witten theory borrows from the quantum field theory the name (quantum)

correlators for numerical topological characteristics of the moduli spaces Xn,d (characteris-

tic numbers) and borrows from the bordism theory the construction of such correlators as

integrals of suitable wedge-products of various universal cohomology classes (characteristic

classes of the GW theory) over the fundamental cycle.

We list here some such characteristic classes.

1. Pull-backs of cohomology classes from Xn by the evaluation maps e1×· · ·×en : Xn,d →

Xn at the marked points.
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2. Any polynomial of the first Chern classes c(1), . . . , c(n) of the line bundles over Xn,d

consisting of tangent lines to the mapped curves at the marked points. One defines

these line bundles (by identifying the Cartesian product of the forgetful and evaluation

maps Xn+1,d → Xn,d × X with the universal stable map over Xn,d) as normal line

bundles to the n embeddings Xn,d → Xn+1,d defined by the n marked points of the

universal stable map. We will call these line bundles the universal tangent lines at the

marked points.

3. Pull-backs of cohomology classes of the Deligne - Mumford spaces by contraction maps

π : Xn,d → M̄0,n. We will make use of the classes AI := Ai1,...,ik Poincare-dual to

fundamental cycles of fibers of forgetful maps M̄0,n → M̄0,k.

We define the GW-invariant

AI〈φ1, ..., φn〉n,d :=

∫

Xn,d

π∗AI ∧ e
∗
1φ1 ∧ ... ∧ e

∗
nφn.

It has the following meaning in enumerative geometry: it counts the number of pairs

“a degree-d holomorphic map CP 1 → X with given k points mapped to given k cycles, a

configuration of n− k marked points mapped to the n − k given cycles”.

Suppose now that the convex manifold X is provided with a hamiltonian Killing action

of a compact Lie group G. Then G act also on the moduli spaces of stable maps. The

evaluation, forgetful and contraction maps are G-equivariant, and one can define correlators

AI〈φ1, . . . φn〉n,d of equivariant cohomology classes of X.

The equivariant cohomology H∗
G(M) of a G-space M is defined as the ordinary cohomol-

ogy H∗(MG) of the homotopic quotient MG = EG×GM — the total space of the M-bundle

p : MG → BG associated with the universal principal G-bundle EG → BG. The algebra

H∗(BG) = H∗
G(pt) of characteristic classes of principal G-bundles plays the role of the coeffi-

cient ring of the equivariant theory (so that H∗
G(M) is a H∗

G(pt)-module). If M is a compact

manifold with smooth G-action, the push-forward p∗ : H∗
G(M) → H∗

G(pt) (“fiberwise inte-

gration”) provides the equivariant cohomology of M with intersection theory with values in

H∗
G(pt). In the case of hamiltonian actions the corresponding intersection pairing 〈·, ·〉 is

non-degenerate over H∗
G(pt).

6



We introduce the equivariant GW-invariants, AI(〈φ1, . . . , φn〉n,d, with values in H∗(BG),

where φ1, . . . , φn ∈ H∗
G(X). Values of such invariants on fundamental cycles of maps B →

BG are accountable for enumeration of rational holomorphic curves in families of complex

manifolds with the fiber X associated with the principal G-bundles over a finite-dimensional

manifold B.

3 The WDVV equation

One of the main structural results about Gromov-Witten invariants — the composition rule

[20],[19] — expresses all genus-0 correlators via the 3-given-marked-point ones, (we denote

them 〈φ1, ..., φn〉n,d since the corresponding AI = 1) satisfying additionally the so-called

Witten-Dijkgraaf-Verlinde-Verlinde equation. We will see here that the same result holds

true for equivariant Gromov-Witten invariants (at least in the convex case).

Following [21], introduce the potential

F =
∞∑

n=0

1

n!

∑

d

qd 〈t, . . . , t〉n,d . (1)

It is a formal function on the vector (super -) space H∗
G(X) with values in the coefficient ring

Λ = H∗
G(pt,C[[q]]). Here C[[q]] stands for some completion of the group algebra C[H2(X,Z)]

so that the symbol qd = qd11 . . . qdk

k represents the class (d1, . . . , dk) in the lattice Zk =

H2(X,Z) of 2-cycles. Fundamental classes of holomorphic curves in X have non-negative

coordinates with respect to a basis of Kahler forms so that the formal power series algebra

C[[q]] can be taken on the role of the completion. Strictly speaking, the formula 1 defines F

up to a quadratic polynomial of t since the spaces Xn,0 are defined only for n ≥ 3.

Denote ∇ the gradient operator with respect to the equivariant intersection pairing 〈 , 〉

on H∗
G(X). The WDVV equation is an identity between third directional derivatives of F .

It says that

〈∇Fα,β,∇Fγ,δ〉 (2)

is totally symmetric (up to usual signs) with respect to permutations of the four directions

α, β, γ, δ ∈ H∗
G(X).
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Theorem 3.1 The WDVV equation holds for convex X.

Notice that

〈∇

∫

X

a ∧ t,∇

∫

X

b ∧ t〉 = 〈a, b〉 (3)

has geometrical meaning of integration
∫
∆⊂X×X

a⊗ b over the diagonal in X ×X.

In order to prove the non-equivariant version of the WDVV equation one interprets the 4-

point correlators A1234〈α, β, γ, δ〉4,d which are totally symmetric in α, β, γ, δ as integrals over

the fibers Γλ of the contraction map π : X4,d → M̄4 = CP 1 and specializes the cross-ratio λ

to 0, 1 or ∞. Stable maps corresponding to generic points of, say, Γ0 are glued from a pair

of maps f1 : (CP 1, p1, p2, a1) → X, f2 : (CP 1, p3, p4, a2) → X of degrees d1 + d2 = d with

three marked points each, satisfying the diagonal condition f1(a1) = f2(a2). One can treat

such a pair as a point in X3,d1 × X3,d2 situated on the inverse image Γd1,d2 of the diagonal

∆ ⊂ X × X under the evaluation map e3 × e3. The glueing map ⊔d1+d2=dΓd1,d2 → Γ is an

isomorphism at generic points and therefore it identifies the analytic fundamental cycles.

This means that

A1234〈α, β, γ, δ〉4,d =
∑

d1+d2=d

〈∇〈α, β, t〉3,d1,∇〈γ, δ, t〉3,d2〉 .

The above argument applies to the correlators A1234〈α, β, γ, δ, t, . . . , t〉n+4,d with additional

marked points and gives rise to

〈∇Fα,β,∇Fγ,δ〉 =

∞∑

n=0

1

n!

∑

d

qdA1234〈α, β, γ, δ, t . . . t〉4+k,d (4)

which is totally symmetric in α, β, γ, δ.

Convexity of X is used here only in order to make sure that the moduli spaces have

fundamental cycles and that the diagonal inX×X consists of regular values of the evaluation

map e3 × e3.

In order to justify the above argument in the equivariant situation, it is convenient to

reduce the problem to the case of tori actions (using maximal torus of G) and use the De

Rham version of equivariant cohomology theory.

For a torus G = (S1)r acting on a manifold M the equivariant De Rham complex [1]

consists of G-invariant differential forms on M with coefficients in C[u1, . . . , ur] = H∗
G(pt),
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provided with the coboundary operator dG = d +
∑r

s=1 usis where is are the operators of

contraction by the vector fields generating the action. Applying the ordinary Stokes formula

to G-invariant forms and G-invariant chains we obtain well-defined functionals H∗
G(M) →

C[u] of integration over invariant cycles. The identity 4 follows now from the obvious G-

invariance of the analytic varieties Γλ, Γ, Γd1,d2.

A similar argument proves a composition rule that reduces computation of all equivariant

correlators AI〈...〉 to that of 〈...〉.

4 Convex vector bundles

The following construction was designed by M. Kontsevich in order to extend the domain of

applications of WDVV theory to complete intersections in convex Kahler manifolds.

Let V → X be a convex bundle, that is, a holomorphic vector bundle spanned by its

holomorphic sections. For stable f : (C, p) → X (of degree d, genus 0, with nmarked points),

the spaces H0(C, f∗V ) form a holomorphic vector bundle Vn,d over the moduli space Xn,d.

If f is glued from f1 and f2 as in the proof of (4), then H0(C, f∗V ) = ker(H0(C1, f
∗
1V ) ⊕

H0(C2, f
∗
2V )

e1−e2−→ e∗1V = e∗2V ) where ei : H0(Ci, f
∗
i V ) → e∗iV is defined by evaluation of

sections at the marked point ai.

This allows one to construct a solution F to the WDVV equation starting with a convex

G-equivariant bundle V and any invertible G-equivariant multiplicative characteristic class

E (the total Chern class would be a good example).

Redefine

〈a, b〉 :=

∫

X

a ∧ b ∧ E(V ) ,

〈t, . . . , t〉n,d :=

∫

Xn,d

e∗1t ∧ . . . e
∗
nt ∧ E(Vn,d) ,

F (t) =
∞∑

n=0

1

k!

∑

d

qd〈t, . . . , t〉n,d .

Then 〈∇Fα,β,∇Fγδ〉 is totally symmetric in α, β, γ, δ.

This construction bears a limit procedure from the total Chern class to the (equivariant)

Euler class, and the limit of F corresponds to the GW-theory on the submanifold X ′ ⊂ X

defined by an (equivariant) holomorphic section s of the bundle V . Namely, the section s
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induces a holomorphic section sn,d of Vn,d, and the (equivariant) Euler class Euler (Vn,d)

becomes represented by some cycle [X ′
n,d] situated in the zero locus X ′

n,d := s−1
n,d(0) of the

induced section. The variety X ′
n,d consists of stable maps to X ′, the Euler cycle [X ′

n,d] plays

the role of the virtual fundamental cycle in X ′
n,d, and the correlators

〈t, ..., t〉n,d :=

∫

Xn,d

e∗1t ∧ ... ∧ e
∗
nt Euler (Vn,d) =

∫

[X ′

n,d
]

e∗1t ∧ ...∧ e
∗
nt

are correlators of GW-theory on X ′ between the classes t which come from the ambient space

X.

According to [28] one can consider the GW-theory with these correlators as the GW-

theory on the super-manifold with the structural sheaf to be the sheaf of exterior forms on

the dual bundle V ∗.

Another solution of the WDV V -equation can be obtained from the bundles V ′
d,k :=

H1(C, f∗V ∗): one should put 〈a, b〉 :=
∫
X
a∧b∧E−1(V ∗), 〈t, . . . , t〉n,d =

∫
Xn,d

e∗1t∧· · ·∧e∗nt∧

E(V ′
n,d) for d 6= 0 and 〈t, . . . , t〉n,0 =

∫
Xn,0

e∗1t ∧ · · · ∧ e∗nt ∧E
−1(V ∗).

In Section 12 we will prove some duality theorem for the two solutions of the WDVV-

equations in the case when X = CP n and V is the sum of positive line bundles. Choosing

the (equivariant) Euler class on the role of E(V ∗) one comes to the GW-theory on the non-

compact total space of the bundle V ∗. Using slight modifications of the above correlators

and the constructions of the next Section one can also define quantum versions of both

the ordinary and compactly supported cohomology algebras of this manifold. We leave the

details of this construction to the reader.

5 Quantum cohomology

One interprets the WDVV equation as the associativity identity for the quantum cup-product

on H∗
G(X) defined by

〈α ∗ β, γ〉 = Fα,β,γ .

It is a deformation of the ordinary cup-product (with t and q in the role of parameters) in

the category of (skew)-commutative algebras with unity:

〈α ∗ 1, γ〉 = 〈α, γ〉 . (5)
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Indeed, the push-forward by the forgetful map π : Xn,d → Xn−1,d (with n ≥ 3) sends

1 ∈ H∗
G(Xn,d) to 0 unless d = 0 and k = 3 in which case Xn,d = X and Xn−1,d is not defined.

The structure usually referred in the literature as the quantum cohomology algebra cor-

responds to the restriction of the deformation ∗t,q to t = 0. As it is shown in [4], in many

cases the function F can be recovered on the basis of WDVV-equation from the structural

constants Fα,β,γ|t=0(q) of the quantum cohomology algebra due to the following symmetry of

the potential F . Let u ∈ H2
G(X) and (u1, ..., uk) be its coordinates with respect to the basis

of the lattice (Zk)∗ = H2(X) = H2
G(X)/H2

G(pt) (so that ui ∈ H∗
G(pt)). Then

∂u Fα,β,γ =
k∑

i=1

uiqi∂Fα,β,γ/∂qi ∀α, β, γ ∈ H∗
G(X) . (6)

The identity (6) follows from the obvious push-forward formula π∗u =
∑
diui.

The symmetry (6) can be interpreted in the way that the quantum deformation of the

cup-product restricted to t = 0 is equivalent to the deformation with q = 1 and t restricted

to the 2-nd cohomology of X (in the equivariant setting it is better however to keep both

parameters in place — see Sections 7, 8).

In this paper, we will use the term quantum cup-product for the entire (q, t)-deformation

and reserve the name quantum cohomology algebra for the restriction of the quantum cup-

product to t = 0.

I have heard some complaints about such terminology because it allows many authors

to compute quantum cohomology algebras without even mentioning the deformation in t-

directions. There are some indications however that (despite the equivalence (6)) the q-

deformation has a somewhat different nature than the t-deformation. The loop space ap-

proach [9] and our computations in Sections 9 – 11 seem to emphasize this distinction.

Quantum cohomology algebras of the classical flag manifolds have been computed in [7],

[11] on the basis of several conjectures about properties of Un-equivariant quantum coho-

mology (see also [5] where a slightly different formalism was applied). The answer (in terms

of generators and relations 2 ) for complete flag manifolds Un/T
n is strikingly related to

2Several weeks after the first version of this paper had been completed some new results arrived: S.
Fomin, S. Gelfand, A. Postnikov [25] found structural constants of the quantum cohomology algebra of
the flag manifold with respect to the basis of Schubert polynomials, and B. Kim [13] proved the relation of
quantum cohomology algebras of generalized flag manifolds G/T with the Toda lattice (of the Langlands-dual
group G∗).
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conservation laws of Toda lattices. The conjectures named in [7] the product, induction and

restriction properties and describing behavior of equivariant quantum cohomology under

some natural constructions, were motivated by interpretation of the quantum cohomology

in terms of Floer theory on the loop space LX. Although a construction of the equivari-

ant counterpart of the Floer - Morse theory on LX remains an open problem, the three

conjectured axioms can be justified within the Gromov-Witten theory. This was done by

B.Kim [12]. The induction and restriction properties follow directly from definitions given

in this paper and hold for the entire quantum deformation (not only at t = 0), while the

“product” axiom (that the G1 × G2-equivariant quantum cohomology algebra of X1 × X2

is the tensor product of the Gi-equivariant quantum cohomology algebras of the factors Xi)

has been verified in [12] for convex manifolds.

Behavior of the quantum cup-product at t 6= 0 under the Cartesian product operation

on the target manifolds is much more complicated than the operation of the tensor product.

We complete this section with a discussion of some remarkable relation between quantum

cohomology algebras of manifolds F (n0, ..., nk) of partial flags Cn0 ⊂ Cn0+n1 ... ⊂ Cn0+...+nk =

Cn (equivariant with respect to the action of Un on Cn) and the action-angle coordinates of

the Toda lattice — an integrable system with the Hamilton function p2
1/2+...+p2

n/2−exp(t1−

t2)− ...− exp(tn−1 − tn) (with respect to the symplectic structure dp1 ∧ dt1 + ...+ dpn ∧ dtn).

The equivariant quantum cohomology algebras of these manifolds were computed in [11, 12].

The answer can be formulated as follows.

Consider the chain fraction

P (x)

Q(x)
:= P0(x) +

q1
P1(x) + q2

P2(x)+
...

...+
qk

Pk(x)

where P0, ..., Pk are monic polynomials of some positive degrees (which we denote n0, ..., nk)

and q1, ..., qk are some non-zero constants. Given P0, ..., Pk and q1, ..., qk, the chain fraction

uniquely determines the two monic polynomials P,Q of degrees n, n−n0. Let the coefficient

of the polynomial Pi = xni + c
(i)
1 x

ni−1 + ...+ c
(i)
ni denote the Chern classes of the tautological

ni-dimensional vector bundle over F (n0, ..., nk), (q1, ..., qk) denote the parameters of the

quantum deformation in the quantum cohomology algebra of F (n0, ..., nk) (see [11]). Then

the relation P = xn + c1x
n−1 + ...+ cn expresses a basis of relations between the generators

(c
(i)
j ) of the quantum cohomology algebra of the partial flag manifold and the Chern classes
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(c1, ..., cn) of the tautological vector bundle over BUn (so that C[c1, ..., cn] plays the role of

the coefficient ring of the Un-equivariant cohomology theory).

Notice that in the “classical” equivariant cohomology algebra the same relation holds with

P = P0...Pk. This indicates that a quantum generalization of the multiplicative property of

the total Chern class should involve chain fractions.

Consider now the reduced rational function Q/P with monic Q. For a generic P it can

be written as the sum of simple fractions

a1

x− x1
+ ...+

an
x− xn

,
∑

ai = 1.

Introduce the following n commuting flows with time variables τ1, ..., τn:

xi 7→ xi, ai 7→
aie

xiτi

a1ex1τ1 + ...+ anexnτn
.

This dynamics preserves the hyperplane a1+ ...+an = 1 corresponding to monic polynomials

Q. For generic Q the transformation of the sum Q/P of simple fractions to the chain fraction

P/Q = x− p1 +
q1

x− p2 + q2
...+ ...

...+
qn−1
x−pn

defines n commuting flows on the space with coordinates (p1, ..., pn, q1, ..., qn−1) (this chain

fraction corresponds to the complete flag manifold F (1, ..., 1)). We put qi = exp(ti − ti+1).

It is easy to check that the dynamics of the Toda system (in the (p, t)-space) coincides with

the diagonal flow with τ1 = ... = τn = τ .

I am thankful to N. Reshetikhin who pointed to me the references [27, 26] where these

facts about Toda lattices are described.

Despite of several recent papers (see for instance [24]), the actual relation of quantum

cohomology with Toda dynamics as well as the interrelations between quantum cohomology

algebras of partial flag manifolds (whose spectra fit nicely as various strata in the space of

polynomials Q) yet to be understood.

6 Floer theory and D-modules

Structural constants 〈α ∗ β, γ〉 of the quantum cup-product are derivatives ∂βFα,γ of the

same function. This allows to interpret the WDVV-equation as integrability condition of

13



some connections ∇~ on the tangent bundle TH of the space H = H∗(X,C). Namely, put

t =
∑
tαpα where p1 = 1, p2, . . . , pN is a basis in H and define

∇~ = ~d−
∑

(pα∗)dtα∧ : Ω0(TH) → Ω1(TH)

where pα∗ are operators of quantum multiplication by pα. Then ∇~ ◦ ∇~ = 0 for each

value of the parameter ~. Notice that the integrability condition that reads “the system of

differential equations ~∂αI = pα ∗ I has solutions I ∈ Ω0(TH)” is actually obtained as a

somewhat combinatorial statement (the WDVV-equation) about coefficients of the series F .

In [9], [10] we attempted to improve this unsatisfactory explanation of the integrabil-

ity property by describing a direct geometrical meaning of the solutions I in terms of S1-

equivariant Floer theory on the loop space LX. Briefly, the universal covering L̃X carries

the action of the covering transformation lattice π2(X) with generators q1, . . . , qk and the

S1-action by rotation of loops which preserves natural symplectic forms ω1, . . . , ωk on LX

and thus defines corresponding Hamiltonians H1, . . . , Hk on L̃X (the action functionals).

The Duistermaat–Heckman forms ωi + ~Hi (here ~ is the generator of H∗
S1(pt)) are equiv-

ariantly closed, and operators pi of exterior multiplication by these forms have the following

Heisenberg commutation relations with the covering transformations:

piqj − qjpi = ~qjδij.

Conjecturally, this provides S1-equivariant Floer cohomology of L̃X with a D-module struc-

ture which is equivalent to the above system of differential equations (restricted to t = 0,

q 6= 0) and reduces to the quantum cohomology algebra in the quasi-classical limit ~ = 0

(see [9, 7]).

In this section we describe solutions to ∇~I = 0 by imitating the S1-equivariant Floer

theory (which is still to be constructed) within the framework of Gromov–Witten theory.

This construction turns out to be crucial in our proof in Section 11 of the mirror conjecture

for Calabi-Yau projective complete intersections.

One may think of the graph of an algebraic loop CP 1\{0,∞} → X of degree d as of a

stable map CP 1 → X × CP 1 of bidegree (d, 1). Denote Ld(X) a moduli space of genus zero

stable maps to X×CP 1 of bidegree (d, 1) (we do not specify the number of marked points in

this notation). Our starting point consists in interpretation of Ld(X) of such as a degree-d

14



approximation to L̃X and application of equivariant Gromov–Witten theory to the action

of S1 on the second factor CP 1 with the fixed points {0,∞}.

In the theorem below we assume X to be convex. It is natural to expect however that

the theorem holds true whenever the non-equivariant Gromov–Witten theory works for X

since the S1-action is non-trivial only on the factor CP 1 which is convex on its own.

Let 〈 , 〉 be the Poincare pairing on H = H∗(X,C). The equivariant cohomology algebra

H∗
S1(X × CP 1) is isomorphic to H ⊗C C[p, ~]/(p(p− ~)) with the S1-equivariant pairing

(ϕ, ψ) =
1

2πi

∮
〈ϕ, ψ〉dp

p(p− ~)
.

Localization in ~ allows to introduce coordinates ϕ = tp/~ + τ (~ − p)/~, τ, t ∈ H, diagonal-

izing the equivariant pairing:

((τ, t), (τ ′, t′)) =
〈t, t′〉 − 〈τ, τ ′〉

~
.

The potential F(t, τ, ~, q, q0) satisfying the equivariant WDVV-equation forX×CP 1 expands

as

F = F (0) + q0F
(1) + q2

0F
(2) . . .

according to contributions of stable maps of degree 0, 1, 2, . . . with respect to the second

factor. Denote F = F (t, q) the potential (1) of the GW -theory for X.

Theorem 6.1 (a) F (0) = (F (t, q)− F (τ, q))/~.

(b) The matrix (Φαβ) := (∂2F (1)/∂τα∂tβ) is a fundamental solution of ∇±~I = 0:

−~
∂

∂τγ
Φ = p̂γ(t)Φ ,

~
∂

∂tγ
Φ∗ = p̂γ(τ )Φ

∗ ,

where p̂γ = (pβα)γ , γ = 1, . . . , N , are matrices of quantum multiplication by pγ , and Φ∗ is

transposed to Φ.

Proof. Moduli spaces of bidegree-(d, 0) stable maps to X × CP 1 coincide with Xn,d × CP 1.

This implies (a) and shows that the WDVV-equation for F modulo q0 follows from the
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WDVV-equation for F . Part (b) follows now directly from the WDVV-equation for F

modulo q2
0 and from

~
∂

∂t1
Φαβ = Φαβ = −~

∂

∂τ1
Φαβ

due to (5) and (6). Here ∂/∂t1, ∂/∂τ1 are derivatives in the direction 1 ∈ H∗(X) of the

identity components of t and τ respectively.

The following corollary is obtained by expressing equivariant correlators Φαβ via local-

ization of equivariant cohomology classes of moduli spaces Ld(X) to fixed points of the S1

action.

Define the matrix ψ = (φαβ(t, q, ~)) by

ψαβ =
∞∑

n=0

1

n!

∑

d

qd〈
pβ

~ + c
, t, . . . , t, pα〉n+2,d (7)

where c := c(1) is the first Chern class of the line bundle over Xk,d introduced in Section 2

as “the universal tangent line at the first marked point”, and 〈
pβ

~+c
, pα〉2,0 := 〈pα, pβ〉.

Corollary 6.2 ~∂ψ/∂tγ = p̂γ(t)ψ, i.e., the matrix ψ is (another) fundamental solution of

∇~I = 0.

Proof. A fixed point in Ld(X) is represented by a stable map C0 ∪ CP 1 ∪ C∞ → X × CP 1

where ϕi : Ci → X × {i} are stable maps of degrees d0 + d∞ = d connected by a “constant

loop” CP 1 ≃
→ {x}×CP 1 (notice that di = 0 corresponds to empty Ci.) Thus components of

Ld(X)S
1

can be identified with submanifolds in Xd0,k0+1 ×Xd∞,k∞+1 defined by the diagonal

constraint e1(ϕ0) = e1(ϕ∞), with ~2(~ + c(0))(~− c(∞)) to be the equivariant Euler class of

the normal bundle. This gives rise to

~
2Φαβ =

∑

ε,ε′

ψαε(τ,−~) ηεε
′

ψε′β(t, h) (8)

where
∑
ηεε

′

pε ⊗ pε′ is the coordinate expression of the diagonal cohomology class of X ⊂

X ×X. Now the differential equations of Theorem 6.1 for Φ imply the differential equation

for ψ.

We give here several reformulations which will be convenient for computation of quantum

cohomology algebras in Sections 9 – 11.
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Consider the specialization of the connection ∇~ to the parameter subspace correspond-

ing to the deformation of the quantum cup-product along the 2-nd cohomology (this is

accomplished by putting first t = 0 and then replacing qd by exp
∑
diti where (t1, ..., tk) are

coordinates on H2(X) with respect to the basis p(1), ..., p(k) ∈ H2(X) . In this new setting

put

sα,β :=
∑

d

edt〈pβ
ept/~

~ + c
, pα〉2,d

where pt :=
∑
p(i)ti and dt =

∑
diti.

Corollary 6.3. The matrix (sα,β(t)) is a fundamental solution to

∇~ s = 0 : ~
∂

∂ti
s = p̂(i) s.

Proof. One should combine Corollary 6.2 with iterative applications of the following

symmetries generalizing (5), (6):

〈f(c), ..., 1〉n+1,d = 〈
f(0) − f(c)

c
, ...〉n,d,

〈f(c), ..., p(i)〉n+1,d = di〈f(c), ...〉n,d + 〈p(i) f(0) − f(c)

c
, ...〉n,d.

Here f is a function of one variable with values in H∗(X).

The symmetries are easily verified on the basis of the following geometrical properties of

universal tangent lines:

(i) Consider the push-forward along the map π : Xn+1,d → Xn,d (forgetting the last

marked point). It is easy to see that the difference π∗(c)− c between the Chern class of the

universal tangent line at the 1-st marked point and the pull-back of its counterpart from

Xn,d is represented by the fundamental cycle of the section i : Xn,d → Xn+1,d defined by the

first marked point.

(ii) i∗(c) = c.

In particular π∗(1/(~ + c)) = 1/[~(~ + c)].

Corollary 6.4. Consider the functions

sβ :=
∑

d

edt〈pβ
ept/~

~ + c
, 1〉2,d .
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Let P (~∂/∂t, exp t, ~) be a differential operator annihilating simultaneously all the functions

sβ. Then the relation P (p(1), ..., p(k), q1, ..., qk, 0) = 0 holds in the quantum cohomology algebra

of X (we assume here that P depends only on non-negative powers of ~).

Proof. The functions sβ form the first row in the fundamental solution matrix S = (sα,β).

Application of the differential operator P to the matrix S is equal to the matrix product

(P0 + ~P1 + ... + ~MPM )S where P0 is the matrix of the quantum multiplication by the

symbol P (p, exp t, 0). Our hypotheses mean that the first row in this product vanishes.

Since the fundamental solution matrix S is non-degenerate, this implies that the first row in

P0 vanishes too. In other words, 〈P (p, q, 0), pβ〉 = 0 for all β and thus P (p, q, 0) = 0 in the

quantum cohomology algebra.

All results of this section extend literally to the equivariant setting and/or to the general-

ization to convex vector bundles described in Section 4. We will apply them in this extended

form in Sections 9–11.

Remarks. 1) The universal formula (7) for solutions of ∇~I = 0 was perhaps discovered

independently by several authors. I first learned this formula from R. Dijkgraaf. It can also

be found in [2] in the axiomatic context of conformal topological field theory. One can prove it

directly from a recursion relation (in the spirit of WDVV-equation) for so-called gravitational

descendents — correlators involving the first Chern classes of the universal tangent lines (or,

in a slightly different manner, by describing explicitly the divisor inXn,d representing c). Our

approach provides an interpretation of (7) in terms of fixed point localization in equivariant

cohomology.

2) One can generalize our theorem to bundles over CP 1 with the fiber X. This seems

to indicate that a straightforward “open-string” approach to S1-equivariant Floer theory on

L̃X would be more powerful and flexible than the approximation by Gromov–Witten theory

on X × CP 1 described above.

3) Although the theorem provides a geometrical interpretation of solutions to ∇~I = 0,

it does not eliminate the combinatorial nature of the integrability condition. Indeed, the

theorem is deduced from an equivariant WDVV-equation which in its turn can be interpreted

as an integrability condition. Of course one can explain it using the S1 × S1-equivariant

WDVV-equation on (X ×CP 1)×CP 1, etc. It would be interesting to find out whether this

process converges.
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7 Frobenius structures

In [2], B. Dubrovin studied geometrical structures defined by solutions of WDVV-equations

on the parameter space and reduced classification of generic solutions to the classification

of trajectories of some Euler-like non-autonomous Hamiltonian systems on so∗N . We show

here how this approach to equivariant Gromov–Witten theory yields analogous Hamiltonian

systems on the affine Lie coalgebras ŝo∗N .

The quantum cup-product on H = H∗
G(X) considered as an N -dimensional vector space

over the field of fractions K of the algebra H∗
G(pt) defines a formal Frobenius structure on

H. The structure consists of the following ingredients.

1. A symmetric K-bilinear inner product 〈 , 〉,

2. a (formal) function F : H → K whose third directional derivatives 〈a ∗ b, c〉 := Fa,b,c

provide tangent spaces TtH with the Frobenius algebra structure (i.e. associative

commutative multiplication ∗ satisfying 〈a ∗ b, c〉 = 〈a, b ∗ c〉).

3. The constant vector field 11 of unities of the algebras (TtH, ∗) whose flow preserves the

multiplication ∗ (i.e. L11(∗) = 0).

4. Grading: In the non-equivariant case axiomatically studied by B. Dubrovin it can be

described by the Euler vector field E, such that the tensor fields 11, ∗ and 〈 , 〉 are

homogeneous (i.e. are eigen-vectors of the Lie derivative LE) of degrees −1, 1 and

D respectively (where D = dimC X in the models arising from the GW-theory). In

the equivariant GW-theory this grading axiom should be slightly modified since the

grading of the structural ring H∗
G(pt) is non-trivial and thus the natural Euler operator

LE is C-linear but not K-linear 3

The fact that the multiplication ∗ is defined on tangent vectors to H means that the

algebra (Ω0(TH), ∗) can be naturally considered as the algebra K[L] of regular functions on

some subvariety L ⊂ T ∗H in the cotangent bundle. A point t ∈ H is called semi-simple if

3One may also think of the H∗

G
(pt)-module H∗

G
(X) as of the module of sections of a vector bundle over

the spectrum of H∗

G
(pt). The fibers of the bundle then carry Frobenius structures satisfying the axioms 1 –

3 while the Euler vector field is not tangent to the fibers.
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the algebra (TtH, ∗) is semi-simple, that is if L ∩ T ∗
t H consists of N linearly independent

points.

Flatness of the connection (defined on TH)

∇~ = ~d −
∑

α

pα ∗ dtα (9)

implies [7] that L is a Lagrangian submanifold in T ∗H near a semisimple t. Following

[2], introduce local canonical coordinates (u1, . . . , uN ) such that the sections (du1, . . . , duN )

of T ∗H are the N branches of L near t, and transform the connections ∇~ to these local

coordinates and to a (suitably normalized) basis f1, . . . , fN of vector field on H diagonalizing

the ∗-product.

The result of this transformation can be described as follows.

(a) The basis {fi} can be normalized in a way that in the transformed form

∇~ = ~d − ~A1 ∧−D1 ∧ (10)

of the connection ∇~ with D1 = diag(du1, . . . , duN), and Aij = Vij(u)d(ui−uj)/(ui−uj) for

all i 6= j, we will have additionally Aii = 0 ∀i.

(b) The vector field 11 in the canonical coordinates assumes the form
∑

k ∂k where ∂k :=

∂/∂uk are the canonical idempotents of the ∗-product:

∂i ∗ ∂j = δij∂j. (11)

(c) The (remaining part of the) integrability condition ∇2
~

= 0 reads d(A1) = A1 ∧A1 or

∂iφ
j
α = φiαVij/(ui − uj), i 6= j, (12)

where (φjα) is the transition matrix, ∂/∂tα =
∑

i φ
i
αfi; it can be reformulated as compatibility

of the PDE system (12) for (φjα) completed by

∑

k

∂kφ
j
α = 0. (13)

(d) The Frobenius property 〈a ∗ b, c〉 = 〈a, b ∗ c〉 of the ∗-product shows that the diago-

nalizing basis {fi} is orthogonal, that its normalization by 〈fi, fj〉 = δij obeys Aii = 0 and,

additionally, implies anti-symmetricity Aij = −Aji, or

Vij = −Vji. (14)
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The presence of the grading axiom (4) of Frobenius structures over K = C allows

B.Dubrovin to describe anti-symmetric matrices V = (Vij) ∈ so∗N satisfying the integra-

bility conditions (12) and (13) in quasi-homogeneous canonical coordinates (i.e. LEui = ui

so that E =
∑
uk∂k) as trajectories of N commuting non-autonomous Hamiltonian systems

(see [2]):

∂iV = {Hi, V }

where the Poisson-commuting non-autonomous quadratic Hamiltonians Hi on so∗N are given

by

Hi =
1

2

∑

j 6=i

VijVji
ui − uj

.

Consider now the following model modification of the grading axiom: K = C[[λ±1]],

deg λ = 1. In quasi-homogeneous canonical coordinates (u1, . . . , uN , λ) the Euler vector field

takes then on

LE =
∑

k

uk∂k + λ∂λ. (15)

Introduce the connection operator

V = λ∂λ − V ∈ ŝo∗N

and the qudratic Hamiltonians on the Poisson manifold ŝo∗N

Hi(V) =

∮
Hi(V )

dλ

λ
. (16)

Proposition 7.1 The Hamiltonians H1, . . . ,HN are in involution. The operator V of a

Frobenius manifold over K satisfies the non-autonomous system of Hamiltonian equations

∂iV = {Hi,V}, i = 1, . . . , N. (17)

The columns φα = (φiα) of the transition matrix are eigen-functions of the connection operator

V:

Vφα := (λ∂λ − V )φα =
(n

2
− deg tα + 1

)
φα. (18)
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Proof. It can be obtained by a straightforward calculation quite analogous to that in [2].

In our real life the model equations (15–18) describe the structure of Frobenius manifolds

over each semi-simple orbit of the grading Euler field in the ground parameter space. This

parameter space is the spectrum of the coefficient algebra H∗
G(pt,C)⊗C[q±1

1 , . . . , q±1
k ] (its field

of fractions can be taken on the role of the ground field K). An orbit of the Euler vector

field in this parameter space is semi-simple if the corresponding C-Frobenius algebras are

semi-simple.

The equations (15–18) over semi-simple Euler orbits should be complemented by the

additional symmetries (6).

In the next section we will show how the canonical coordinates of the axiomatic theory

of Frobenius structures emerge from localization formulas in equivariant Gromov–Witten

theory.

8 Fixed point localization

We consider here the case of a circle T 1 acting by Killing transformations on a compact

Kahler manifold X with isolated fixed points only. The case of tori actions with isolated

fixed points requires only slight modification of notations which we leave to the reader. Our

results are rigorous for convex X (which includes homogeneous Kahher spaces of compact

Lie group and their maximal tori) while applications to general toric manifolds (which are

typically not convex) yet to be justified.

It is the Borel localization theorem that reduces computations in torus-equivariant co-

homology to computations near fixed points. Let {pα}, α = 1, ..., N , be the fixed points of

the action. We will denote with the same symbols pα the equivariant cohomology class of X

which restricts to 1 ∈ H∗
T (pα) at pα and to 0 at all the other fixed points. These classes are

well-defined over the field of fractions C(λ) of the coefficient ring H∗
T (pt) = C[λ] and form

the basis of canonical idempotents in the semi-simple algebra H∗
T (X,C(λ). The equivariant

Poincare pairing reduces to 〈pα, pβ〉 = δα,β/eβ where eα ∈ C[λ] is the equivariant Euler class

of the normal “bundle” TpαX → pα to the fixed point.

The results described below apply to the setting of Section 4 of a manifold X provided

with a convex vector bundle in which case eα’s should be modified accordingly.
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The same localization theorem reduces computation of GW-invariants to that near the

fixed point set (orbifold) in the moduli spaces Xn,d. A fixed point in the moduli space is

represented by a stable map toX of a (typically reducible) curve C such that each component

of C is mapped to (the closure of) an orbit of the complexified action TC : X. Any such an

orbit is either one of the fixed points pα or isomorphic to (C−0) connecting two distinct fixed

points pα and pβ corresponding to 0 and ∞. Respectively, there are two types of components

of C :

(i) Each component of C which carries 3 or more special points must be mapped to one of

the fixed points pα.

(ii) All other components are multiple covers z 7→ zd of the non-constant orbits, and their

special points may correspond only to z = 0 or ∞.

The combinatorial structure of such a stable map can be described by a tree whose edges

correspond to chains of components of type (ii) and should be labeled by the total degree

of this chain as a curve in X, and vertices correspond to the ends of the chains. The ends

may carry 0 or 1 marked point, or correspond to a (tree of) type-(i) components with 1 or

more marked points and should be labeled by the indices of these marked points and by the

target point pα.

The fixed stable maps with different combinatorial structure belong to different connected

components of the fixed point orbifold in Xn,d.

The results below are based on the observation that a stable map with the first k ≥ 3

marked points in a given generic configuration (i.e. with the given generic value of the

contraction map Xn.d → M̄0,k) must have in an irreducible component C0 in the underlying

curve C which contains this given configuration of k special points, (so that the corresponding

first k marked points are located on the branches outgoing these special points of C0). The

cause is hidden in the definition of the contraction map (see [3, 6]).

We will call the component C0 special.

The observation applied to a fixed stable map of the circle action allows to subdivide all

fixed point components in X3+n,d into N types pi according to the fixed points pi where the

special component is mapped to. We introduce the superscript notation (...)i for the con-

tribution (via Borel’s localization formulas) of type-pi components into various equivariant

23



correlators. For example,

F i
αβγ =

∑

n

1

n!

∑

d

qd〈pα, pβ , pγ, t, ..., t〉
i
3+n,d

where t =
∑N

α=1 tαpα is the general class in H∗
T (X,C(λ)), so that Fαβγ =

∑
i F

i
αβγ.

We introduce also the notations

• Ψi
αβ — for contributions to eiF

i
αβi of those fixed points which have the third marked

point situated directly on the special component C0 (it is convenient here to introduce

the normalizing factor ei ∈ H∗
T (pt), the Euler class of the normal “bundle” to the fixed

point pi in X);

• Ψi
α := Ψi

α11 =
∑

β Ψi
αβ;

• Di
α — for contributions to eiFαii of those fixed points which have the second and third

marked points situated directly on the special component;

• ∆i — for contributions to eiFiii of those fixed points which have the first three marked

points situated directly on the special component;

• ui = ti+ contributions to eiFii of all those fixed point components in X2+n,d for which

the first two marked points belong to the same vertex of the tree describing the com-

binatorial structure.

The correlators ui can be also interpreted as contributions to the genus-1 equivariant

correlators ∑

n

1

n!

∑

d

qd(t, ..., t)n,d

with given complex structure of the elliptic curve of those T -invariant classes which map the

(only) genus-1 component of the curve C to the fixed point pi.

Theorem 8.1. (a) The functions u1(t), ..., uN(t) are the canonical coordinates of the

Frobenius structure on H∗
G(X,C(λ)).

(b) The functions Di
α(t) are eigen-values of the quantum multiplication by pα: dui =

∑
αD

i
αdtα.
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(c) The transition matrix (Ψi
α) provides simultaneous diagonalization of the quantum cup

product: F i
αβγ = Ψi

αD
i
βΨ

i
γ and obeys the following orthogonality relations:

∑

i

Ψi
αΨ

i
β = δαβ/eβ,

∑

α

Ψi
αΨ

j
α = δij .

(d) The Euclidean structure on the cotangent bundle of the Frobenius manifold (defined

by the equivariant intersection pairing in H∗
T (X)) in the canonical coordinates ui takes on

〈dui, duj〉 = (∆i)2δijej and additionally

(∆i)−1 =
∑

α

Ψi
α, Ψi

α =
Di
α

∆i
, Ψi

αβ =
Di
αD

i
β

∆i
.

Proof. We first apply the localization formula

A1234〈...〉n,d =
∑

i

A1234〈...〉
i
n,d

to the 4-point equivariant correlators with the fixed cross-ratio z of the 4 marked points and

only after this specialize the cross-ratio to 0,1 or ∞. This gives rise to the local WDVV-

identities

Ψi
αβΨ

i
γδ is totally symmetric in α, β, γ, δ

which is independent of the global WDVV-equation. When combined with the global iden-

tities

A1234〈11, pα , pβ, pγ〉n,d = 〈pα, pβ , pγ〉n,d

they yield the orthogonality relation
∑

i Ψ
i
αΨ

i
β = δαβ/eβ and localization formulas

Fαβγ =
∑

i

Ψi
αβΨ

i
γ

for the structural constants of the quantum cup-product.

A similar argument with > 4-point correlators A12345...〈...〉
i proves the diagonalization

〈pα ∗ pβ , pγ〉 =
∑

i

Ψi
αD

i
βΨ

i
γ/ei ,

〈pα ∗ pβ ∗ pγ , pδ〉 =
∑

i

Ψi
αD

i
βD

i
γΨ

i
δ/ei
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and the identities

Ψi
αβ = Ψi

αD
i
β , (∆i)−1 =

∑

α

Ψi
α .

Finally, the identity dui =
∑

αD
i
αdtα follows directly from the definition of ui and implies

that u1, ..., uN are the canonical coordinates of the Frobenius structure.

9 Projective complete intersections

We are going to describe explicitly solutions of the differential equations arising from quan-

tum cohomology of projective complete intersections. Lex X be such a non-singular complete

intersection in Y := CP n given by r equations of the degrees (l1, ..., lr). If l1 + ...+ lr = n+1

then X is a Calabi-Yau manifold and its quantum cohomology is described by the mirror

conjecture. In this and the next sections we study respectively the cases l1 + ...+ lr < n and

l1 + ...+ lr = n when the 1-st Chern class of X is still positive. In the case l1 + ...+ lr > n+1

(which from the point of view of enumerative geometry can be considered as “less interesting”

for rational curves generically occur only in finitely many degrees) the “mirror symmetry”

problem of hypergeometric interpretation of quantum cohomology differential equations re-

mains open.

Let Ed be the Euler class of the vector bundle over the moduli space Y2,d of genus

0 degree d stable maps φ : (C, x0, x1) → CP n with two marked points, with the fiber

H0(C, φ∗H l1 ⊕ ...⊕ φ∗H lr) where H l is the l-th tensor power of the hyperplane line bundle

over CP n.

Consider the class

Sd(~) :=
1

~ + c
(0)
1

Ed ∈ H∗(Y2,d)

where c
(0)
1 is the 1-st Chern class of the “universal tangent line at the marked point x0 ”, and

e0, e1 are the evaluation maps. Due to the factor Ed this class represents the push forward

along X2,d → Y2,d of the class 1/(~ + c
(0)
1 ) ∈ H∗(X2,d) (by the very construction of X2,d in

Section 4).

In the cohomology algebra C[P ]/(P n+1) of CP n, consider the class

S(t, ~) := ePt/~
∞∑

d=0

edt(e0)∗(Sd(~))
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where (e0)∗ represents the push-forward along the evaluation map (and for d = 0, when Y2,d

is not defined, we take Euler (⊕jH
⊗lj ) on the role of (e0)∗S0).

Considered as a function of t, S is a curve in H∗(CP n) whose components are solutions of

the differential equation we are concerned about. Indeed, according to Section 6 a similar sum

represents the solutions of the quantum cohomology differential equation for X, and S is just

the push-forward of that sum from H∗(X) toH∗(Y ). (Strictly speaking S carries information

only about correlators between those classes which come from the ambient projective space;

also if X is a surface rkH2(X) can be greater than 1 and S mixes information about the

curves of different degrees in X when they have the same degree in Y .)

Theorem 9.1. Suppose that l1 + ...+ lr < n. Then

S = ePt/~
∞∑

d=0

edt
Πdl1
m=0(l1P +m~)...Πdlr

m=0(lrP +m~)

Πd
m=1(P +m~)n+1

.

The formula coincides with those in [9, 10] (found by analysis of toric compactifications

of spaces of maps CP 1 → CP n) for solutions of differential equations in S1-equivariant

cohomology of the loop space.

Corollary 9.2. (see [9, 10]) The components s := 〈P i, S〉, i = 0, ..., n− r, of S form a

basis of solutions to the linear differential equation

(~
d

dt
)n+1−r s = etΠr

j=1 lj Π
lj−1
m=1 ~(lj

d

dt
+m) s .

This implies (combine [10] with [18]) that the solutions have an integral representation

of the form
∫

γn−r⊂X ′

t

e(u0+...+un)/~ du0 ∧ ... ∧ dun
dF0 ∧ dF1 ∧ ... ∧ dFr

where

F0 = u0...un, F1 = u1 + ...ul1, F2 = ul1+1 + ...+ ul1+l2, ..., Fr = ul1+...+lr−1+1 + ...+ ul1+...+ulr

and the “mirror manifolds” X ′
t are described by the equations

X ′
t = {(uo, ..., un) | F0(u) = et, F1(u) = 1, ..., Fr(u) = 1}.
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This proves for X the mirror conjecture in the form suggested in [10].

Corollary 9.3. If dimC X 6= 2 the cohomology class p of hyperplane section satisfies in

the quantum cohomology of X the relation

pn+1−r = ll11 ...l
lr
r qp

l1+...+lr−r .

When X is a surface the same relation holds true in the quotient of the quantum coho-

mology algebra which takes in account only degrees of curves in the ambient CP n (we leave

to figure out a precise description of this quotient to the reader; quadrics CP 1×CP 1 in CP 3

provide a good example: (p1 + p2)
3 = 4q(p1 + p2) mod p2

1 = q = p2
2.)

This corollary is consistent with the result of A. Beauville [22] describing quantum co-

homology of complete intersections with
∑
lj ≤ n + 1 −

∑
(lj − 1) and with results of M.

Jinzenji [23] on quantum cohomology of projective hypersurfaces (r = 1) with l1 < n.

Corollary 9.4. The number of degree d holomorphic maps CP 1 → Xn−r ⊂ CP n, which

send 0 and ∞ to two given cycles and send n+ 1− r given points in CP 1 to n+ 1− r given

generic hyperplane sections, is equal to ll11 ...l
lr
r times the number of degree d− 1 maps which

send 0 and ∞ to the same cycles and l1 + ...+ lr − r given points — to l1 + ...+ lr − r given

hyperplane sections.

This is the enumerative meaning of Corollary 9.3; of course in this formulation numerous

general position reservations are assumed.

Control examples. 1. l1 = ... = lr = 1: The above formulas for quantum cohomology and

for solutions of the differential equations in the case of a hyperplane section give rise to the

same formulas with n := n− 1.

2. n = 5, r = 1, l = 2: X is the Plucker embedding of the grassmanian Gr4,2. Its quantum

cohomology algebra is described by the relations c31 = 2c1c2, c
2
2 − c2c

2
1 + q = 0 between the

Chern classes of the tautological plane bundle. For the 1-st Chern class p = −c1 of the

determinant line bundle we deduce the relation p5 = 4pq prescribed by Corollary 9.3.

We will deduce Theorem 9.1 from its equivariant generalization. Consider the space Cn+1

provided with the standard action of the (n + 1)-dimensional torus T . The equivariant co-

homology algebra of Cn+1 coincides with the algebra of characteristic classes H∗(BT n+1) =

C[λ0, ..., λn]. The equivariant cohomology algebra of the projective space (Cn+1 − 0)/C×
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in these notations is identified with C[p, λ]/((p − λ0)...(p − λn)) and the push-forward

H∗
T (CP n) → H∗

T (pt) is given by the residue formula

f(p, λ) 7→
1

2πi

∮
f(p, λ)dp

(p− λ0)...(p− λn)
.

Here −p can be considered as the equivariant 1-st Chern class of the Hopf line bundle

provided with the natural lifting of the torus action. We will use φi := Πj 6=i(p − λj), i =

0, ..., n, as a basis in H∗
T (CP n).

Consider the T -equivariant vector bundle ⊕r
j=1H

⊗lj and provide it with the fiberwise

action of the additional r-dimensional torus T ′. The equivariant Euler class of this bundle

is equal to (l1p− λ′1)...(lrp− λ′r) where C[λ′] = H∗(BT ′).

Introduce the equivariant counterpart S ′ of the class S in the T × T ′-equivariant coho-

mology of CP n. This means that we use the equivariant class p instead of P and replace the

Euler classes Ed and c
(0)
1 by their equivariant partners.

Theorem 9.5. Let l1 + ...+ lr < n. Then

S ′ = ept/~
∞∑

d=0

edt
Πdl1

0 (l1p− λ′1 +m~)...Πdlr
0 (lrp− λ′r +m~)

Πd
1(p− λ0 +m~)...Πd

1(p− λn +m~)
.

Theorem 9.1 follows from Theorem 9.5 by putting λ = 0, λ′ = 0 which corresponds to

passing from equivariant to non-equivariant cohomology.

The vector-function S ′ satisfies the differential equation

Πr
i=0(~

d

dt
− λi) S

′ = etΠl1
m=1(l1~

d

dt
− λ′1 +m~)...Πlr

m=1(lr~
d

dt
− λ′r +m~) S ′.

We intend to prove Theorem 9.5 by means of localization of S ′ to the fixed point set

of the torus T action on the moduli spaces Y2,d. As it is shown in [3], all correlators of

the equivariant theory on CP n are computable at least in principle, and in practice the

computation reduces to a recursive procedure which can be understood as a summation over

trees and can be also formulated as a non-linear fixed point (or critical point) problem. We

will see below that in the case of correlators 〈φi, S
′〉 certain reasons of a somewhat geometrical

character cause numerous cancellations between trees so that the recursive procedure reduces

to a “summation over chains” and respectively to a linear recurrence equation. The formula

of Theorem 9.5 is simply the solution to this equation.
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In the proof of Theorem 9.5 below we write down all formulas for r = 1 (it serves the

case when X is a hypersurface in CP n of degree l < n). The proof for r > 1 differs only by

longer product formulas.

Let us abbreviate c
(0)
1 as c, denote E ′

d the equivariant Euler class of the vector bundle over

Y2,d whose fiber over the point ψ : (C, x0, x1) → Y = CP n consists of holomorphic sections

of the bundle ψ∗(H l) vanishing at x0, and introduce the following equivariant correlator:

Zi :=
∞∑

d=0

qd
∫

Y2,d

e∗0(φi)
1

~ + c
E ′
d.

We have

〈φi, S
′〉 = eλit/~(lλi − λ′)(Zi|q=et)

Proposition 9.6.

Zi = 1 +
∑

d>0

(
q

~n+1−l
)d

∫

Y2,d

(−c)(n+1−l)d−1

1 + c/~
E ′
d e

∗
0(φi) .

Proof. We have just dropped first several terms in the geometrical series 1/(~ + c) since

their degree added with the degrees of other factors in the integral over Y2,d is still less than

the dimension of Y2,d. It is important here that all the equivariant classes involved including

φi are defined in the equivariant cohomology over C[λ, λ′] without any localization.

It is a half of the geometrical argument mentioned above. The other half comes from the

description of the fixed point set in Y2,d given in [11].

Consider a fixed point of the torus T action on Y2,d. It is represented by a holomorphic

map of a possibly reducible curve with complicated combinatorial structure and with two

marked points on some components. Each component carrying 3 or more special points is

mapped to one of the n+1 fixed points of T on CP n, and the other components are mapped

(with some multiplicity) onto the lines joining the fixed points and connect the point-mapped

components in a tree-like manner.

In the Borel localization formula for
∫
e∗0(φi)... the fixed point will have zero contribution

unless the marked point x0 is mapped to the i-th fixed point in CP n (since φi has zero

localizations at all other fixed points.
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Consider a fixed point curve C whose marked point x0 is indeed mapped to the i-th fixed

point in CP n. There are two options

(i) the marked point x0 is situated on an irreducible component of C mapped with some

degree d′ onto the line joining the i-th fixed point with the j-th fixed point in CP n with

i 6= j;

(ii) the marked point x0 is situated on a component of C mapped to the i-th fixed point

and carrying two or more other special points.

Consider first the option (ii) and the contribution of such a connected component of the

fixed point set in Y2,d to the Borel localization formula for
∫
c(n+1−l)d−1.... The connected

component itself is the (product of the) Deligne-Mumford configuration space of, say, s+ 1

special points: the marked point x0, may be the marked point x1, and respectively s− 1 or

s endpoints of other components of C mapped onto the lines outgoing the i-th fixed point

in CP n.

Lemma 9.7. The type (ii) fixed point component in Y2,d has zero contribution to the

Borel localization formula for
∫
Y2,d

c(n+1−l)d−1...

Proof. Restriction of the class c from Y2,d to the type (ii) fixed point component coin-

cides with the 1-st Chern class of the line bundle on the Deligne-Mumford factor M̄0,s+1 of

the component defined as “the universal tangent line as the marked point x0” and is thus

nilpotent in the cohomology of the component. Since the number of straight lines in a curve

of degree d does not exceed d we find that the dimension s− 2 of the factor M̄0,s+1 is less

than d which in its turn does not exceed (n+1− l)d−1 for d > 0 (because we assumed that

n+ 1 − l ≥ 2).

Consider now the option (i). The irreducible component C ′ of the curve C = C ′ ∪ C ′′

carrying the marked point x0 is mapped with the multiplicity d′ ≤ d onto the line joining

i-th fixed point in CP n with the j-th one while the remaining part C ′′ → CP n of the map

represents a fixed point in Y2,d−d′ . Moreover, the normal space to the fixed point component at

the type (i) point (the equivariant Euler class of the normal bundle occurs in the denominator

of the Borel localization formula) is the sum of (a) such a space N ′′ for C ′′ → CP n, (b) the

space N ′ of holomorphic vector fields along the map C ′ → CP n vanishing at the fixed point j

factorized by infinitesimal reparametrizations of C ′, (c) the tensor product L of the tangent

lines to C ′ and C ′′ at their intersection point. Since the space V of holomorphic sections of

H l restricted to C (and vanishing at x0) admits a similar decomposition V ′ ⊕ V ′′, we arrive
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to the following linear recursion relation for Zi.

Proposition 9.8. Put zi(Q, ~) := Zi(~
(n+1−l)Q, ~). Then

zi(Q, ~) = 1 +
∑

j 6=i

∑

d′>0

Qd′Coeff j
i (d

′) zj(Q, (λj − λi)/d
′)

where

Coeff j
i (d

′) =
[(λj − λi)/d

′](n+1−l)d′−1

1 + (λi − λj)/d′~

Euler (V ′)

Euler (N ′)
φi|p=λi

.

Proof. Here (λi−λj)/d
′ is the localization of c, and the key point is that the equivariant

Chern class of the line bundle L over Y2,d−d′ is what we would denote ~ + c for the moduli

space Y2,d−d′ but with ~ = (λj − λi)/d
′. This is how the recursion for the correlators zi

becomes possible. The rest is straightforward.

Remark. Our reduction to the linear recursion relation can be interpreted in the following

more geometrical way: contributions of all non-isolated fixed points cancel out with some

explicit part of the contribution from isolated fixed points; the latter are represented by

chains of multiple covers of straight lines connecting the two marked points.

Let us write down explicitly the factor Coeff j
i (d) from Proposition 9.8 (compare with

[3]). Coeff j
i (d) =

Πld
m=1(lλi − λ′ +m(λj − λi)/d)[(λj − λi)/d]

(n+1−l)d−1

d(1 + (λi − λj)/~d)Πn
α=0

d
m=1 (α,m) 6=(j,d)(λi − λα +m(λj − λi)/d)

=

(here the product in the numerator is Euler(V ′), the denominator — it is essentially

Euler(N ′) where however the cancellation with φi|p=λi
is taken care of — has been computed

using the exact sequence 0 → C → Cn+1 ⊗H → TY → 0 of vector bundles over Y = CP n,

and the “hard-to-explain” extra-factor d is due to the orbifold structure of the moduli spaces

(the d-multiple map of C ′ onto the (ij)-line in CP n has a discrete symmetry of order d)

=
1

[(λi − λj)/~ + d]

Πld
m=1(l

(λi−λ
′)d

λj−λi
+m)

Πn
α=0

d
m=1 (α,m) 6=(j,d)(

(λi−λα)d
λj−λi

+m)
.

Now it is easy to check

Proposition 9.9. The correlators zi(Q, 1/ω) are power series
∑
Ci(d)Q

d in Q with

coefficients Ci(d) which are reduced rational functions of ω with poles of the order ≤ 1 at
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ω = d′/(λj − λi) with d′ = 1, ..., d. The correlators zi are uniquely determined by these

properties, the recursion relations of Proposition 9.8 and the initial condition Ci(0) = 1.

The proof of Theorem 9.5 is completed by the following

Proposition 9.10. The series

zi =

∞∑

d=0

Qd Πld
m=1((lλi − λ′)ω +m)

d!Πα 6=iΠd
m=1((λi − λα)ω +m)

satisfy all the conditions of Proposition 9.9.

Proof. The recursion relation is deduced by the decomposition of the rational functions of

ω into the sum of simple fractions (or, equivalently, from the Lagrange interpolation formula

for each numerator through its values at the roots of the corresponding denominator).

10 Complete intersections with l1 + ...+ lr = n

Let X ⊂ Y = CP n be a non-singular complete intersection given by equations of degrees

(l1, ..., lr) with l1 + ... + lr = n. There are only two points where our proof of Theorem 9.1

would fail for such X. One of them is the Lagrange interpolation formula in the proof of

Proposition 9.10. Namely, the rational functions of ω there are not reduced — the degree

dl of the numerator is equal to the degree dn of the corresponding denominator. The other

one is Lemma 9.7. Namely, we have the following lemma instead.

Lemma 10.1. The type (ii) fixed point component in Y2,d makes zero contribution via

Borel localization formulas to
∫
Y2,d

cd−1... unless it consists of maps (C ′ ∪ C ′′, x0, x1) → Y

where C ′ is mapped to a fixed point in CP n and carries both marked points, and C ′′ is a

disjoint union of d irreducible components (intersecting C ′ at d special points) mapped (each

with multiplicity 1) onto straight lines outgoing the fixed point. All type (ii) components

make zero contribution to
∫
Y2,d

cd....

Let us modify the results of Section 9 accordingly. As we will see, the LHS in Theorem

9.5 is now only proportional to the RHS, and we will compute the proportionality coefficient

(a series in q) directly.

Proposition 10.2. Put zi(Q, ~) := Zi(~Q, ~). Then

zi(Q, ~) = 1 +
∑

d>0

QdCoeff i(d) +
∑

j 6=i

∑

d′>0

Qd′Coeff j
i (d

′) zj(Q, (λj − λi)/d
′)
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where Coeff i(d) is equal to the contribution of type (ii) fixed point components to∫
Y2,d

(−c)d−1E ′
d e

∗
0(φi), and

Coeff j
i (d) =

1

[(λi − λj)/~ + d]

Πr
a=1Π

dla
m=1(

(laλi−λ
′

a)d
λj−λi

+m)

Πn
α=0

d
m=1 (α,m) 6=(j,d)(

(λi−λα)d
λj−λi

+m)
.

Corollary 10.3. The correlators zi(Q, 1/ω) are power series
∑

d Ci(d)Q
d with coeffi-

cients

Ci(d) = Pd(ω, λ, λ
′)/ΠαΠ

d
m=1((λi − λα)ω +m)

where Pd = P 0
dω

nd + ... is a polynomial in ω of degree nd. The correlators zi are uniquely

determined by these properties, the recursion relations of Proposition 10.2 and the initial

conditions ∑

d

Coeff i(d)Q
d =

∑

d

Qd P 0
d

d!Πα 6=i
(λi − λa)d

.

Proposition 10.4. The series

z′i =
∞∑

d=0

Qd Πr
a=1Π

lad
m=1((laλi − λ′a)ω +m)

d!Πα 6=iΠd
m=1((λi − λα)ω +m)

satisfy the requirements of Corollary 10.3 with the initial condition

∑

d

QdΠ
r
a=1(laλi − λ′a)

lad

d!Πα 6=i(λi − λα)d
= exp{Q

Πa(laλi − λ′a)
la

Πα 6=i(λi − λα)
}.

Now let us compute Coeff i(d) using the description of type (ii) fixed point components

given in Lemma 10.1.

Proposition 10.5. Contribution of the type (ii) fixed point components to
∑

dQ
d
∫
Y2,d

(−c)d−1E ′
d φi is

exp{Q
Πa(laλi − λ′a)

la

Πα 6=i(λi − λα)
} exp{−Q l1!...lr!} .

Proof. Each fixed point component described in Lemma 10.1 is isomorphic to the Deligne

- Mumford configuration space M̄0,d+2. Our computation is based on the following known
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formula (see for instance [3] ) for correlators between Chern classes of universal tangent lines

at the marked points:

∫

M̄0,k

1

(w1 + c
(1)
1 )...(wk + c

(k)
1 )

=
(1/w1 + ...+ 1/wk)

k−3

w1...wk
.

Consider the type (ii) fixed point component specified by the following combinatorial

structure of stable maps: d degree 1 irreducible components join the i-th fixed point with

the fixed points with indices j1, ..., jd. Using the above formula and describing explicitly the

normal bundle to this component in Y2,d and localization of the Euler class E ′
d we arrive to

the following expression for the contribution of this component to
∫
Y2,d

(−c)d−1φiE
′
d:

Πd
s=1

Πr
a=1Π

la
m=1(laλi − λ′a +m(λjs − λi))

(λi − λjs)Πα 6=js,i(λjs − λα)
.

Summation over all type (ii) components in all Y2,d with weights Qd gives rise to

exp{−Q
∑

j 6=i

ΠaΠ
la
m=1(laλi − λ′a +m(p− λi))

Πα 6=j(p− λα)
|p=λj

} .

The exponent can be understood as a sum of residues at p 6= λi,∞ and is thus opposite to

the sum

l1!...lr! −
Πa(laλi − λ′a)

la

Πα 6=i(λi − λα)

of residues at ∞ and λi.

Corollary 10.6. zi(Q, 1/ω) = z′i(Q,ω) exp(−l1!...lr!Q).

Proof. Multiplication by a function of Q does not destroy the recursion relation of

Proposition 10.2 but changes the initial condition.

We have proved the following

Theorem 10.7. Suppose l1 + ...+ lr = n. Then

S ′ = e(pt−l1!...lr!e
t)/~

∞∑

d=0

edt
Πdl1

0 (l1p− λ′1 +m~)...Πdlr
0 (lrp− λ′r +m~)

Πd
1(p− λ0 +m~)...Πd

i (p− λn +m~)
.

S = S ′|λ=0,λ′=0 = e(Pt−l1!...lr!et)/~
Πr
j=1Π

dlj
m=0(ljP +m~)

Πd
m=1(P +m~)n+1

(mod P n+1) .
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Corollary 10.8. Let D = ~d/dt+ l1!...lr!e
t. Then

Dn+1−rS = l1...lre
tΠr

j=1(ljD + ~)...(ljD + (lj − 1)~) S.

Corollary 10.9. In the quantum cohomology algebra of X the class p of hyperplane

sections satisfies the following relation (with the same reservation in the case dimX ≤ 2 as

in Corollary 9.3):

(p+ l1!...lr!q)
n+1−r = ll11 ...l

lr
r q(p+ l1!...lr!q)

n−r .

Control examples. 4 1. X = pt in CP 1 (n = 1, r = 1, l = 1). The above relation

takes on p + q = q, or p = 0. Since P 2 = 0, we also find from Theorem 10.7 that S =

P exp(−et)
∑

d e
dt/d! = P , or 〈1, S〉 = 1 as it should be for the solution of the differential

equation ~d/dt s = 0 that arises from quantum cohomology of the point.

2. X = CP 1 embedded as a quadric into CP 2 (n = 2, r = 1, l = 2). We get (p + 2q)2 =

4q(p + 2q), or p2 = 4q2. Taking into account that p is twice the generator in H2(CP 1)

and the line in CP 1 has the degree 2 in CP 2 we conclude that this is the correct relation

in the quantum cohomology of CP 1. This example was the most confusing for the author:

predictions of the loop space analysis [9] appeared totally unreliable because they gave a

wrong answer for the quadric in CP 2. As we see now, the loop space approach gives correct

results if l1 + ...+ lr < n and require “minor” modification (by the factor exp(−l1!...lr!q/~)

) in the boundary cases l1 + ...lr = n; the quadric on the plane happens to be one of such

cases.

3. n = 3, r = 1, l = 3. We have (p+6q)3 = 27q(p+ 6q)2, or p3 = 9qp2 + 63q2p+27 · 28q3.

In particular, 〈p ∗ p, p〉 = 9q〈p, p〉 + 63q2〈p, 1〉 + 27 · 28q3〈1, 1〉 = 27q + 0 + 0 which indicates

that there should exist 27 discrete lines on a generic cubical surface in CP 3.

11 Calabi-Yau projective complete intersections

Let Ld(Y ) denote, as in Section 6, the moduli space of stable maps ψ : CP 1 → CP n × CP 1

of bidegree (d, 1) with 2 marked points mapped to CP n×{0} and CP n×{∞} respectively.

Let Ed denote the equivariant Euler class of the vector bundle over Ld(Y ) with the fiber

4I am thankful to A. Collino [30] who pointed to me that in the hypersurface case the statement of
Corollary 10.9 was conjectured independently by several authors on the basis of numerical data.
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H0(CP 1, ψ∗(V )) where V is the bundle on CP n × CP 1 induced from our convex bundle

⊕aH
la by the projection to the first factor.

Consider the equivariant correlator

Φ =

∫

Y

Euler−1(V ) S ′(t, ~) S ′(τ,−~) =

=
∑

d,d′

edted
′τ

∑

i

Πa(laλi − λ′a)

Πj 6=i(λi − λj)

∫

Y2,d

E ′
d

ept/~e∗0(φi)

~ + c

∫

Y2,d′

E ′
d′
e−pτ/~e∗0(φi)

−~ + c
.

In the case l1 + ... + lr < n it is easy to check using the explicit formula for S ′ from

Theorem 9.5 that

Φ =
1

2πi

∮
ep(t−τ )/~[

∑

d

edτ
ΠaΠ

lad
m=0(lap− λ′a −m~)

Πn
j=0Π

d
m=0(p− λj −m~)

] dp.

This is an equivariant version of a formula found in [9] in the context of loop spaces and

toric compactifications of spaces of rational maps. Namely, consider the projective space L′
d

of (n + 1)-tuples of polynomials in one variable of degree ≤ d each, up to a scalar factor

(notice that L′
d has the same dimension d(n+ 1) + n as Ld). It inherits the component-wise

action of the torus T n+1 and the action of S1 by the rotation of the variable (“rotation of

loops”). Integration over the equivariant fundamental cycle in L′
d is given by the residue

formula

f(p, λ, ~) 7→
1

2πi

∮
fdp

Πn
j=0Π

d
m=0(p− λj −m~)

.

Consider the equivariant vector bundle over L′
d such that substitution of the (n + 1)

polynomials into r (invariant) homogeneous equations in CP n of degrees l1, ..., lr produces a

section of this bundle. The equivariant Euler class of the bundle is

E ′
d = Πr

a=1Π
lad
m=0(lap− λ′a −m~).

The formula for Φ indicates that there should exist a close relation between the spaces

Ld and L′
d. This relation is described in the following lemma whose proof will be given in

the end of this Section.

The Main Lemma. There exists a natural S1 × T n+1-equivariant map µ : Ld → L′
d.

Denote −p the equivariant 1-st Chern class of the Hopf bundle over L′
d induced by µ to Ld.

Then
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Φ(t, τ ) =
∑

d

edτ
∫

Ld

ep(t−τ )/~Ed.

Define Φ′(q, z, ~) := Φ|t=τ+z~,q=eτ . (By the way the limit of the series Φ′ at ~ = 0

has the topological meaning of what is called in [7] the generating volume function, and

the meaning of this limit procedure in terms of differential equations satisfied by Φ is the

adiabatic approximation.)

Corollary 11.1. Φ′(q, z) :=
∑

d q
d
∫
Ld
epzEd =

=
1

2πi

∮
epz

∑

d

qd Ed(p, λ, λ
′, ~)

Πn
j=0Π

d
m=0(p− λj −m~)

dp

where Ed = µ∗(Ed) is a polynomial (of degree < (n + 1)d) of all its variables.

Proof. The integrals E(k) =
∫
Ld
pkEd, k = 0, ..., dimL′

d, which determine the push-

forward µ∗(E) are polynomials in (λ, λ′, ~). The matrix
∫
L′

d

pi+dimL′

d
−j is triangular with all

eigenvalues equal to 1. This means that there exists a unique polynomial in p with coeffi-

cients polynomial in (λ, λ′, ~) which represents the push-forward with any given polynomials

E(k)(λ, λ′, ~).

The last argument also proves

Proposition 11.2. Suppose that a series

s =
∑

d

qd
Pd(p, λ, λ

′, ~)

ΠjΠd
m=0(p− λj −m~)

with coefficients Pd which are polynomials of p of degree ≤ dimLd has the property that for

every k = 0, 1, 2, ... the q-series
∮
spkdp has polynomial coefficients in (λ, λ′, ~). Then the

coefficients of all Pd are polynomials of (λ, λ′, ~), and vice versa.

The coefficient Ed(p, λ, λ
′, ~) in the series Φ′ has the total degree (l1 + ... + lr)d + r

according to the dimension of the vector bundle whose Euler class it represents. Consider

the following operations with the series Φ:

(i) multiplication by a series of et and / or eτ ;

(ii) simultaneous change of variables t 7→ t+ f(et), τ 7→ τ + f(eτ).

(iii) multiplication by exp[C(f(et) − f(eτ ))/~] (here the factor C should be a linear

function of (λ, λ′) in order to obey homogeneity).
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Proposition 11.3. The property of the series Φ to generate polynomial coefficients

Ed(p, λ, λ
′, ~) is invariant with respect to the operations (i),(ii),(iii).

Proof. The polynomiality property of coefficients in Φ′ is equivalent, due to Proposition

11.2, to the fact that for all k the q-series (∂/∂z)k|z=0Φ
′ has polynomial coefficients.

Multiplication by a series of q does not change this property, which proves the invariance

with respect to multiplication by functions of eτ .

The roles of t and τ can be interchanged by the substitutions p 7→ p + ~d, ~ 7→ −~ in

each summand of Φ. This proves the invariance with respect to multiplication by functions

of et.

The operation (ii) transforms Φ′ to

1

2πi

∑

d

qdedf(q)

∮
exp{p

z~ + f(qez~) − f(q)

~
}

Ed(p)

ΠjΠm(p− λj −m~)
dp.

Since the exponent is in fact divisible by ~, the derivatives in z at z = 0 still have

polynomial coefficients. This proves the invariance with respect to (ii). The case of the

operation (iii) is analogous.

We are going to use the above polynomiality and invariance properties of the correlator

Φ in order to describe quantum cohomology of Calabi-Yau complete intersections in CP n

(in which case l1 + ... + lr = n + 1). We will use this polynomiality in conjunction with

recursion relations based on the fixed point analysis of Sections 9, 10. The result can be

roughly formulated in the following way: the hypergeometric functions of Theorem 9.5 in

the case l1 + ... + lr = n + 1 can be transformed to the correlators S ′ by the operations

(i),(ii),(iii). Notice that in the Calabi – Yau case all our formulas are homogeneous with

the grading deg q = 0, deg p = deg ~ = deg λ = deg λ′ = 1, deg z = −1. In particular

the transformations (i)–(iii) also preserve the degrees of the numerators Ed in Φ′. In the

“positive” case l1 + ...+ lr ≤ n where deg q = n+ 1 −
∑
la > 0 the transformations (i)–(iii)

in fact increase degrees of the numerators Ed and are “not allowed”. The only exception is

the operation (iii) with f(q) = const q in the case l1 + ...+ lr = n when deg q = 1. The right

value −l1!...lr! of the constant can be found by counting contributions of curves of degree 1.

In Section 10 we have found this answer by a straightforward computation involving curves

of all degrees.
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Consider now the correlator Φ (defined in The Main Lemma) in the Calabi–Yau case

l1 + ...+ lr = n+ 1. Localization to S1-fixed points in Ld (as in Section 6) expresses Φ via

the correlators Zi (defined in Section 9) as follows:

Φ =
∑

i

Πa(laλi − λ′a)

Πj 6=i(λi − λj)
eλi(t−τ )/~ Zi(e

t, ~) Zi(e
τ ,−~).

Proposition 11.4. (1) The coefficients of the power series Zi(q, ~) =
∑

d q
dCi(d) are

rational functions

Ci(d) =
P

(i)
d

d!~dΠj 6=iΠd
m=1(λi − λj +m~)

where P
(i)
d is a polynomial in (~, λ, λ′) of degree (n + 1)d.

(2) The polynomial coefficients ED(p) in Φ′ are determined by their values

ED(λi + d~) = Πa(laλi − λ′a) P
(i)
d (~)P

(i)
D−d(−~)

at p = λi + d~, i = 0, ..., n, d = 0, ..., D.

(3) The correlators zi(Q, ~) := Zi(Q~, ~) satisfy the recursion relation

zi(Q, ~) = 1 +
∑

d>0

Qd

d!
Ri,d +

∑

d>0

∑

j 6=i

Qd Coeff
j
i (d)

λi − λj + d~
zj(Q,

(λj − λi)

d
)

where Ri,d = R
(0)
i,d~

d +R
(1)
i,d~

d−1 + ... is a polynomial of (~, λ, λ′) of degree ≤ d, and

Coeff j
i (d) =

ΠaΠ
lad
m=1(laλi − λ′a +m(λj − λi)/d)

d!Πα 6=i
d
m=1 (α,m) 6=(j,d)(λi − λα +m(λj − λi)/d)

.

For any given {Ri,d|i = 0, ..., n, d = 1, 2, ...} these recursion relations have a unique solution

{zi}.

Proof. (3) We have

Zi = 1 +
∑

d>0

qd[
d−1∑

k=0

~
−k−1

∫

Y2,d

E ′
de

∗
0(φi)(−c)

k] +
∑

d>0

qd~−d

∫

Y2,d

E ′
de

∗
0(φi)

(−c)d

~ + c

where the integrals of the last sum have zero contributions from the type (ii) fixed point

components (Lemmas 9.7, 10.1). Thus these integrals have a recursive expression identical
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to those of Sections 9 and 10. The terms of the double sum constitute the initial condition

{Ri,d}. The recursion relations have the form of the decomposition of rational functions

of ~ (coefficients at powers of Q = q/~) into the sum of simple fractions in the case when

degrees of numerators exceed degrees of denominators. This proves existence and uniqueness

of solutions to the recursion relations.

(1) follows directly from the form and topological meaning of the recursion relations.

(2) follows from the definition of Φ in terms of Zi.

Introduce now the class P of solutions to the recursion relation 11.4(3) which give rise

(via 11.4(2)) to polynomial coefficients Ed in the corresponding Φ′.

Proposition 11.5. A solution from P is uniquely determined by the first two coefficients

R
(0)
i,d , R

(1)
i,d , i = 0, ..., n, 0 < d < ∞, of its initial condition (that is by the first two terms in

the expansion Zi = Z
(0)
i + Z

(1)
i /~ + ... as power series in 1/~.

Proof. Perturbation theory: suppose that two solutions from the class P have the same

initial condition up to the order (d − 1) inclusively. Then (2) shows that corresponding Ek

for these solutions coincide for k < d and the variation δEd(p) vanishes at p = λi + k~ for

0 < k < d. This means that the polynomial δEd is divisible by ΠjΠ
d−1
m=1(p − λj −m~). On

the other hand (1) and (2) imply that the variation δRi,d of the initial condition satisfies

δRi,d(~) Πa(laλi − λ′a)Πj 6=iΠ
d
m=1(λi − λj +m~) = δEd|p=λi+~d

(since Ri,0 = 1) and thus δRi,d is divisible by ~d−1. Since δRi,d is a degree d polynomial, it

leaves only the possibility

δRi,d = δR
(0)
i,d~

d + δR
(1)
i,d~

d−1.

Thus if two class P solutions coincide in orders ~0, ~−1 then δRi,d = 0, and thus the very

solutions coincide.

Proposition 11.6. The class P is invariant with respect to the following operations:

(a) simultaneous multiplication Zi 7→ f(q)Zi by a power series of q with f(0) = 1;

(b) changes Zi(q, ~) 7→ eλif(q)/~Zi(qe
f(q), ~) with f(0) = 0;

(c) multiplication Zi 7→ exp(Cf(q)/~)Zi where C is a linear function of (λ, λ′) and

f(0) = 0.

Proof. The operations (a),(b),(c) give rise to the operations of type (i)-(iii) for corre-

sponding polynomials Ed. Thus it suffices to show that the operations (a),(b),(c) transform

a solution {zi} of the recursion relations to another solution.
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Recall that the recursion relation 11.4(3) expresses zi as formal power series in Q with

coefficients (at QD) being rational functions of ~ decomposed into simple fractions with the

poles ~ = (λj − λi)/d, d ≤ D, plus the polynomial parts Ri,D(~) of degrees ≤ D.

Consider the recursion coefficient Qd Coeff j
i (d) responsible for the simple fraction with

the denominator (λi − λj + d~). Application of the operations (a), (b), (c) to the left and

right hand sides of the recursion relation causes respectively the following modifications in

this coefficient:

Qd 7→ f(Q~)Qd/f(Q(λj − λi)/d),

Qd 7→ Qd exp{
λif(Q~)

~
+ df(Q~) −

λjf(Q(λj − λi)/d)

(λj − λi)/d
},

Qd 7→ Qd exp{C
f(Q~)

~
− C

f(Q(λj − λi)/d

(λi − λj)/d
}.

In the case of the change (b), additionally, the argument Q in zj on the RHS of the recursion

relation gets an extra-factor exp[f(Q~) − f(Q(λj − λi)/d)].

All the modifying factors written above actually take on 1 at ~ = (λj − λi)/d. This

means that the recursion coefficient responsible for the simple fraction with the pole at

~ = (λj − λi)/d does not change and that the operations (a), (b), (c) modify only the

polynomial initial conditions Ri,D(~).

Under our assumptions about f (that f(0) = 1 in (a) and f(0) = 0 in (b), (c)) the

modifying factors depend on ~ only in the combination Q~. This implies that the degrees of

the new initial conditions Ri,D(~) still do not exceed D.

Let us consider now the hypergeometric series

Z∗
i =

∞∑

d=0

qd
Πr
a=1Π

lad
m=1(laλi − λ′a +m~)

Πn
α=0Π

d
m=1(λi − λα +m~)

where l1 + ...+ lr = n+ 1.

It is straightforward to see that {Z∗
i } satisfy the recursion relations of Proposition 11.4(3)

(see the proof of Proposition 9.10) and that the formulas of Proposition 11.4(2) generate

corresponding

Φ∗ =
1

2πi

∮
ep(t−τ )/~

∞∑

d=0

edτ
Πr
a=1Π

lad
m=0(lap− λ′a −m~)

Πn
i=0Π

d
m=0(p− λi −m~)

dp
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with polynomial numerators. Thus {Z∗
i } is a solution from the class P .

Computation of the first two terms in the initial condition gives

Z∗
i

(0) = f(q) =

∞∑

d=0

(l1d)!...(lrd)!

(d!)n+1
qd ,

Z∗
i

(1) = λi
∑

a

la[gla(q)− g1(q)] + (
∑

α

λα)g1(q)−
∑

a

λ′agla(q)

where

gl =

∞∑

d=1

qd
Πa(lad)!

(d!)n+1
(

ld∑

m=1

1

m
) .

Let us compare these initial conditions with those for {Zi}.

Proposition 11.7. Z
(0)
i = 1, Z

(1)
i = 0.

Proof. The first statement follows from the definition of Zi while the second means that∫
Y2,d

E ′
de

∗
0(φi) = 0 for all d > 0. It is due to the fact that the class E ′

de
∗
0(φi) is a pull-back

from Y1,d. (In fact we have just repeated an argument proving (5) from Section 5 and thus

the proposition can be deduced from general properties of quantum cohomology.)

Combining the last three propositions we arrive to the following

Theorem 11.8. The hypergeometric solution {Z∗
i (q, ~)} coincides with the solution

{Zi(Q, ~)} up to transformations (a),(b),(c). More precisely, perform the following oper-

ations with {Zi}

1) put

Q = q exp{
∑

a

la[gla(q) − g1(q)]/f(q)} ,

2) multiply Zi(Q(q), ~) by

exp{
1

f(q)~
[
∑

a

(laλi − λ′a)gla(q) − (
∑

α

(λi − λα))g1(q)]},

3) multiply all Zi simultaneously by f(q).

Then the resulting functions coincide with hypergeometric series Z∗
i (q, ~).

Proof. The three steps correspond to consecutive applications of operations of type

(b),(c) and (a) to {Zi} and transform the initial condition of Proposition 11.7 to that for

{Z∗
i }. According to Propositions 11.5, 11.6 this transforms the whole solution {Zi} to {Z∗

i }.
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Consider the solutions

si = eλiT/~ Zi(e
T , ~)

to the equivariant quantum cohomology differential equations.

Corollary 11.9. The operations

1) change T = t+
∑

α la[gla(e
t) − g1(e

t)]/f(et),

2) multiplication by

f(et) exp{[g1(e
t)(

∑

α

lα) −
∑

a

λ′agla(e
t)]/(~f(et))}

transform {si} to the hypergeometric solutions

s∗i = ept/~
∑

d

edt
ΠaΠ

lad
m=1(lap− λ′a +m~)

ΠαΠd
m=1(p− λα +m~)

|p=λi

of the differential equation

Πα(~
d

dt
− λα)s

∗ = et ΠaΠ
la
m=1(~la

d

dt
− λ′a +m~) s∗ .

For λ′ = 0, λ0 + ...+ λn = 0 the solutions s∗i have the following integral representation:

∫

Γn⊂{F0(u)=et}

u
λ0/~
0 ...u

λn/~
n du0 ∧ ... ∧ dun

F1(u) ... Fr(u) dF0

where

F1 = (1−u1−...−ul1), F2 = (1−ul1+1−...−ul1+l2), ..., Fr = (1−ul1+...+lr−1+1−...−ul1+...+lr)

and F0 = u0...un.

Corollary 11.10. The hypergeometric class S∗(t, ~) ∈ H∗(CP n) = C[P ]/(P n+1),

S∗ = ePt/~
∑

d

edt
ΠaΠ

lad
m=0(laP +m~)

Πd
m=1(P +m~)n+1

whose n+ 1 − r non-zero components are solutions to the Picard-Fuchs equation

(
d

dt
)n+1−rs∗ = l1...lre

tΠaΠ
la−1
m=1(la

d

dt
+m)s∗
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for the integrals ∫

γn−r⊂X ′

t

du0 ∧ ... ∧ dun
dF0 ∧ dF1 ∧ ... ∧ dFr

,

(here X ′
t = {(u0, ..., un)|F0(u) = et, F1(u) = 0, ..., Fr(u) = 0}) are obtained from the class

S (describing the quantum cohomology D-module for the Calabi-Yau complete intersection

Xn−r ⊂ CP n),

S = ePT/~
∑

d

edT (e0)∗(
Ed

~ + c
(0)
1

),

by the change

T = t+
∑

a

la[gla(e
t) − g1(e

t)]/f(et)

followed by the multiplication by f(et).

Proof. Corollary 11.9 shows that for λ′ = 0,
∑
λα = 0 these change and multiplication

transform the corresponding equivariant classes S ′ and S ′ ∗ to one another. The class −p in

the formula for s∗i in Corollary 11.9 is the equivariant Chern class of the Hopf line bundle over

CP n. In the limit λ = 0 it becomes −P while S ′ and S ′ ∗ transform to their non-equivariant

counterparts S and S∗.

Remarks. 1) Notice that the components S∗
0 and S∗

1 in

S∗ = l1...lr[P
rS∗

0(t) + P r+1S∗
1(t) + ...+ P nS∗

n(t)]

are exactly f(et) and tf(et) +
∑

a la[gla(e
t) − g1(e

t)] respectively. Thus the inverse transfor-

mation from S∗ to S consists in division by S∗
0 followed by the change T = S∗

1(t)/S
∗
0(t) in

complete accordance with the recipe [16, 18, 9] based on the mirror conjecture.

2) According to [17] the (n − r)-dimensional manifolds X ′
t admit a Calabi-Yau com-

pactification to the family X̄ ′
t of mirror manifolds of the Calabi-Yau complete intersection

Xn−r ⊂ CP n. The Picard-Fuchs differential equation from Corollary 11.10 describes vari-

ations of complex structures for X̄ ′. This proves the mirror conjecture (described in detail

in [18]) for projective Calabi-Yau complete intersections and confirms the enumerative pre-

dictions about rational curves and quantum cohomology algebras made there (and in some

other papers) on the basis of the mirror conjecture.

3) The description [15] of the quantum cohomology algebra of a Calabi-Yau 3-fold in

terms of the numbers nd of rational curves of all degrees d (see for instance [9] for the

description of the corresponding class S in these terms) has been rigorously justified in [14].
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Combining these results with Corollary 11.10 we arrive to the theorem formulated in the

introduction.

Proof of The Main Lemma.

In our construction of the map µ : Ld → L′
d we will denote Ld the moduli space of stable

maps C → CP n × CP 1 of bidegree (d, 1) with no marked points (it also has dimension

d(n+ 1) + n). The construction works for any given number of marked points but produces

a map which is the composition of µ with the forgetful map. In this form it applies to the

submanifold of stable maps with two marked points confined over 0 and ∞ in CP 1 (this

submanifold is what we denoted Ld in the formulation of The Main Lemma).

Let ψ : C → CP n × CP 1 be a stable genus 0 map of bidegree (d, 1). Then C =

C0 ∪C1...∪Cr where C0 is isomorphic to CP 1 and ψ|C0 maps C0 onto the graph of a degree

d′ ≤ d map CP 1 → CP n, and for i = 1, ..., r the bidegree (di, 0) map ψ|Ci sends Ci into the

slice CP n × {pi} where pi 6= pj and d1 + ...+ dr = d− d′.

The map µ : Ld → L′
d assigns to [ψ] the (n+1)-tuple (f0g : f1g : ... : fng) of polynomials

(= binary forms) on CP 1 where g is the polynomial of degree d − d′ with roots (p1, ..., pr)

of multiplicities (d1, ..., dr) and the tuple (f0 : ... : fn) of degree d′ polynomials (with no

common roots, including ∞) is the one that describes the map ψ|C0.

In order to prove that the map µ is regular 5 let us give it more invariant description.

The construction below can be generalized to any positive line bundle instead of OCPn(1).

Denote L̂d the moduli space of bidegree (d, 1) stable maps with an extra-marked point

and pull back to L̂d the line bundle

H := Hom(π∗
1OCPn(1), π∗

2OCP 1(d))

by the evaluation map e : L̂d → CP n × CP 1 (where πi are projections to the factors).

Consider the push-forward sheaf H0 := R0π∗e
∗(H) of the locally free sheaf e∗H along the

forgetful map π : L̂d → Ld. To a small neighborhood U ⊂ Ld, it assigns the OU -module

H0(π−1(U), e∗H) of sections of e∗H.

Claim. 1) H0 is a rank 1 locally free sheaf on Ld.

2) The fiber at [ψ] of the corresponding line bundle can be identified with

H0(C0, (ψ|C0)
∗(H) ⊗O(−[p1])

⊗d1...⊗O(−[pr])
⊗dr).

5I am thankful to M. Kontsevich who communicated to me another, more elementary proof of this
statement.
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3) The kernel of the natural map

h : H0(C, ψ∗π∗
1(OCPn(1))) → H0(C, ψ∗π∗

2(OCP 1(d))) = H0(CP 1,O(d))

defined by a nonzero vector in this fiber consists of the sections vanishing identically on C0.

Using this, we pick n + 1 independent sections of OCPn(1) (that is homogeneous coor-

dinates on CP n), define corresponding sections of e∗π∗
1OCPn(1) and apply the map h. By

this we obtain a degree 1 map from the total space of the line bundle H0 to the linear

space Cn+1 ⊗ H0(CP 1,O(d)). Since the homogeneous coordinates on CP n nowhere vanish

simultaneously, we obtain a natural map

Ld → L′
d = Proj(Cn+1 ⊗H0(CP 1,O(d)))

which sends [ψ] to (f0g : ... : fng) and conclude that µ is regular.

The remaining statements of The Main Lemma are proved by looking at localizations of

the equivariant class p at the S1×T n+1-fixed points in L′
d and Ld (in this paragraph we use the

notation Ld for the same space as in the formulation of The Main Lemma). The fixed points

in L′
d are represented by the vector-monomials (0 : ... : 0 : xd

′

: 0 : ... : 0) where p localizes to

λi+d
′~. A fixed point in Ld is represented by ψ with ψ(C0) = (0 : ... : 0 : 1 : 0 : ... : 0), r = 2,

p0 = 0, p1 = ∞ and the maps ψ|Ck : Ck → CP n, k = 1, 2 representing T n+1-fixed points

respectively in Y2,d′ and Y2,d−d′ such that their (say) second marked points are mapped to

the point ψ(C0). This implies that the class µ∗(p) localizes to λi + d′~ at such a fixed point

and thus the pull back of p to the fixed point set

{[ψ] ∈ Y2,d′ × Y2,d−d′ |(e2 × e2)([ψ]) ∈ ∆ ⊂ Y × Y

of the S1-action on Ld coincides with the pull back through the common marked point of the

T n+1-equivariant class p+d′~ on the diagonal ∆ = CP n. Now localizations of
∫
Ld
ep(t−τ )Ed to

the fixed points of S1-action identify the form of the correlator Φ given in The Main Lemma

with the definition of Φ as the convolution of S ′(t, ~) and S ′(τ,−~).

In order to justify the claim we need to compute the space of global sections of the sheaf

e∗(H) over the formal neighborhood of the fiber π−1([ψ]) of the forgetful map π : L̂d → Ld.

The fiber itself is isomorphic to the tree-like genus 0 curve C . Let (xj, yj), j = 1, ..., N ≥ r

be some local parameters on irreducible components of C near the singular points such
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that εj = xjyj are local coordinates on the orbifold Ld near [ψ] (one should add some local

coordinates ε′ on the stratum ε1 = ...εN = 0 of stable maps C → CP n in order to construct

a complete local coordinate system on Ld). Such a description of local coordinates on Ld

follows from the very construction of the moduli spaces of stable maps to convex manifolds;

we refer the reader to [3, 6] for details.

A line bundle over the neighborhood of C ⊂ L̂d can be specified by the set

uj(x
±1
j , ε), vj(y

±1
j , ε), j = 1, ..., N,

of non-vanishing functions describing transition maps between trivializations of the bundle

inside and outside the neighborhoods (with local coordinates (xj, yj, ε1, ..., ε̂j, ..., εN, ε
′)) of

the double points.

Let us consider first the following model case. Suppose that C consists of r+1 irreducible

components (C0, C1, ..., Cr) such that each Cj with j > 0 intersects C0 at some point pj . Let

xj be the local parameter on C0 near pj , and the line bundle (of the degree −dj ≤ 0 on Cj)

be specified by vj = y
−dj

j .

In the neighborhood of pj a section of such a bundle is given by a function s(xj, yj, ε̂j)

satisfying

s = y
−dj

j sj(y
−1
j , ε)

where the function sj represents the section in the trivialization over the neighborhood of

Cj − pj . Here ε̂j means that εj is excluded from the set of coordinates ε (remember that

εj = xjyj). This implies that sj = ε
dj

j fj(y
−1
j εj, ε) where fj is some regular function. Thus

this section in the neighborhood of p ∈ C0 is given by a function s(xj, ε) = x
dj

j fj(xj, ε) with

zero of order dj at xj = 0, and the restriction of this section to the neighborhood of Cj is

determined by s.

In other words, the C[[ε]]-module of global sections in the formal neighborhood of C

identifies with the module of global sections on C0 for the line bundle given by the loops

x
−dj

j uj instead of uj (this corresponds to the subtraction of the divisor
∑
dj [pj].

The more general situation where vj is the product of y
−dj

j with an invertible function

wj(yj, xj, ε̂j) preserves the above conclusion with w−1s = x
dj

j fj(xj, ε) instead of s.

Obviously, the above computation bears dependence on additional parameters.

Now we apply our model computation to the neighborhood of a general tree-like curve

C inductively by decomposing the tree into simpler ones starting from the root component
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C0. We conclude that the C[[ε]]-module of sections of the bundle e∗(H) is identified with

the module of sections of some line bundle over the product of C0 with the polydisk with

coordinates (ε1, ..., εr, ..., εN, ε
′), and that this line bundle is e∗(H) for C0 (given by the loops

uj in our current notations) twisted by the loops x
−dj

j in the punctured neighborhoods of

the points (p1, ..., pr), where (d1, ..., dr) are the degrees of the maps ψ|Cj : Cj → CP n (in the

notations of the claim so that d1 + ...+ dr = d− d′).

This implies that the C[[ε]]-moduleH0 of global sections can be identified with the module

of those global sections of the degree d− d′ locally free sheaf (ψ|C0)
∗(H)⊗C[[ε]] which have

zeroes of order dj at pj for j = 1, ..., r. In particular

1) H0 is a free C[[ε]]-module of rank 1,

2) H0 ⊗C[[ε]] (C[[ε]]/(ε)) is the 1-dimensional space H0|[ψ] described in the claim, and

3) non-zero vectors in H0|[ψ] represent sections of ψ∗(H) over C non-zero on C0 (and

thus their product with a non-zero on C0 section of ψ∗π∗
1(OCPn(1)) can not vanish identically

on C0.)

Factorization by the discrete group Aut(ψ) preserves (1 − 3) with C[[ε]] replaced by

C[[ε]]Aut(ψ).

12 Quantum Serre duality

Results of Sections 9 – 11 on quantum cohomology algebras of projective complete intersec-

tions can be understood as a study of the recursion relations which arise from localization to

fixed points of tori actions. In this Section we apply the same technique to the more general

quantum cup-product structures defined by solutions of WDVV-equations. Comparing the

solutions which correspond (see Section 4) to a convex vector bundle over CP n and its dual

we will arrive to a quantum analogue of the Serre duality theorem. The canonical coordi-

nates of semisimple Frobenius manifolds that we discussed in Section 8 will play here a key

role.

We begin with a known property of quantum correlators for X = pt. Consider the series

W (x, y) =
1

x+ y
+

∞∑

k=1

1

k!
〈

1

x+ c
, f(c), ..., f(c),

1

y + c
〉k+2
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where f(c) = f0 + f1c+ f2c
2 + ... is a given function of the 1-st Chern class of the universal

tangent line on the Deligne - Mumford spaces Xk+2 := M̄0,k+2, and 〈 ... 〉k+2 are defined by

integration over these spaces.

Lemma 12.1.

W (x, y) =
eU/x+U/y

x+ y
,

where U depends on f and does not depend on x and y.

Proof. This fact is well-known in the axiomatic theory [2] of Frobenius structures and

their τ -functions. Consider the correlators

V (x) := lim
y→∞

yW (x, y), U := lim
x→∞

x(V (x)− 1)

(they correspond to replacing 1/(y + c) or/and 1/(x+ c) by 1 in the definition of W ). The

symmetries from the proof of Corollary 6.3 show that for the vector field F = ∂/∂f0 −∑
fk+1∂/∂fk

LFU = 1, LFV = V/x, LFW = (
1

x
+

1

y
)W

(the so called string equations). The degree argument shows that for f0 = 0 we have U =

0, V = 1,W = 1/(x+ y). Thus V (x) = exp(U/x), W (x, y) = (exp(U/x + U/y))/(x + y).

Notice that these identities are compatible with the WDVV-type equation

LFW (x, y)LFU = LFV (x)LFV (y).

This lemma can be deduces also from the explicit formula for correlators between univer-

sal tangent lines over Deligne-Mumford spaces which we exploited in the proof of Proposition

10.5. As we see from the above proof some convergence-providing assumptions about f are

necessary in this lemma.

Consider now the following modification of the recursion relations of Sections 9 – 11:

W j
i (x, y) =

δij
x+ y

+
∑

k 6=i

∑

d>0

qded(Ui−Uk)/(λi−λk) Ck
i (d)

(xd+ λi − λk)
W j
k ((λk − λi)/d, y).

GivenU0, ..., Un and the coefficientsCj
i (d), the recursion relation has a unique matrix solution

(W j
i ) in formal power series of q.
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Consider the torus-equivariant GW-theory on Y = CP n provided with the r-dimensional

convex vector bundle V = ⊕H lj . Introduce the correlator

Zij :=
∞∑

d=0

qd
∞∑

k=0

1

k!

∫

Yk+2,d

φi
x+ c(0)

e∗1(t)...e
∗
k(t)

φj
y + c(k+1)

Eulerk+2,d

where Eulerk+2,d is the equivariant Euler class of the vector bundle H0(C, e∗k+2V ) over Yk+2,d,

and
∫
Y
φiEuler(V )φj/(x+y) is taken on the role of the ill-defined summand with d = 0, n =

2.

Introduce another correlator, Z∗
ij , replacing Ek+2,d by the equivariant Euler class E∗

k+2,d

of the vector bundle H1(C, e∗k+2V
∗) for d > 0 and by Euler−1(V ∗) for d = 0.

In both versions t =
∑n

α=0 tαφα/Πβ 6=α(λα−λβ) denotes the general equivariant cohomol-

ogy class of Y .

Proposition 12.2. 1)

Zij = Πr
a=1(laλi − λ′a) e

ui/xW j
i e

uj/y Πα 6=j(λj − λα)

where u0, ..., un are the homogeneous canonical coordinates at t (uα = uα(t, q;λ, λ
′)) of the

Frobenius structure, and (W j
i ) is the solution to the recursion relation with Uα = uα and

Cj
i (d) =

Πr
a=1Π

lad
m=1(laλi − λ′a +m(λj − λi)/d)

Πn
α=0Π

d
m=1 (α,m) 6=(j,d)(λi − λα +m(λj − λi)/d)

.

2)

Z∗
ij = eu

∗

i /xW j
i e

u∗j/yΠα 6=j(λj − λα) / Πr
a=1(λ

′
a − laλj)

where u∗0, ..., u
∗
n are the homogeneous canonical coordinates at t∗ of the Frobenius structure,

and (W j
i ) is the solution to the recursion relation with Uα = u∗α and

Cj
i (d) =

Πr
a=1Π

lad
m=1(−laλi + λ′a −m(λj − λi)/d)

Πn
α=0Π

d
m=1 (α,m) 6=(j,d)(λi − λα +m(λj − λi)/d)

.

3) In each case put

V j
i (x, U) = lim

y→∞
yW j

i = δij + V̂ j
i (U)/x + o(1/x).

Then

tα = uα +
n∑

j=0

V̂ j
α (u), t∗α = u∗α +

n∑

i=0

V̂ α
i (u∗).
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Proof. The recursion for Zij and Z∗
ij is based on the same idea as in Sections 9 – 11.

We use Borel’s localization formula in order to reduce computation of the correlators to

summation over all fixed point components in Yk+2,d. The components are labeled by trees

“walking” in the 1-skeleton of the n-simplex (the momentum polyhedron of the torus action

on CP n). Each tree contains the chain of edges connecting the vertices i and j where the first

and the last marked points are mapped to. We cut off the 1-st edge (connecting the vertex

i with say vertex α). The rest of the chain contributes to the Borel localization formula by

Zαj((λα − λi)/d, y) while the coefficient Cj
i (d) takes in account the contribution of the edge

[i, α] of degree d.

The subtlety hidden in this argument is due to the possibility that the first marked point

can belong to a component of the curve which is mapped to the vertex i and carries k more

special points giving birth to k branches of the tree (not containing the last marked point)

and / or l extra marked points (carrying the cohomology class t). Cutting off the first edge

we should take care of the weight obtained by integration over the factor M̄k+l+2 of the fixed

point set and by summation over all possibilities for the k branches.

However it is easy to see that this sum effectively reduces to the exponential series of

Lemma 12.1 (with f(c) unknown so far) and is thus equal to exp(Ui/x + Uid/(λi − λα)).

Moreover, compaing the description of the correlator Ui from the proof of Lemma 12.1 with

the definition of “local” equivariant correlators ui given in Section 8 and applying Theorem

8.1(a) we conclude that Ui = ui is the canonical coordinate of the Frobenius structure. In

particular correlators Ui are well-defined as formal q-series.

In order to prove the relation between flat and canonical coordinates described in the

part (3) of the Proposition, consider the correlators

Z
(1)
i =

d

d(1/x)
|1/x=0

∑

j

lim
y→∞

yZij
Πα 6=j(λj − λα)

=
∑

k,d

qd〈φi, t, ..., t, 1〉k+2,d/k! = ti〈φi, 1〉 .

The recursion relation for Zij shows that Z
(1)
i = (Ui +

∑
j V̂

j
i )〈φi, 1〉.

Similarly,

d

d(1/y)
|1/y=0

∑

i

lim
x→∞

xZ∗
ij

Πα 6=i(λi − λα)
= t∗j〈1, φj〉 = (Uj +

∑

i

V̂ j
i )〈1, φj〉.
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Remark. According to Section 6 the matrix limy→∞ yZij(~, y) and its counterpart “with

∗” are essentially the fundamental solutions of the linear differential systems defined by the

corresponding Frobenius structures on the equivariant cohomology space of CP n provided

with the convex vector bundle V (see Section 4). Proposition 12.2 identifies the fundamental

solution expressed in terms of canonical coordinates with the solution of a linear recursion

relation and additionally describes the non-linear transformation from canonical to flat coor-

dinates. These equations are exactly identical to the critical point equations obtained by M.

Kontsevich [3]. In particular the linear recursion relations can be also interpreted as critical

point equations for a quadratic combinatorial “Lagrangian” with the “kinetic energy” (its

terms should correspond to the edges of the momentum simplex) determined by the coeffi-

cients (Cj
i (d))

−1 and the “potential energy” (whose terms should correspond to the vertices)

determined by the factors exp(Uidα/(λi − λα) + Uidβ/(λi − λβ)). The important problem of

finding the general solution to the linear recursion relation remains open as well as the role of

these relations and of the quadratic combinatorial Lagrangian in the theory of isomonodromy

deformations [2] accompanying the concept of canonical coordinates — unclear.

Corollary 12.3 (Quantum Serre Duality).

At the points t and t∗ with the same canonical coordinates U = (u0, ..., un) = (u∗0, ..., u
∗
n)

the correlators (Zij) and (Z∗
ij) satisfy the following relation:

Z∗
ij(U, x, y, q) =

(−1)rZij(U, x, y, (−1)
P

laq)

Πr
a=1(laλi − λ′a)Π

r
a=1(laλj − λ′a)

.

Remarks. This fact (which is proved by comparisson of the coefficients Cj
i (d) of the

two recursion relations) can be explained in the following way: for the curve C which is a

chain of CP 1’s with two marked points p0 and p∞ on the first and the last component, the

Serre duality theorem provides a non-degenerate duality between H0(C, V ⊗ O[−p0]) and

H1(C, V ∗ ⊗O[p∞]) since the canonical class K + [p0] + [p∞] on such a curve C is trivial.

The quantum Serre duality theorem shows that the Frobenius structures on H∗
T (CP n)

corresponding to V and V ∗ are equivalent, but the equivalence involves some transformation

of the flat coordinates. The same equivalence statement holds true in the limit λ = 0, λ′ 6= 0.

It is natural to conjecture that such an equivalence of two Frobenius structures corresponding

to V and V ∗ should be true for vector bundles over arbitrary Y . One of the two equiva-

lent Frobenius structures coincides with the Frobenius structure of the super-manifold (in
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terminology of [28]) of dimension (n|r) (here the fiber of the convex bundle V over CP n is

considered odd) and in the limit λ′ = 0 degenerates to the Gromov-Witten theory on the

codimension r complete intersections X defined by sections of V . The second one corre-

sponds to an n+ r dimensional non-compact manifold — the total space of the bundle V ∗.

It would be interesting to study the relation between the two structures in greater detail.

Corollary 12.4. The translations

(a): tα 7→ tα + τ

(b): tα 7→ tα + λατ

on the Frobenius manifolds cause respectively the translations Ũα = Uα+τ and Ũα = Uα+λατ

of the canonical coordinates and the following transformations of the matrix (Zij):

(a) Zij(Ũ , x, y, q) = eτ/x+τ/yZij(U, x, y, q) ,

(b) Zij(Ũ , x, y, q) = eλiτ/x+λjτ/yZij(U, x, y, qe
τ) .

The same transformation formulas hold for the matrix (Z∗
ij).

Proof. The translation (a) corresponds to the vector field
∑
∂/∂tα =

∑
∂/∂uα represent-

ing the unity of the quantum cup-product. The translation (b) corresponds to the symmetry

generated by the vector field q∂/∂q−
∑
λα∂/∂tα. This justifies the effect of the translations

on the canonical coordinates. The rest follows now directly from the form of the recursion

relation.

Remarks. This corollary explains the origin of the invariance property with respect to the

change of coordinates stated in Propositions 11.3, 11.6: it is a consequence of the symmetries

(5), (6) from Section 5.

The proof of the mirror conjecture given in Sections 9 – 11 could be more straightforward

and conceptual if we had at our disposal a well-developed theory of Frobenius structures,

their flat and canonical coordinates, for the models of Landau-Ginzburg type (see [10]) more

general than K. Saito’s theory [29] of isolated critical points of holomorphic functions.
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