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Abstract. According to a conjecture of E. Witten [21] proved by M. Kontse-
vich [13], a certain generating function for intersection indices on the Deligne

– Mumford moduli spaces of Riemann surfaces coincides with a certain tau-
function of the KdV hierarchy. The generating function is naturally generalized

under the name the total descendent potential in the theory of Gromov – Wit-
ten invariants of symplectic manifolds. The papers [5, 4] contain two equivalent

constructions, motivated by some results in Gromov – Witten theory, which
associate a total descendent potential to any semisimple Frobenius structure.

In this paper, we prove that in the case of K.Saito’s Frobenius structure [17]
on the miniversal deformation of the An−1-singularity, the total descendent

potential is a tau-function of the nKdV hierarchy. We derive this result from
a more general construction for solutions of the nKdV hierarchy from n − 1

solutions of the KdV hierarchy.

1. Introduction: Singularities and Frobenius structures.

First examples of Frobenius structures were discovered by K. Saito [17] in the
context of singularity theory. We begin with a brief overview of very few basic
elements of his (rather sophisticated) construction and refer to [10] for further
details.

Let f : Cm, 0 → C, 0 be the germ of a holomorphic function at an isolated
critical point of multiplicity N . We will assume for simplicity that f is weighted-
homogeneous. Let T be the parameter space of its miniversal deformation F (x, τ).
Tangent spaces to T are naturally equipped with the algebra structure: TτT =
C[x]/(Fx(·, τ )). Pick a holomorphic weighted-homogeneous volume form ωτ on Cm

possibly depending on the parameters τ . Then the Hessians ∆(x) of critical points
x ∈ crit(F (·, τ )) become well-defined. The corresponding residue paring

(φ, ψ)τ =
∑

x∈crit(F (·,τ))

φ(x)ψ(x)

∆(x)

is known to define a non-degenerate symmetric bilinear form on TτT which depends
analytically on τ , extends across the bifurcation hypersurface without singularities
and thus makes TτT Frobenius algebras. The key point of K.Saito’s theory is that
there exists (according to a theorem of M. Saito, see [10]) a choice of ω (called
primitive) that makes the family of Frobenius algebras a Frobenius structure. The
latter means certain integrability property which will be recalled lated when needed.
We refer to [3, 15] for a detailed account of numerous manifestations of the property
— such as flatness of the metric (·, ·) for example.
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In the case of simple singularities a weighted-homogeneous volume form ω coin-
cides with dx1 ∧ ... ∧ dxm (up to a non-zero constant factor which in fact does not
affect the metric (·, ·) ) and therefore ω is primitive.

In the example An−1 we set m = 1, f(x) = xn/n, F (x, τ) = xn/n + τ1x
n−2 +

...+ τn−1, ω = dx. The basis {∂τi} in T0T is identified with the basis xn−1−i of the
local algebra H = C[x]/(xn−1), and the residue pairing in this basis takes the form
(∂τi , ∂τj)0 = δi+j,n−1. By the general theory, the following residue metric is flat:

(∂τi , ∂τj)τ = Resx=∞
x2n−2−i−jdx

F ′(x, τ)
.

In Gromov – Witten theory, intersection indices in moduli spaces of genus-0
pseudo-holomorphic curves in a given compact symplectic manifold define a Frobe-
nius structure on the cohomology space of the manifold. What is the structure
behind intersection theory in spaces of higher genus pseudo-holomorphic curves,
and is it possible to recover the totality of higher genus Gromov – Witten invari-
ants from the Frobenius structure? While the answer to the first question is yet
unknown, the answer to the second one seems to be positive in the semisimple case.

According to [5] the total descendent potential corresponding to a semisimple
Frobenius manifold can be defined by the formula

(1) D(q) = C(τ ) Ŝ−1
τ Ψ(τ ) R̂τ exp(U/z)̂

N
∏

i=1

DA1(qi).

The ingredients of the formula will be explained later in the context of singularity
theory. Roughly, the function lnD is supposed to have the form of “a genus ex-
pansion”

∑

~g−1F (g)(q) where F (g) depend on the sequence q of vector variables
q0, q1, q2, ... taking values in the local algebra H of the singularity. The Taylor coef-
ficients of F (g) are to play the role of genus-g Gromov – Witten invariants and their
gravitational descendents. The product term in (1) is the tensor product of N copies
of the total descendent potential for the A1-singularity (which is a tau-function of
the KdV hierarchy and is discussed in Section 3). The product is considered as an
“element of a Fock space”. The S, R and exp(U/z) are elements of a certain group
(of loops in the variable z) acting on the elements of the Fock space via some “quan-
tization” representation .̂ The loops S(z), R(z) and exp(U/z) (as well as C and Ψ
which are a non-zero normalizing constant and an invertible matrix) are defined in
terms of the Frobenius structure and in the case of singularities allow convenient
descriptions via oscillatory integrals and their asymptotics. The ingredients of the
formula depend on a choice of the point τ ∈ T which has to be semisimple, i. e.
the function F (·, τ ) must have N non-degenerate critical points. For example, U is
the diagonal matrix of the critical values of F (·, τ ). As it is explained in [5], the re-
sulting function D does not depend on τ , satisfies the so called 3g−2-jet condition,
Virasoro constraints and has the correct (in the sense of [3]) genus-0 part F (0). 1

In this paper, we will prove that in the case of An−1-singularities, the function
(1) is a tau-function of the nKdV-hierarchy (Theorem 1).

In Section 2, we describe the quantization formalism underlying (1). The KP,
KdV and nKdV-hierarchies are described in Section 3 in terms of the so called
vertex operators of the infinite dimensional Lie algebra theory [11]. In Section 4,
we reconcile the notations of representation theory and singularity theory and state

1According to a result from [4], a function with these properties, when exists, is unique.
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Theorem 1. In Sections 5 and 6, we study conjugations of the vertex operators by
the operators S and R. The corresponding Theorems 2 and 3 are the technical heart
of the paper and provide surprisingly simple and general formulations in terms of
singularity theory. In Section 7, we show how various central constants (somewhat
neglected in the preceeding computations) are governed by a certain multiple-valued
closed 1-form W on the complement to the discriminant. The form W appears to
be a new object in singularity theory, and its properties play a key role in the proof
of Theorem 1. In Section 8, we discuss in detail the “Fock spaces” intertwined by
the operators S and R and describe analyticity properties of our vertex operators.
In Section 9, we state and prove Theorem 4 which interprets the formula (1) as
a device transforming some solutions of the KdV-hierarchy into solutions of the
nKdV-hierarchy (and which contains Theorem 1 as a special case). Relationships
with “Wn-gravity theory” are discussed in Section 10 (Theorem 5). The appendix,
included mostly for aesthetic considerations, contains a direct treatment of genus-0
consequences of Theorem 1.

Slightly generalizing the methods of the present paper, one can prove that the
total descendent potential (1) corresponding to an ADE-singularity satisfies an in-
tegrable hierarchy described explicitly in terms of vertex operators and very similar
to the famous hierarchy of Kac – Wakimoto [12] constructed via representation
theory of loop Lie algebras. We will return to this subject in [9]

Acknowledgments. Substantial part of the paper was written during our stay at
IHES (Paris) and MPI (Bonn) in Summer ’02. We would like to thank these institu-
tions for hospitality, and the National Science Foundation — for financial support.
We are also thankful to E. Frenkel and P. Pribik for their interest and stimulating
discussions, to A. Schwarz for consultations on Wn-gravity, and especially to T.
Milanov for several useful observations.

2. The quantization formalism.

Consider the local algebraH = C[x]/(fx) as a vector space with a non-degenerate
symmetric bilinear form defined by the residue pairing

(a, b)0 = Resx=0 a(x)b(x)dx1 ∧ ... ∧ dxm/fx1 ...fxm .

Let H = H((z−1)) denote the space of Laurent series in one indeterminate z−1 with
coefficients in H . We equip H with the symplectic form

(2) Ω(f , g) =
1

2πi

∮

(f (−z), g(z))0dz = −Ω(g, f ).

The polarization H = H+ ⊕H− defined by the lagrangian subspaces H+ = H [z],
H− = z−1H [[z−1]] identifies (H,Ω) with the cotangent bundle T ∗H+. Then
the standard quantization convention associates to constant, linear and quadratic
hamiltonians G on (H,Ω) differential operators Ĝ of order ≤ 2 acting on functions
on H+. More precisely, let {qα} be a coordinate system on H+ and {pα} — the
dual coordinate system on H− so that the symplectic structure in these coordinates
assumes the Darboux form Ω =

∑

α pα ∧ qα. For example, when H is the standard
one-dimensional Euclidean space then

(3) f =
∑

qkz
k +

∑

pk(−z)−1−k
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is such a coordinate system. In a Darboux coordinate system the quantization
convention reads

(4) (qα)̂ := qα/
√

~, (pα)̂ :=
√

~ ∂/∂qα,

(5) (qαqβ )̂ :=
qαqβ

~
, (qαpβ )̂ := qα

∂

∂qβ
, (pαpβ )̂ := ~

∂2

∂qα∂qβ
.

The quantization is a representation of the Heisenberg algebra of constant and
linear hamiltonians, but it is only a projective representation of the Lie algebra
of quadratic hamiltonians on H to the Lie algebra of differential operators. For
quadratic hamiltonians F and G we have

{F,G}ˆ= [F̂ , Ĝ] − C(F,G)

where {·, ·} is the Poisson bracket, [·, ·] is the commutator, and C is a cocycle
characterized by the properties that

C(pαpβ , qαqβ) = 1 if α 6= β, C(p2
α, q

2
α) = 2 ,

and C = 0 on all other pairs of quadratic Darboux monomials.
The differential operators act on formal functions (with coefficients depending

on ~±1/2) on the space H+ of vector-polynomials q = q0 + q1z+ q2z
2 + ... with the

coefficients q0, q1, q2... ∈ H . We will often refer to such functions as elements of the
Fock space.

Consider now linear operators on H which preserve the symplectic structure and
commute with multiplication by z. They form a twisted version of the loop group
LGL(H). It consists of the loops M(z) satisfyingM t(−z)M(z) = 1 where t means

transposition with respect to the inner product (·, ·)0. Quantized operators M̂ are

defined as exp(lnM )̂ (though the domain of M̂ in the “Fock space” may depend

on M). The operators Ŝ and R̂ in the formula (1) are of this nature. Moreover, the
loops S(z) and R(z) are triangular in the sense that S(z) = 1+S1z

−1 +S2z
−2 + ...

and R(z) = 1 + R1z + R2z
2 + ....

3. Example: KP and KdV hierarchies.

The goal of this section is to reconcile the conventional theory of integrable
hierarchies with the quantization formalism of the previous section in the example
of KdV (i.e. 2KdV) hierarchy. The nKdV hierarchies will be treated in this paper
as “reductions modulo n” of the KP hierarchy. The KP hierarchy has an abstract
description as a sequence of commuting flows on the semi-infinite grassmannian with
the time variables x1, x2, x3, .... The “bosonic-fermionic correspondence” identifies
the space of semi-infinite forms with the symmetric algebra C[x] in the variables
x = (x1, x2, x3, ...). Under the Plücker embedding, points of the grassmannian are
transformed into 1-dimensional subspaces spanned by certain functions of x, and
the KP flows are defined tautologically as time translations. The equations of the
KP hierarchy thus assume the form of Hirota quadratic equations describing the
image of the grassmannian under the Plücker embedding.

It will be convenient for us to use the following vertex operator construction of
the Hirota quadratic equations. According to [11], Ch. 14, a function Φ(x) (which
we will assume to have the form exp

∑

~g−1φ(g)(x)) satisfies the KP hierarchy iff

(6) Resζ=∞ dζ e
P

j>0 ζj(x′
j−x′′

j )/
√

~ e
−

P

j>0
ζ−j

j

√
~(∂x′

j
−∂x′′

j
)

Φ(x′)Φ(x′′) = 0.
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The equation is interpreted in the following way. The change

xj = (x′j + x′′j )/2, yj = (x′j − x′′j )/2, ∂xj = ∂x′
j
+ ∂x′′

j
, ∂yj = ∂x′

j
− ∂x′′

j

transforms the equation (6) into

(7) Resζ=∞ dζ e2
P

j>0 ζjyj/
√

~ e−
P

j>0
ζ−j

j

√
~∂yj Φ(x + y)Φ(x− y) = 0.

Expanding in y yields an infinite system of equations on partial derivatives of Φ(x)
which is an abstract form of the KP hierarchy.

Note that prior to extracting the residue, the expansion of (7) in y is an infinite
series with the property that the coefficient at each monomial ym is a Laurent series
in ζ−1, i.e. the powers of ζ are bounded from above by a constant depending on m.
We should therefore think of the expressions in (6),(7) as expansions near ζ = ∞.
Below we call such an expression regular in ζ if it contains no negative powers of
ζ, i.e. the coefficient at each monomial ym is a polynomial.

By definition, solutions of the nKdV hierarchy (also called Gelfand – Dickey or
Wn-hierarchy) are those solutions of the KP hierarchy which do not depend on xj

with j ≡ 0 mod n. For n = 2 we obtain the KdV hierarchy whose solutions depend
therefore only on xodd and do not depend on xeven. Note that the derivations
∂y2k in (7) can be omitted while the multiplications by y2k cannot. Thinking of

exp 2
∑

k>0 ζ
2ky2k as an arbitrary function of ζ2 and symmetrizing (7) over the

Galois group Z2 of the covering ζ 7→ ζ2, we arrive at the following description of
the KdV hierarchy:

a function Φ(xodd) satisfies the KdV hierarchy if and only if the following dif-
ferential 1-form is regular in ζ2:

(8)
∑

±
±dζ e±

P

j odd ζj(x′
j−x′′

j )/
√

~ e
∓

P

j odd
ζ−j

j

√
~(∂x′

j
−∂x′′

j
)

Φ(x′)Φ(x′′).

The Witten-Kontsevich tau-function is defined as

(9) T (t) = exp

∞
∑

g=0

~
g−1

∞
∑

m=0

1

m!

∫

Mg,m

t(ψ1) ∧ ... ∧ t(ψm),

where Mg,m are the Deligne – Mumford moduli spaces of stable genus g compact
complex curves with m marked points, ψi are the 1-st Chern classes of the universal
cotangent line bundles (formed by the cotangent lines to the curves at the i-th
marked points) over Mg,m, and t is a polynomial t(z) = t0 + t1z + t2z

2 + .... It is
known (see for instance [21]) that T satisfies the string and dilaton equations

∂t0T −
∞
∑

k=0

tk+1∂tkT =
t20
2~

T , 3∂t1T −
∞
∑

k=0

(2k + 1)tk∂tkT =
1

8
T .

At t0 = 0 the genus-g part of lnT depends only on t1, ..., t3g−2 (for dimensional
reasons). This implies that T is well-defined at least as a formal function of, say,
~, t0/~, t1, t2, .... Note however that the vector fields on the LHS of the string
and dilaton equations become linear homogeneous after the change of variables
qk = tk − δk,1 called the dilaton shift. We define an element in the Fock space by

(10) DA1(q) := T (t), where q(z) := t(z) − z.

Thus DA1 is well-defined as a formal function near the shifted origin q(z) = −z.
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According to Witten’s conjecture [21] proved by Kontsevich [13] the function
DA1 satisfies the KdV hierarchy (8) after the substitution qk = (2k+1)!!x2k+1, k =
0, 1, 2, .... We also have ∂x2k+1 = (2k+1)!!∂qk . We are going to rewrite (8) in terms
of Section 2. The exponents in (8) are elements of the Heisenberg Lie algebra and
are quantizations of linear hamiltonians in the symplectic space H. We will encode
the hamiltonians by the corresponding (constant) hamiltonian vector fields. The
standard relationship q̇ = hp, ṗ = −hq between hamiltonians h and their vector
fields dictates the following correspondence between the Darboux coordinates (3) as
linear functions on H and vectors in H: pk 7→ zk, qk 7→ −(−z)−1−k, k = 0, 1, 2, ....
Using the notation λ = ζ2/2, we can rewrite the KdV hierarchy (8) for DA1 in the
form

(11)
∑

√
2λ=±ζ

(Γ−(λ)DA1 )(q
′) (Γ+(λ)DA1 )(q

′′)
dλ√
λ

is regular in λ,

where the sum is taken over the two values of
√

2λ, and

(12) Γ±(λ) := e±
P

k<0( d
dλ )k(2λ)−1/2 (−z)k

e±
P

k≥0(
d

dλ )k(2λ)−1/2 (−z)k

.

We will informally refer to (11,12) as the KdV hierarchy for the total descendent
potential DA1 .

4. The vertex operators for nKdV.

Returning to the setting of Section 1, we introduce vertex operators associated
with cycles vanishing at isolated critical points in a fashion generalizing the role of

(2λ)−1/2 =

∫

[x]:x2/2=λ

dx/d(x2/2)

in (12). More precisely, the operators will have the form

(13) Γβ = e
P

k<0 I
(k)

β
(λ)(−z)k

e
P

k≥0 I
(k)

β
(λ)(−z)k

,

where I
(k)
β are vector functions with values in H which are consecutive derivatives

of one another, dI
(k)
β /dλ = I

(k+1)
β , and are defined as follows.

Let f be a weighted-homogeneous singularity with the local algebra H and with
the residue pairing (·, ·)0 defined by the volume form ω0 = dx1 ∧ ... ∧ dxm. We
will always assume that the number of variables m = 2l + 1 is odd, that the
monomials φ1, ..., φN = 1 ∈ C[x] represent a basis in H , and that the spectrum
deg(φ1ω), ..., deg(φNω) contains no integers. For [φ] ∈ H represented by a linear
combination φ of the monomials φi, we put

( I
(0)
β (λ), [φ] )0 := (

1

2π

d

dλ
)l

∫

β⊂f−1(λ)

φ(x)
dx1 ∧ ...∧ dxm

df(x)
,

where β is a middle-dimensional cycle in the Milnor fiber f−1(λ). 2 This defines

I
(0)
β (λ) as a vector-function with homogeneous components of non-integer degrees,

and we extend the definition to I
(k)
β by the obvious derivations and anti-derivations

2When β is the vanishing cycle f−1(λ) ∩ Rm of the A1 singularity f = (x2
1 + ... + x2

m)/2 in

m = 2l + 1 variables, we have
R

β
dx/df = σ2lλ

l−1/2 where σ2l = 2(2π)l/(2l − 1)!! is the volume

of the unit 2l-dimensional sphere. The factor 1/(2π)l in the definition of I(0) makes therefore

I
(0)
β = 2λ−1/2 independent on l.
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in λ. This determines the vertex operator unambiguously up to the classical mon-
odromy of the cycle.

In the special case of An−1 singularities, Γβ are closely related to the vertex
operators of the nKdV hierarchy. Put l = 0, f = xn/n, φi = xn−1−i, i = 1, ..., n−1.
We take the cycle β to be one point x = (nλ)1/n at the level f−1(λ) and denote
this cycle α. Then

(I(0)
α , [φi])0 =

∫

α

xn−1−i dx

dxn/n
= (nλ)−i/n.

Equivalently, I
(0)
α =

∑n−1
i=1 [xi−1](nλ)−i/n. This implies

∑

k∈Z

I(k)
α (−z)k =

n−1
∑

i=1

∑

k∈Z

[xi−1]zk (nλ)−(i+kn)/n
∞
∏

r=0

(i+ rn)/

∞
∏

r=k

(i+ rn).

The double sum contains exactly one summand with each power i + kn of ζ =
(nλ)1/n not divisible by n.

Let us compare the coefficients at ζ−j and ζj . For j = i+kn we have −j = n−i+
(−1−k)n. The corresponding vectors [xi−1]zk and [xn−i−1]z−1−k in H = H((z−1))
have the symplectic inner product (−1)k (while any other pairs are Ω-orthogonal).
The corresponding factorial products multiply to (−1)k+1/(i+ kn).

Let ∂/∂qi,k denote the elements in the Heisenberg algebra (acting on the Fock
space of functions on H+) which correspond to the vectors [xi−1]zk in H. The
above computation means that the change

(14) qi,k = i(i+ n)(i+ 2n)...(i+ kn)xi+kn

transforms
∑

k∈Z
I
(k)
α (−z)k into −∑j<0 xj ζ

j +
∑

j>0 ∂xj ζ
−j/j where j ∈ Z\nZ.

Comparing with (6) we see that the change (14) transforms solutions of the
nKdV hierarchy into functions D satisfying the condition

(15)
∑

α

(Γ−αD)(q′) (ΓαD)(q′′) λ(1−n)/ndλ is regular in λ.

The sum here is taken over all the n values of λ1/n which correspond to the one-
point cycles α. In particular, the coefficients λ(1−n)/n in different summands differ
by appropriate n-th roots of unity (rather than coincide).

Our goal in this paper is to prove the following theorem.

Theorem 1. The total descendent potential DAn−1 of the An−1-singularity de-
fined by the formula (1) (as explained in [5]) satisfies (15) and therefore is trans-
formed by the change (14) into a tau-function of the nKdV hierarchy.

5. From descendents to ancestors.

According to the definition (1) the function D in Theorem 1 has the form D =

eF
(1)(τ)Ŝ−1

τ Aτ where Aτ is some other element of the Fock space depending on
τ ∈ T and called in [5] the total ancestor potential (and F(1) is a function of τ
called the genus-1 Gromov-Witten potential which will be described in the next
section and which actually vanishes in the case of simple singularities). Replacing

in (15) the function D with A = ŜD and Γ±α — with its conjugation ŜΓ±αŜ−1

we obtain a reformulation of Theorem 1 in terms of the ancestor potential. Let
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us compute ŜΓβŜ−1, first formally, and then in the actual setting of singularity
theory.

A quantized “lower-triangular” symplectic operator S(z) = 1+S1z
−1+S2z

−2+...
acts on elements of the Fock space by the formula (Proposition 5.3 in [5])

(Ŝ−1G)(q) = eW(q,q)/2~G([Sq]+),

where [Sq]+ is the truncation of negative powers of z in S(z)q(z), and the quadratic
form W (q,q) =

∑

(Wklqk, ql) is defined by

(16)
∑

k,l≥0

Wkl

wkzl
:=

St(w)S(z) − 1

w−1 + z−1
.

Respectively,

(ŜG)(q) = e−W([S−1q]+,[S−1q]+)/2~G([S−1q]+).

For f ∈ H [[z, z−1]], let (ef )̂ := ef̂−ef̂+ be the corresponding element in the Heisen-
berg group. The previous formulas show that

(17) Ŝ (ef )̂ Ŝ−1G = eW(f+,f+)/2(eSf )̂ G.

We are returning to the Frobenius structure on the parameter space T of a
miniversal deformation of a (weighted - homogeneous) singularity. Consider the
complex oscillating integral

JB(τ ) = (−2πz)−m/2

∫

B

eF (x,τ)/zω.

Here B is a non-compact cycle from the relative homology group 3

lim
M→∞

Hm(Cm, {x : Re(F (x, τ)/z) ≤ −M}) ≃ Z
N .

We will assume that ω is primitive and use the notation ∂1, ..., ∂N for partial de-
rivative with respect to a flat (and weighted - homogeneous) coordinate system
(t1, ..., tN) of the residue metric. Saito’s theory of primitive forms guarantees that
the differential equations for JB in flat coordinates assume the following form:

z∂i∂jJ =
∑

k

ak
ij∂kJ , where ∂i • ∂j =

∑

k

ak
ij(τ )∂k

is the multiplication on the tangent spaces TτT . In particular, the linear pencil of
connections on the cotangent bundle

∇ := d− z−1
∑

(∂i•)tdti

is flat for any z 6= 0 (since
∑

(∂jJB)dtj provide a basis of ∇-flat sections). The
integrability of ∇ is a key axiom in the definition of Frobenius structures [3]. 4

The oscillating integral also satisfies the following homogeneity condition:

(z∂z +
∑

(deg ti)ti∂i) z∂jJ = −µj z∂jJ ,

3The present description of the oscillating integral is accurate only for subdeformation τ ∈

T lower of f by terms of degrees lower than deg f = 1. Our excuses are that (i) such τ will suffice

for all our goals and (ii) T lower = T for An−1 and other simple singularities.
4Note that the operators ∂i• are self-adjoint with respect to the metric. Identifying the tangent

and cotangent spaces via the metric, we get ∇ = d − z−1
P

(∂i•)dti, while the natural adjoint

connection on the tangent bundle reads d + z−1
P

(∂i•) dti.



An−1 SINGULARITIES AND nKDV HIERARCHIES 9

where −µj = deg(∂jF ) + deg(ω) −m/2, j = 1, ..., N , is the spectrum of the sin-
gularity symmetric about 0. One can extend therefore the connection ∇ to the
z-direction by

∇∂z := ∂z + µ/z + (E•)t/z2,

where E =
∑

(deg ti)ti∂i is the Euler field and µ = diag(µ1, ..., µN) is the Hodge
grading operator (anti-symmetric with respect to the metric and diagonal in a
graded basis). The extended connection is flat (since

∑

z∂iJB dti provide a basis
of flat sections) and can be considered as an isomonodromic family of connections
in z ∈ C\0 depending on the parameter τ ∈ T . Identifying the T ∗T with TT via
the metric, we obtain the connection operator ∂z −µ/z+(E•)/z2. The connection
is regular at z = ∞. At τ = 0 it turns into ∂z − µ/z.

Definition. The operator Sτ (z) = 1 + S1z
−1 + S2z

−2 + ... is defined as a gauge
transformation in the twisted loop group (i.e. St(−z)S(z) = 1) which transforms
near z = ∞ the connection operator ∂z − µ/z + (E•)/z2 at the parameter value
τ ∈ T into the connection operator ∂z − µ/z.

In particular, the basis of flat sections for the extended connection defined by the
complex oscillating integrals z∂iJB near z = ∞ has the form Sτ (z)zµC where C is a
constant invertible matrix depending on the basis of cycles B. This implies that S is
a fundamental solution to z∂iS = ∂i •S, i = 1, ..., N , and satisfies the homogeneity
condition (z∂z + E)S = µS − Sµ. A choice of the series solution S with these
properties and satisfying the asymptotical condition S(∞) = 1 and the symplectic
condition St(−z)S(z) = 1 is called in [5] calibration of the corresponding Frobenius
structure. In general calibration is not unique (and may depend on finitely many
constants) unless there is no integers among the spectral differences µi − µj. It
is therefore unique in the case of simple singularities. For more general weighted
- homogeneous singularities a canonical choice is specified by the condition that
Sτ=0 = 1. 5

Let us consider now period vectors I
(k)
β (λ, τ ) with values in H defined by the

integrals over vanishing cycles β ∈ Hm−1(Vτ (λ)) in the Milnor fibers Vλ,τ = {x ∈
Cn : F (x, τ) = λ}. We keep the notation m = 2l + 1 and other hypotheses of

Section 4 and define the period vectors I
(k)
β by 6

(I
(k)
β (λ, τ ), ∂i) := −(2π)−l∂l+k

λ ∂i

∫

β⊂Vλ,τ

d−1ω = (2π)−l∂l+k
λ

∫

β

(∂iF )
ω

dF
.

The vector-valued functions I
(k)
β are multiple-valued and ramified along the dis-

criminant where Vλ,τ becomes singular. We refer to [1] for a standard description
of the reflection monodromy group for the cycle β and the integrals. When τ = 0,

the vector-functions I
(k)
β specialize to those of the previous section.

Theorem 2. Let f (λ, τ ) =
∑

k∈Z
I
(k)
β (λ, τ )(−z)k. Then f (λ, τ ) = Sτ (z)f (λ, 0).

Remark. The integrals I(k)(λ) expand near λ = ∞ into Laurent series (with
fractional exponents), and the maximal exponent in I(k) tends to −∞ as k → ∞.

5This makes the descendent potential a special case of the ancestor potential Aτ = ŜτD with

τ = 0 provided that Ŝ0D is well-defined (see Section 9).
6Here d−1ω is any m − 1-form whose differential in x equals ω. In the second equality we

assume for simplicity that ω is independent of τ which is the case for simple singularities.
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Respectively, coefficients in a z-series of the form Sf with S =
∑

l≥0 Slz
−l and

f =
∑

I(k)(−z)k, which are infinite sums
∑

l≥0 ±SlI
(k+l), converge in the 1/λ-adic

sense.

Proof. The period vectors I
(k)
β are related to the oscillating integrals JB by (a

version of) the Laplace transform and satisfy the differential equations (we remind
that ω is primitive, ∂i are flat and ∂N is the unit element in the Frobenius algebra
(TτT , •) so that ∂NF = 1):

∂iI = (∂i•)∂N I, ∂N I = −∂λI, (λ∂λ +E)I = (µ − k − 1/2)I.

The equations determine the solution unambiguously from an initial condition (the
specialization to τ = 0 will suffice). Also by definition ∂λI

(k) = I(k+1). In terms of

the generating function f =
∑

I(k)(−z)k the equations read:

(18) ∂if = z−1(∂i•)f , ∂N f + ∂λf = 0, (z∂z + λ∂λ + E)f = (µ− 1/2)f .

The specialization f0 = f (λ, 0) satisfies respectively

∂if0 = 0, ∂λf0 = −z−1f0, (z∂z + λ∂λ)f0 = (µ− 1/2)f0.

Combining this with the equations for Sτ (i.e. ∂iS = z−1∂i • S and (z∂z + E)S =
µS − Sµ) we find that f = Sτ f0 satisfies (18). Since f (λ, τ ) and Sτ f0 coincide at
τ = 0 by definition, the result follows. �

6. Stationary phase asymptotics.

Consider the vectors fields JB on T defined by the oscillating integrals JB(τ )
via the formula (J, ∂j) = z∂jJ . As we discussed in Section 5, when B runs a
basis in the appropriate homology group ZN , the vector fields form a fundamental
solution to the system

(19) ∂iJ = z−1(∂i•)J, (∂z + (E•)/z2)J = µJ.

Now we choose τ semisimple, i.e. require the function F (·, τ ) to have N non-
degenerate critical points x(i). We denote ui the corresponding critical values (they
form a local coordinate system on T called canonical) and denote ∆i the Hessians
of F (·, τ ) at the critical points with respect to the primitive volume form ω. Next,
we construct a basis of cycles B1, ...,BN as follows: in the levels Vλ,τ varying over
an infinite path from λ = ui toward λ/z → −∞ avoiding other critical values, take
a parallel family of cycles vanishing as λ approaches ui and declare their union in
Cm to be Bi. In fact many details do not matter here since we are going to replace
the oscillating integrals JBi by their stationary phase asymptotics near ui. In this
way we get an asymptotical fundamental solution to the same system (19). The
asymptotical solution has the form J ∼ Ψ Rτ(z) exp(U/z) where:

• U = diag(u1, ..., uN),
• Ψ(τ ) is the transition matrix from the basis {∂j} in TτT to the basis√

∆i∂/∂ui orthonormal with respect to the residue metric, 7 and
• Rτ(z) = 1+R1z+R2z

2+... is a formal power series with matrix coefficients
depending on τ .

7Note that the residue metric in the canonical coordinates assumes the form
P

∆−1
j (duj)

2.

Respectively the matrix Ψ satisfies the orthogonality condition
P

a,b Ψa
i (∂a, ∂b)Ψ

b
j = δi,j , and

therefore [Ψ−1]ji =
P

a(∂a, ∂i)Ψ
a
j = ∆

−1/2
j ∂iuj .
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According to [6] (Proposition, part (d)) an asymptotical solution of this form to
the system (19) is unique and automatically satisfies the symplectic condition
Rt(−z)R(z) = 1. According to the definition of the total descendent potential
(1) given in [5] the data Ψ, R, U in (1) come from this unique asymptotical solu-
tion and thus coincide with the corresponding ingredients of the stationary phase
asymptotics J ∼ ΨR(z) exp(U/z) described above.

The coefficient C in the formula (1) is defined (uniquely up to a non-zero constant
factor) in terms of the diagonal entries of the matrix R1 (see [5]):

C(τ ) := exp

(

1

2

∫ τ
∑

Rii
1 (u)dui

)

.

The genus-1 Gromov-Witten potential F(1) of a semisimple Frobenius structure
mentioned in the previous section is defined (up to an additive constant) by

F(1)(τ ) :=
1

48

∑

i

ln∆i(τ ) + lnC(τ ).

As it is shown, for instance, in [7], the function F(1) is constant in the case of
A2-singularity. Using Hartogs’ principle one can derive from this (see, for example,
[10]) that for arbitrary singularity it extends analytically from semisimple points τ

through the caustic. In particular, F(1) is constant (as a regular function on T of
zero homogeneity degree) in the case of all simple singularities.

To complete the description of the formula (1), we note that (q1, ...,qN) =
Ψ−1q ∈ CN [z] is the coordinate expression for q ∈ H [z] in terms of our orthonormal
basis in TτT identified with H = T0T via the flat metric (·, ·).

We have therefore the ancestor potential defined by the formula

(20) Aτ (q) = Ψ(τ ) R̂τe
(U/z)ˆ

N
∏

i=1

DA1(qi)∆
−1/48
i (τ ),

and our next goal is to learn how to commute the vertex operators Γβ
τ past ΨReU/z .

In fact, the conjugation Ĵ(ef )̂ Ĵ−1 of an element of the Heisenberg group by a

quantized symplectic transformation is proportional to (eJ−1f )̂ . We postpone the
discussion of the proportionality coefficient and compute J−1f .

Let βi be the cycle in H2l(Vλ,τ) vanishing as λ→ ui along the same path as the
one participating in the definition of the non-compact cycle Bi. The vector JBi

of oscillating integrals is expressed via I
(l)
βi

by the “Laplace transform” along the
path:

JBi (τ ) =
(−z)−l

√
−2πz

∫ −∞

ui

eλ/zI
(−l)
βi

(λ, τ )dλ =
1√

−2πz

∫ −∞

ui

eλ/zI
(0)
βi

(λ, τ )

(note that I(k)(ui, τ ) = 0 for k < 0). Near the critical value λ = ui we have the
expansion

(I
(0)
βi
, ∂j) =

∂jui√
∆i

2
√

2(λ− ui)
(1 + ...)

where the dots mean power series in 2(λ− ui). In components, we find

(21) [I
(0)
βi

]j =
∑

a

Ψj
a

(

δai +
∑

k>0

Aai
k [2(λ− ui)]

k

)

2
√

2(λ− ui)
.
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Using the change of variables λ− ui = −zx2/2 we compute

2√
−2πz

∫ −∞

0

eλ/z [2(λ− ui)]
k−1/2dλ =

(−z)k+1/2

√
−2πz

eui/z

∫ ∞

−∞
e−x2/2x2kdx(22)

= (−z)k (2k − 1)!! eui/z.(23)

Thus the asymptotics of JBi assumes the form

[JBi ]
j ∼

∑

a

Ψj
a

(

δai +
∑

k>0

(2k − 1)!! Aai
k (−z)k

)

eui/z,

and therefore Rαi
k = (−1)k(2k−1)!! Aαi

k . Substituting this into (21) and combining

with the Taylor formula eu/z
∑

k∈Z
zkI(k)(λ) =

∑

k∈Z
zkI(k)(λ + u), we arrive at

the following result.

Theorem 3. Near λ = ui we have
∑

k∈Z
(−z)kI

(k)
βi

= Ψ R(z) eU/z 1i I

where 1i =
√

∆i∂/∂ui is the i-th unit coordinate vector in CN and I(z, λ) :=

2
∑

k∈Z
(−z)k( d

dλ )k (2λ)−1/2.

Remark. Note that coefficients of a z-series of the form Rf , where R =
∑

l≥0 Rlz
l

and f =
∑

I(k)(−z)k, are infinite sums
∑

l≥0 ±RlI
(k−l). They converge in the√

λ − ui-adic sense as long as I(k) expands near λ = ui into a Laurent series in√
λ − ui such that the lowest exponent tends to ∞ as k → −∞.

7. The phase factors

Let us introduce the phase 1-form

(24) W̃β(λ, τ ) := −(I
(0)
β (λ, τ ), dI

(−1)
β (λ, τ )) =

N
∑

i=1

(I
(0)
β , ∂i • I(0)

β ) dti.

It depends quadraticly on the cycle β, and we will occasionally denote W̃α,β =

−(I
(0)
α , dI

(−1)
β ) its polarization which is symmetric and bilinear in α, β. The phase

form is, generally speaking, multiple-valued and is ramified along the discriminant
where λ is a critical value of F (·, τ ).

We discuss below some basic properties of the phase form. 8

1. Both W̃β and the polarizations are closed since ∂i(∂j•) = ∂j(∂i•).
2. The phase form is invariant under ∂λ + ∂N , i. e. W̃ is determined by the

restriction W(τ ) := W̃(0, τ ) via W̃(λ, τ ) = W(τ − λ1).
3. Let E =

∑

deg(ti)ti∂i be the Euler vector field. Then iEWα,β = −〈α, β〉.
Here 〈α, β〉 is the intersection index normalized in such a way that the self - intersec-
tion of a vanishing cycle equals +2. Indeed, (a, E •b) is known to be proportional to
the intersection form carried over to the cotangent spaces T ∗

τ T by the differential of
the period map τ 7→ [d−1ω] defined by the primitive form ω (see, for instance, [10]).
According to [20], the proportionality coefficient is independent of the singularity
and can be computed in an example.

8T. Milanov has found an elegant description of the phase form in terms of the Frobenius
multiplication on the cotangent bundle. We refer to [9] for details and for explicit formulas in

terms of the root systems in the case of ADE-singularities.
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The property of W means that exp
∫

Wβ is homogeneous of degree −〈β, β〉.
For example, when α is a 1-point cycle in the level xn/n = −τn−1 of the An−1-
singularity, we have

(25)

∫ −λ1

τn−1=−1

Wα =

∫ nλ

xn=n

n−1
∑

i=1

xi−1

xn−1

xn−1−i

xn−1
d(−x

n

n
) =

1 − n

n
lnλ.

Note that (n − 1)/n is the self-intersection index of α projected to the reduced
homology group.

4. Suppose that a cycle α is invariant under the monodromy along a loop in the
complement to the discriminant. Then the phase form Wα is single-valued along
the loop, and we can talk about the period

∮

Wα. When a small loop γ = β2 goes
twice around the discriminant near a non-singular point, then the monodromy is
trivial, and

(26)

∮

Wα = −2πi〈α, β〉2 ,

where β is the cycle vanishing at the corresponding critical point.
Indeed, α = 〈α, β〉β/2 + α′, where 〈α′, β〉 = 0. Let λ = u be the critical value.

Then I
(0)
α′ is analytic at λ = ui, and I

(0)
β expands in

√
λ − u as in (21). This implies

that
∮

Wα′,β and
∮

Wα′,α′ vanish, while
∮

Wβ/2,β/2 = −2πi (as in (25) with n = 2).

Obviously, the same is true for any conjugation δβ2δ−1 (which itself is the square
of δβδ−1).

Proposition 1. In the case of a simple singularity, suppose that a cycle α
has integer intersection indices with vanishing cycles and is invariant under the
monodromy along some loop γ. Then the corresponding period

∮

Wα is an integer
multiple of 2πi.

Proof. If a transformation from a finite reflection group preserves some vector,
then it can be written as a composition of reflections in hyperplanes containing
the vector. On the other hand, the (monodromy) reflection group of a simple
singularity is known to coincide with the quotient of corresponding Artin’s braid
group (i. e. the fundamental group of the complement to the discriminant) by the
normal subgroup generated by the squares of standard generators. Thus the loop
γ can be written as the composition γ = β2

1 ...β
2
rβ

′
1...β

′
s, where βi, β

′
i are “small”

loops around non-singular points of the discriminant, and the monodromy along b′i
preserves α. The loops β′

i have zero contributions to the period
∫

γ
Wα (since α is

orthogonal to the corresponding vanishing cycles), while the periods
∫

δ−1β2
i δ

Wα =
∫

β2
i
Wα = −2πi〈α, βi〉2 are integer multiples of 2πi. �

We will show now how central constants in various commutation relations be-
tween vertex operators and symplectic transformations are expressed in terms of
the phase form.

In the situation of Theorem 1, let us compute the factor eW(f+,f+)/2 defined
by the formulas (16, 17). Differentiating (16) and using ∂iS(z) = z−1S(z) and
(∂i•)t = ∂i• we find ∂iW (q,q) = ([Sq]0, ∂i • [Sq]0) where [Sq]0 denotes the zero
mode in S(z)q(z). Since S|τ=0 = 1, we see from (16) that W |τ=0 = 0 and conclude

W (q,q) =

∫ τ

0

∑

([Sq]0, ∂i • [Sq]0)dti.
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The differential 1-form here is closed and the integral does not depend on the path
connecting the origin 0 ∈ T with τ ∈ T (at least when q ∈ H [z]).

We apply the formula to q =
∑

k≥0(−z)kI
(k)
β (λ, 0). According to Theorem 2,

[Sτq]0 = I
(0)
β (λ, τ ) and therefore the exponent W (f+, f+) in (17) can be written as

(27) W (f+, f+) =

∫ τ

0

∑

i

(I
(0)
β (λ, t), ∂i • I(0)

β (λ, t))dti =

∫ τ

0

W̃β

This integral may depend on the path (in the complement of the discriminant)

which determines the branch of the multiple-valued vector-function I
(0)
β . Slightly

abusing notation, we indicate the end-points in such integrals but suppress the
name of the path. However we always assume that in different integrals the path is
the same whenever the end-points are the same. Also we choose −1 ∈ T , (defined
by F (x,−1) = f(x) − 1) for the base point.

Rewriting the integral via W

W (f+, f+) =

∫ τ−λ1

−1

Wβ −
∫ −λ1

−1

Wβ,

computing the second integral as
∫ −λ1

−1

Wβ = −
∫ λ

1

(I
(0)
β (ξ, 0), I

(0)
β (ξ, 0))dξ = −〈β, β〉

∫ λ

1

dξ

ξ
,

and combining this with Theorem 2, we arrive at the following conclusions.
Proposition 2. Introduce the vertex operator

(28) Γβ
τ (λ) = e

P

k<0 I
(k)
β (λ,τ)(−z)k

e
P

k≥0 I
(k)
β (λ,τ)(−z)k

.

Then we have

Ŝτ e
−〈β,β〉

R

λ
1

dξ/2ξΓβ
0 (λ) Ŝ−1

τ = e
R τ−λ1

−1
Wβ/2 Γβ

τ (λ).

The weights λ(1−n)/n in the formulation of Theorem 1 coincide with λ−〈α,α〉 for

the 1-point cycles α and differ from exp(−〈α, α〉
∫ λ

1
dξ/ξ) by the corresponding n-th

roots of unity (as explained before the formulation of Theorem 1).

Corollary. In the case of An−1-singularities an element D of the Fock space
satisfies the nKdV hierarchy (15) if and only if for some — and then for all —

τ ∈ T the corresponding elements Aτ = ŜτD satisfy the condition

(29)
∑

α

(Γ−α
τ Aτ )(q′) (Γα

τ Aτ )(q′′) e
R τ−λ1

−1
Wα−〈α,α〉

R λ
1

dξ/ξ dλ

λ〈α,α〉 is regular in λ.

Remark. As was explained in Section 3, the regularity condition refers to ex-
pansions into Laurent series in λ−1, and in particular the multiple-valued functions

(I
(k)
α , [φi]) and

∫

Wα should be understood as series expansions λµi−1/2−k(a0 +
a1λ

−1 + ...) and respectively −〈α, α〉 lnλ + b1λ
−1 + b2λ

−2 + ... near λ = ∞.

Let us return now to the situation of Theorem 3.
According to [5], Proposition 7.3, the action of the operator R̂−1 on elements of

the Fock space is given by the formula

(R̂−1G)(q) = (e~V (∂,∂)/2G)(Rq)



An−1 SINGULARITIES AND nKDV HIERARCHIES 15

where (Rq)(z) = R(z)q(z), and the “Laplacian” V (∂, ∂) =
∑

(∂qk , Vkl∂ql ) is defined
by

∑

k,l≥0

Vklw
kzl =

1−R(w)Rt(z)

w + z
.

This easily implies

R̂−1(ef )̂ R̂ = eV f 2
−/2 (eR−1f )̂ ,

where f− =
∑

k≥0(−1)−1−k(f−1−k, qk) is interpreted as a linear function of q.

When f =
∑

k∈Z
I
(k)
β (−z)k, we have f− =

∑

(I
(−1−k)
β , qk). Using ∂λI

(−1−k)
β =

I
(−k)
β , we find 9

∂λV f 2
− =

∑

k,l≥0

((I
(−k)
β , ·), [Vk−1,l + Vk,l−1](I

(−l)
β , ·))(30)

= (I
(0)
β , I

(0)
β ) − (

∑

Rt
kI

(−k)
β ,

∑

Rt
lI

(−l)
β ).(31)

Let us assume now that β is a vanishing cycle βi. By Theorem 3,
∑

Rt
kI

(−k)
βi

=
∑

Rt
k

∑

(−1)lRl(
d

dλ
)−l−k 2 1i

√

2(λ− ui)
=

2 1i
√

2(λ− ui)
.

Also V f 2
− = 0 at λ = ui since f−k ∼ (λ − ui)

k+1/2(1i + ...) vanish at λ = ui. Thus

V f 2
− =

∫ λ

ui

(

(I
(0)
βi

(ξ, τ), I
(0)
βi

(ξ, τ)) − 2

(ξ − ui)

)

dξ.

Note that near ξ = ui both integrals diverge, but in the same way, so that the
difference converges. The integral can be rewritten as

V f 2
− =

∫ τ−ui1

τ−λ1

(

Wβi −
2dtN

τN − ui − tN

)

.

Finally, conjugation of vertex operators by e(U/z)ˆ is a special case of Proposition
2 and has the following effect: 1i/

√

2(λ− ui) is transformed to 1i/
√

2λ, and the

corresponding factor eW(f+,f+)/2 is equal to (λ−ui)/λ. Note that the correspondence
between the branches of the

√· depends on the choice of a path connecting λ− ui

with λ.
We summarize.

Proposition 3. Let βi be one of the vanishing cycles. Put

(32) Wi :=

∫ τ−ui1

τ−λ1

(

Wβi/2 −
dtN

2(τN − ui − tN)

)

, wi =

∫ λ

λ−ui

dξ

2ξ

Then
(

ΨR̂e(U/z)ˆ
)−1

e−Wi/2 Γ
±βi/2

τ

(

ΨR̂e(U/z)ˆ
)

= e−wi/2
(

...1⊗ (Γ±)(i) ⊗ 1...
)

,

where Γ± are the vertex operators (12), and the subscript (i) indicates the i-th
position in the tensor product.

Remark. The integration path in the definition of wi is the same as the one that
determines the branch of

√· under the translation
√
λ − ui 7→

√
λ.

9We slightly abuse notation by identifying TτT with CN by Ψ−1 and denoting in the same

way (·, ·) the metric on TτT , and the standard inner products on CN and CN∗.
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Now let us consider a cycle α represented as the sum c β/2 + α′ where β is the
cycle vanishing over the point (λ, τ ) = (u, τ ) on the discriminant, and α′ is a cycle
invariant under the local monodromy near this point (so that c = 〈α, β〉).

Proposition 4. For the vertex operators (28) we have

Γα
τ = exp

(

c

∫ τ−u1

τ−λ1

Wβ/2,α′

)

Γα′

τ Γcβ/2
τ .

Proof. It is clear that Γα
τ = eKΓα′

τ Γ
cβ/2
τ . The proportionality coefficient eK arises

from commuting ef̂− across eĝ+ , where f = c
∑

(−z)kI
(k)
β/2 and g =

∑

(−z)lI
(l)
α′ .

The constant K is equal therefore to the symplectic inner product Ω(f−, g+). One
easily finds

K = c
∑

k≥0

(−1)k(I
(−1−k)
β/2 , I

(k)
α′ ).

On the other hand, consecutive integration by parts yields
∫ λ

u

(I
(0)
β/2, I

(0)
α′ ) dξ =

m−1
∑

k=0

(−1)k(I
(−1−k)
β/2 , I

(k)
α′ )|λu + (−1)m

∫ λ

u

(I
(−m)
β/2 , I

(m)
α′ ) dξ.

Note that I
(−1−k)
β/2 ∼ (λ − u)k+1/2(1i + ...) and vanish at λ = u, while I

(k)
α′ are

holomorphic at λ = u. Thus the last integral is o(λ − u)m−1/2 and hence tends to
0 as m→ ∞. We conclude that

K = c

∫ λ

u

(I
(0)
β/2

(ξ, τ), I
(0)
α′ (ξ, τ)) dξ = −c

∫ τ−λ1

τ−u1

Wβ/2,α′ .

8. Asymptotical elements of the Fock space

Various expressions with quantized symplectic transformations and vertex oper-
ators contain numerous infinite sums, and we have to discuss now precise meaning
of our formulas.

By an asymptotical function we will mean an expression of the form

exp
∑

g≥0

~
g−1F (g)(t),

where F (g) is a formal function on the space H [t] of polynomials t(z) = t0 + t1z +
t2z

2 + ... with vector coefficients tk =
∑

α t
α
kφα ∈ H .

We will say that an asymptotical function is tame if

∂

∂tα1

k1

...
∂

∂tαr

kr

|t=0F (g) = 0 whenever k1 + ...+ kr > 3g − 3 + r.

In particular, each F (g) is a formal series
∑

F
(g)
a,b (t0)

a(t1)
b of t0, t1 with the coeffi-

cients which are polynomials on t2, ..., t3g−2+|a|.
The Witten – Kontsevich tau-function is tame (as well as ancestor potentials [5]

in Gromov – Witten theory are — because dimC Mg,r = 3g − 3 + r).
An asymptotical function is identified with an asymptotical element in the Fock

space (in the formalism of Section 2) via the dilaton shift q(z) = t(z) − z and
becomes therefore an asymptotical function of q (tame or not) with respect to the
shifted origin q = −z. The notation −z := (−1)z is the only place where we use
that the space H contains a distinguished non-zero vector 1.
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Proposition 5. Let R be an upper-triangular element of the twisted loop group,
i. e. R(z) = 1 + R1z + R2z

2 + ..., and Rt(−z)R(z) = 1. Then the action of the

quantized operator R̂ on tame asymptotical elements of the Fock space is well-defined
and yields tame asymptotical elements.

Proof. As mentioned in Section 7 the action of R̂−1 on an asymptotical function
G takes the form

(R̂−1G)(t) = (e~V (∂,∂)/2G)(Rt + γ), where γ(z) = z −R(z)z.

The operation lnG 7→ ln(e~V (∂,∂)/2G) can be described in terms of summation
over connected graphs with vertex contributions defined by partial derivatives of
lnG :=

∑

~g−1F (g), and edge factors given by the coefficients Vkl of the “Laplacian”

V (∂, ∂). 10 In order to check that ln(e~V (∂,∂)/2G) is tame, let us examine the
contribution of a connected graph with E edges into a Taylor coefficient at tα1

k1
...tαr

kr
.

Let

• g(v) be the genus of a vertex v, e(v) — the number of edges incident to the
vertex (

∑

e(v) = 2E),
• l(v) — the total sum of the indices in the derivatives Vkl∂tk∂tl applied to

the vertex v (
∑

l(v) =: L),
• r(v) — the number of marked points in v (

∑

r(v) = r),
• k(v) — the total sum of the indices among k1, ..., kr attributed to the vertex

(
∑

k(v) = k1 + ...+ kr =: K).

The total genus g of the graph (i.e. the power of ~ to which the graph contributes)
is determined by the formula g − 1 =

∑

(g(v) − 1) + E. We see that g ≥ 0 since
g(v) ≥ 0 and E −∑v 1 ≥ −1. Since G is tame, the contribution of the graph
vanishes unless k(v) ≤ 3g(v) − 3 + e(v) + r(v) − l(v) for each v. Summing up we
find

K ≤ 3
∑

(g(v) − 1) + 2E + r − L = 3g − 3 + r − L− E ≤ 3g − 3 + r.

Thus the required condition is satisfied. Moreover, the number of edges of the
graph and the indices in the edge factors Vk,l are bounded (L + E ≤ 3g − 3 + r).

Thus ln(e~V (∂,∂)/2G) is well-defined since there are only finitely many terms of each
genus g and degree r.

The substitution of R(z)t(z) instead of t(z) preserves the above conclusions
since the multiplication by R = R0 +R1z+R2z

2 + ... does not decrease the indices
k1, ..., kr (determined by the degree in z).

Finally, the series z − R(z)z starts with z2 since R0 = 1. Therefore the dilaton
shift t(z) 7→ t(z) + z − R(z)z is also a well-defined operation in the class of tame
asymptotical functions. �

As it is mentioned in Section 5, lower-triangular operators Ŝ−1
τ act on an asymp-

totical element G of the Fock space by eW(q,q)/2~G([Sq]+). The change q̄ = [Sq]+
means t̄(z) = [Sτ (z)t(z)]+ − τ or, in components, t̄0 =

∑

Sk(τ )tk − τ , t̄1 =
∑

Sktk+1, ... Suppose that lnG is a formal function of t̄ and is therefore defined
in the formal neighborhood of t̄ = 0. When t(z) is a polynomial, t̄ = Sτ t − τ = 0

10We are not going to enter here a detailed discussion of the Wick formula underlying the graph
summation technique. However the reader may track the origin of the “graphical” interpretation

of the operator R back to [6].
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means t0 = τ, t1 = t2 = ... = 0. This makes ln(Ŝ−1
τ G) a well-defined formal function

of t0 − τ, t1, t2, ... (and ~).

The operators Ŝ with S(z) = S0 + S1z
−1 + S2z

−2 + ... do not preserve the
class of tame functions. In particular this applies to the rightmost operator in
ΨR̂ exp(U/z)̂ . Yet the formula (20) for the ancestor potential makes sense and
defines a tame asymptotical function Aτ because the operators exp(u/z)̂ preserve
DA1 . Indeed, the string equation for the Witten – Kontsevich tau-function coincides
with (1/z)̂ DA1 = 0.

More generally, let us call a tame asymptotical function G T -stable, if TG is
also tame. Let G be exp(U/z)̂ -stable for all diagonal matrices U . 11 Then

eF
(1)Aτ := Ψτ R̂τ exp(U(τ )/z)̂ G are well-defined and tame, while Ŝ−1

τ Aτ are de-
fined as asymptotical functions of t(z) − τ . Moreover, according to Theorem 7.1

in [5], the asymptotical element D :=
∏

∆
−1/48
i Ŝ−1

τ Aτ does not depend on τ and
is therefore well-defined as an asymptotical function of (t0, t1, ...) in the formal
neighborhood of (τ, 0, ...) with any semisimple τ .

Let us examine now the regularity condition (see Corollary to Proposition 2 of
Section 7) in the description of integrable hierarchies via vertex operators. The
action of the vertex operators of the form Γ−β

τ ⊗ Γβ
τ on functions G(x′) ⊗ G(x′′) is

described more explicitly (see (6), (7)) as composition of translations and multipli-
cations:

(33) exp



2
∑

k≥0

(I
(−1−k)
β ,

qk√
~
)



 exp



−
∑

k≥0

(−1)kI
(k)
β

√
~∂qk



G(x + q)G(x − q).

The coefficient I
(k)
β (λ, τ ) can be represented near λ = ∞ by an infinite series in frac-

tional powers λν with the exponents ν from the union of N arithmetical sequences
µi − 1/2 − k + Z−. As we remarked in Section 8, the phase factors exp

∫

Wβ also
expand into such series with ν ∈ −〈β, β〉+Z−. The formulation that a vertex oper-
ator expression like (29) is regular in λ instructs us to expand (33) into a q-series.
In fact (29) is manifestly invariant under the classical monodromy operator. As a
result, the coefficient at a given monomial qm expands into a Laurent series in λ−1

(since the coefficient depends only on finitely many I
(k)
β ). The regularity condition,

by definition, means that the coefficients at negative powers of λ vanish (so that
the Laurent series in λ−1 is a polynomial in λ).

On the other hand, recalling the genus expansion G = exp(
∑

~g−1F (g)) and

using the notation Qk := qk/
√

~, we can rewrite (33) as
(34)

exp



2
∑

k≥0

(I
(−1−k)
β , Qk) +

∑

g≥0

~
g−1

∑

±
F (g)



x±
√

~Q∓
√

~

∑

k≥0

I
(k)
β (−z)k









The functions F (g) are formal series of x. Rewriting the exponent as a series in ~

we see that the ~−1-term 2F (0)(x) does not depend on λ and all the ~−1/2-terms
cancel out.

11These requirements are satisfied, for example, if G = D1(q1)...DN(qN ) where Di are obtained

from DA1
by translations q 7→ q + α, where α(z) = a0 + a1z + a2z2 + ... is a vector-polynomial

(or even a series) with coefficients which are formal ~-series such that a0 and a1 are smaller than

1 in the ~-adic norm (and ak → 0 in this norm as k → ∞).
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Proposition 6. Suppose that G = exp
∑

~g−1F (g) is a tame asymptotical func-
tion of x. Then (33) divided by exp(2F (0)(x)/~) expands into a power series in√

~,x and Q whose coefficients depend polynomially on finitely many I
(k)
β each.

Proof. Recall that expansions of each F (g)(x) with as power series in x0, x1

have coefficients which depend only on finitely many x2, x3, .... Note that each

I
(0)
β , I

(1)
β in (34) brings with itself an extra

√
~. We conclude that modulo high

powers of
√

~ the exponent of (34) is a series in Q,x whose coefficients depend

polynomially on finitely many I
(k)
β each. Subtracting the singular term 2F (0)(x)/~

and exponentiating does not alter this conclusion. �

Proposition 6 means, that the regularity requirement, when applied to tame
asymptotical functions, can be understood not only as a statement about expansions
near λ = ∞, but also as the property of analytic functions of λ (the polynomial

expressions of I
(k)
β and of the phase factors exp

∫

Wβ) to be single-valued polynomial

functions of λ.

Finally, it is worth reiterating here some of our remarks from Sections 5 and 6
about conjugations of vertex operators by quantized elements of the twisted loop
group:

• the conjugation Ŝ−1
τ Γβ

τ Ŝτ by lower-triangular elements is well-defined via

the expansion of
∑

k I
(k)
β (λ, τ )(−z)k as a series near λ = ∞,

• the conjugation R̂−1
τ Γβi

τ R̂τ by upper-triangular elements is well-defined in
terms of expansions near the critical value λ = ui, and

• the conjugation by exp(ui/z)̂ acts on
∑

k I
(k)(λ)(−z)k as the translation

λ 7→ λ + ui; it is applied in our computations only to the vertex operator
defined by the analytic functions I(k)(λ) = (d/dλ)k(λ− ui)

−1/2.

9. From nKdV to n − 1 KdV

We prove here Theorem 1 as a special case (with D1 = ... = Dn−1 = DA1) of
a more general result which yields a solution of the nKdV hierarchy from n − 1
solutions of the KdV hierarchy.

Theorem 4. Suppose that asymptotical functions Di(qi), i = 1, ..., n− 1, are
tame and stable with respect to the string flows e(ui/z)ˆ. Let us assume that the
ingredients C, S,Ψ, R and U of the formula (1) correspond to the Frobenius structure
of the An−1-singularity. Then

(35) D := C(τ )Ŝ−1
τ Ψ(τ )R̂τe

(U(τ)/z)ˆ
n−1
∏

i=1

Di(qi)

satisfies the equations of the nKdV-hierarchy:

(36)





∑

1-point cycle α

Γ−α
0 ⊗ Γα

0 λ−〈α,α〉dλ



 D ⊗ D is regular in λ.
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Proof. Similarly to Corollary from Theorem 2 and Proposition 2, it is sufficient

to prove that Aτ := e−F(1)

ŜτD satisfies the condition:
(37)




∑

1-point cycle α

Γ−α
τ ⊗ Γα

τ e
R τ−λ1

−1
Wα+〈α,α〉

R λ
1

dξ
ξ λ−〈α,α〉dλ



 Aτ ⊗Aτ is regular in λ

for at least one value of τ . We choose τ to be generic (so that F (·, τ ) is a Morse
function) and prove (37) as follows.

In view of Proposition 6 we can interpret (37) in terms of analytic functions in
λ (rather than series in 1/λ). Since all the n one-point cycles α form an orbit of
the monodromy group of the An−1-singularity, one can argue that (37) is invariant
under the whole monodromy group (and not only the classical monodromy oper-
ator). Thus (37) is meromorphic with possible poles at the distinct critical values
u1, ..., un−1. The regularity property will follow if we prove that there are no poles
at λ = ui.

Let β = α+ − α− be the cycle vanishing at λ = ui, and α± are two of the n
one-point cycles. If α 6= α±, then α is invariant under the monodromy around ui,

the corresponding vector-functions I
(k)
α are holomorphic at λ = ui, and therefore

the phase factor and respectively the whole summand in (37) with the index α is
holomorphic at λ = ui as well.

When α = α±, we have α = ±β/2+α′ where α′ = (α++α−)/2 is invariant under

the monodromy around ui. Thus I
(k)
α± = I

(k)
±β/2 + I

(k)
α′ where the second summand

is holomorphic at λ = ui. We have therefore

(38) Γα±
τ = e±K Γα′

τ Γ±β/2
τ ,

where the proportionality coefficient e±K is described by Proposition 4 (with u = ui,
and c = ±1). Thus the two summands in (37) with α = α± add up to

(39) Γ−α′

τ ⊗ Γα′

τ

[(

∑

±
C±(λ)Γ∓β/2

τ ⊗ Γ±β/2
τ

)

Aτ ⊗Aτ

]

dλ,

where C± are some phase factors combined from (37) and (38).
Let us now recall that

Aτ = ΨR̂e(U/z)ˆ
∏

Di(qi)∆
−1/48
i

and apply Theorem 3. We see that

• the square bracket in (39) has the form of the operator ΨR̂e(U/z)ˆ applied
to a product

∏Fi of n − 1 functions in n− 1 different groups of variables
(q′

i,q
′′
i ),

• the factors Fi corresponding to i with βi 6= β are equal to Di(q
′
i)Di(q

′′
i ),

• the factor corresponding to βi = β has the form

(40)
∑

√
2λ=±ζ

c±(λ)(Γ−Di)(q
′
i) (Γ+Di)(q

′′
i )

dλ√
λ
,

• the phase factors c±/
√
λ come from C± and from the phase factors de-

scribed by Proposition 3.
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We assume that the factors
√
λ here differ by the sign (rather than coincide) the

same way as in (11) (or (15) when n = 2).

We claim that near λ = ui the functions c±(λ) coincide, are single-valued and
analytic.

In order to justify the claim, let us compute the phase factors explicitly. We
have:

ln c± =

∫ τ−λ1

−1

Wα± + 〈α±, α±〉
∫ λ

1

dξ

ξ
− lnλ〈α±,α±〉 + ln

√
λ −

∫ λ

1

dξ

2ξ
(41)

±2

∫ τ−ui1

τ−λ1

Wβi/2,α′ +

∫ τ−ui1

τ−λ1

(Wβi/2 −
dtN

2(τN − ui − tN)
) −

∫ 1

λ−ui

dξ

2ξ
.(42)

Using bi-linearity of the phase form W with respect to the cycles α± = ±βi/2+α′

we rewrite:

ln c± =

∫ τ−λ1

−1

Wα′ + 〈α±, α±〉
∮

γ±

dξ

ξ
+

∮

γ′
±

dξ

2ξ
(43)

±2

∫ τ−ui1

−1

Wβi/2,α′ +

∫ τ−(ui+1)1

−1

Wβi/2 +

∫ τ−ui1

τ−(ui+1)1

(Wβi/2 −
dtN

2(τN − ui − tN)
)

(44)

+

∫ τN−λ

τN−(ui+1)

dtN
2(τN − ui − tN)

−
∫ 1

λ−ui

dξ

2ξ
.(45)

The constant ui + 1 is chosen to make the integrals in (45) cancel exactly. The
contours γ±, γ′± in (43) as well as all terms in (44) may depend on the cycle α±
but are independent of λ, while the first integral in (43) is a function of λ analytic
at λ = ui and independent of the cycle. This implies that the phase factors c± are
proportional to each other and are analytic near λ = ui.

Let us show that the proportionality coefficient equals 1. Since βi/2 = (α+ −
α−)/2 and α′ = (α+ + α−)/2, we have 4Wβi/2,α′ = Wα+ −Wα− and therefore

(46) ln c+ − ln c− = 〈α−, α−〉
∮

γ+−γ−

dξ

ξ
+

∫ τ−ui1

−1

(Wα+ −Wα−) +

∮

γ′
+−γ′

−

dξ

2ξ
.

Note that the one-point cycles α± belong to the same orbit of the classical mon-
odromy (i.e. the cyclic group of the Coxeter transformation) and therefore the first
integral in (46) can be interpreted as

∮

γ1
Wα− where the loop γ1 makes several turns

about λ = 0 inside the line −λ1 so that α− transported along the loop becomes
α+ in the end.

Let γ2(ε) denote the path starting at −1 and approaching the point τ−ui1 on the
discriminant (as in the second term in (46)) but stopping a small distance ε away
from it. Let γ3(ε) be a loop of size ε going around the discriminant near τ −ui1 (so
that α+ transported along γ3 becomes α− in the end). The integral

∫

Wα+ along

the path γ2(ε)γ3(ε)γ
−1
2 (ε) does not depend on ε (for homotopy reasons). In the

limit ε → 0 it spits out the middle term of (46) plus limε→0

∫

γ3(ε) Wα+ . Writing

Wα+ = Wβi/2+2Wβi/2,α′+Wα′ near τ−ui1 we see that the first summand contains
the term dλ/2(λ−ui), and the rest is either analytic at λ = ui or has a singularity
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like (analytic function) × dλ/
√
λ− ui. This implies that

lim
ε→0

∫

γ3(ε)

Wα+ =

∮

dλ

2(λ− ui)
= π

√
−1,

which coincides with the last integral in (46). We conclude that (46) can be inter-
preted as the period of Wα− along the loop γ1γ2γ3γ

−1
2 . The cycle α− is invariant

under the monodromy along this loop. According to Proposition 1 the period is an
integer multiple of 2π

√
−1. Thus c+ = c−.

The proof of Theorem 4 is now completed as follows. Since Di satisfy the KdV
hierarchy, we conclude that (40) is regular in λ. This implies that

∏Fi, and hence
(39) is single-valued near λ = ui and has no pole at λ = ui. Since the other
ingredients of (37) are also holomorphic at λ = ui, we find that (37) is regular
at λ = ui. In particular, (37) is invariant with respect to the whole monodromy
group (regardless of reliability of the previously mentioned abstract argument) and
is regular in λ. �

10. Some applications

Due to Theorem 1 the total descendent potential DAn−1 defined by (1) satisfies
the nKdV-hierarchy and is therefore “a tau-function”. In addition it satisfies the
string equation (1/z)̂ DAn−1 = 0 (due to [5]). Solutions of the nKdV-hierarchies
satisfying the string equation have been studied in the literature (see for instance
[21, 18]) under the name Wn-gravity. By definition, the tau-functions in the Wn-
gravity theory are formal functions of the variables t0, t1, t2, ... ∈ H . Our functions
DAn−1 , to the contrary, are known to expand in formal series near semisimple t0. It
is our present goal to identify DAn−1 with the tau-function singled out in the theory
of Wn-gravity, and in particular — to establish analyticity of the total descendent
potential at t0 = 0.

It will be convenient for us to use another form of the nKdV-hierarchy based
on the concept of Baker functions. Let exp

∑

g≥0 ~g−1F (g)(t) be an asymptotical
function in a formal neighborhood of t = 0. Given an asymptotical function G, the
corresponding Baker function [19] (or wave function [11]) is defined as

bG = (ΓαG)/G = e−
P

k≥0(I(−1−k)
α ,qk)/

√
~G(q +

√
~

∑

k≥0

I(k)
α (−z)k)/G(q).

Here Γα is the vertex operator (13) corresponding to a one-point cycle α. The
Baker function can be understood as a q-series

bG =
∑

b
(m)
G qm

with coefficients b
(m)
G which are Laurent series of ζ−1 = λ−1/n (whose coefficients,

in their turn, are Laurent series in
√

~). Let C√
~
((ζ−1)) be the space of all such

Laurent series, and let VG denote the subspace spanned over C√
~
[λ] by the coef-

ficients b
(m)
G . According to the grassmannian description [19] of the KP-hierarchy,

G satisfies the nKdV-hierarchy if and only if VG belongs to the principal cell of
the semi-infinite grassmannian (i.e. projects isomorphically onto C√

~
[ζ] along

ζ−1C√
~
[[ζ−1]]).
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On the other hand, conjugation of Γα(λ)λ−〈α,α〉/2 by the string flow exp(u/z)̂
yields Γα(λ − u)(λ − u)−〈α,α〉/2 and therefore

(47) [(1/z)̂ ,Γα] = d/dλ− 〈α, α〉/2λ.
In particular the string flow exp(u/z)̂ acts on the vertex operator expression in
(15) by translation λ 7→ λ − u and therefore preserves the regularity requirement
in (15). Thus the string flow is a symmetry of the nKdV-hierarchy. Moreover, let
Gτ be the total descendent potential DAn−1 considered as an asymptotical function

in the formal variable t = q − τ + z, where τ =
∑n−1

i=1 τi[φi] ∈ H is a semisimple
point (and z represents the dilaton shift). The invariance of DAn−1 with respect
to the string flow can be restated via the Baker function bGτ as invariance of the
space VGτ with respect to the operator

A :=
d

dλ
− 〈α, α〉

2λ
+

(τ, I
(0)
α (λ))√

~
− (1, I

(−1)
α (λ))√

~
.

The first two terms here come from (47) and the others come from

e∂τ−z∂1Γα = exp{~
−1/2[(τ, I(−1)

α ) − (1, I(−2)
α )]} Γαe∂τ−z∂1.

Note that the space VGτ contains v := bGτ |q=0 which is a power series in ζ−1 with
the constant term 1. Such series form a group acting on the semi-infinite grass-
mannian via multiplication. The invariance of VGτ with respect to A is equivalent
to invariance of U := v−1VGτ relative to B = v−1Av. We have

(48) B =
d

dλ
+

(1, I
(−1)
α (λ))√

~
+

(τ, I
(0)
α (λ))√

~
− 〈α, α〉

2λ
+
∑

k≥0

(−1)k (fk, I
(k+1)
α )√
~

,

where the linear function
∑

k≥0(−1)k(fk, qk) of q is the differential of ~ lnGτ at

t = 0. The space U is a free C√
~
[λ]-module of rank n. It contains the series 1 and

hence contains all λm and all Bk(1). Note that the ζ−1-series Bk(1) starts with ζk

(since (1, I
(−1)
α ) ∼ λ1/n) and therefore 1, B(1), ..., Bn−1(1) form a basis in U , while

Bn(1) = ~−n/2nλ +
∑

k>0 akλ
1−k/n. The coefficients a1, ..., an are uniquely deter-

mined by τ . Representing Bn(1) − ~−n/2nλ as a linear combination of the basis
vectors, we obtain a system of equations for f0, f1, .... It is straightforward to see
that the system is triangular and unambiguously determines all fk via τ . We find
that the space U and respectively VGτ is unique for each τ . Due to the correspon-
dence between semi-infinite subspaces, Baker functions and tau-functions (see for
instance [19] or Exercises 14.44 – 14.47 in [11]) we conclude that the asymptotical
function Gτ is completely characterized up to a scalar factor as a formal solution
to the nKdV-hierarchy near q = τ − z satisfying the string equation.

Let us consider now the tau-function function Gτ corresponding to the (non-
semisimple) τ = 0. Existence of the function and of the corresponding space VG0

follows from the results of [18] (or from the above argument which is a slight vari-
ation on the theme of [18] anyway). Note that the corresponding operator

(49) A = d/dλ− ~
−1/2(nλ)1/n − (n − 1)/2nλ

is homogeneous (of degree −1) with respect to the grading deg λ = 1, deg ~ =
2 +2/n. This implies that the basis Ak(v), k = 0, ..., n− 1, in VG0 and respectively
the tau-function G0 are homogeneous in the appropriate sense. More explicitly,
lnG0 has the form

∑

~g−1F (g)(t), where F (g) are formal series of ti,k, i = 1, ..., n−
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1, k = 0, 1, 2, ... homogeneous of degree (1−g)(2+2/n) with respect to the grading
deg ti,k = (i+ 1)/n − k. This follows from the famous fact [19] that the flows of

the KP-hierarchy (which in our notation are represented by the derivations
√

~∂ti,k)

correspond in the grassmannian description to the multiplication by ζkn+n−i (and

hence (kn+ n− i) deg ζ = deg
√

~ − deg ti,k).
By definition, the asymptotical function G0 is “the tau-function of the Wn-gravity

theory” and, according to a conjecture of E. Witten [21], coincides with the total
descendent potential in the intersection theory (developed in [16]) on moduli spaces
of complex curves equipped with n-spin structures.

Consider now the formal homogeneous function ~ lnG0 as a power series in
~, t1, t2, ... with coefficients (which are therefore also homogeneous) depending on
t0 = (ti,0, ..., tn−1,0) . Since all the components of t0 have positive degrees, we con-
clude that each coefficient is polynomial in t0. Thus translations G0(t0 + τ, t1, t2, ...)
are well-defined and yield asymptotical functions satisfying the same conditions —
the nKdV-hierarchy and the string equation — as Gτ (t0, t1, t2, ...). The previous
uniqueness argument now implies Gτ (t) = G0(t + τ ) for all τ ∈ H . We have proved
the following result.

Theorem 5. The total descendent potential DAn−1 of the An−1-singularity co-
incides with the tau-function G0 introduced in the Wn-gravity theory.

Corollaries. (1) The total descendent potential DAn−1 of the An−1-singularity
(which is an asymptotical function of t0, t1, ... defined in a formal neighborhood of
(t0, 0, ...) with semisimple t0) extends across the caustic to arbitrary t0 ∈ H.

(2) The ancestor potentials Aτ = ŜτDAn−1 are well-defined for all τ ∈ H.
(3) The descendent potential DAn−1 = A0 and is tame.

(4) The Gromov – Witten potentials F(g) of the An−1-singularity (defined by
∑

~g−1F(g)(τ ) := lnAτ |t=0) are polynomial functions of τ ∈ H of weighted degree
(1 − g)(2 + 2/n) and therefore vanish for g > 1.

Appendix: Dispersionless limit

In the “dispersionless limit” ~ → 0 Theorem 1 implies that the genus-0 descen-
dent potential F (0) of Saito’s Frobenius structure on the miniversal deformation
of the An−1-singularity satisfies the dispersionless nKdV-hierarchy. We give here
a more direct proof of this fact using only the general theory of nKdV-hierarchies
and the results of Section 5. No doubt, this relationship between the dispersionless
nKdV hierarchies and An−1-singularities has been known for quite a while (see for
instance, [3, 14]), but we are not so sure about the following lemmas.

Let us recall from Section 3 that an asymptotical function Φ(x) = e
P

~
g−1φ(g)(x)

is said to satisfy the KP-hierarchy if

(50) Resζ=∞ dζ e2
P

j>0 ζjyj/
√

~ e−
P

j>0
ζ−j

j

√
~∂yj Φ(x + y)Φ(x − y) = 0.

Lemma 1. A function φ(0) satisfies the dispersionless limit of the KP-hierarchy
(nKdV-hierarchy) if and only if for each q the function exp[(d2

qφ
(0))(x)/2~], where

d2
qφ is the quadratic form of the 2nd differential of φ(0) at q, satisfies the KP-

hierarchy (the nKdV-hierarchy respectively).
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Proof. In order to pass to the limit ~ → 0, divide (50) by Φ2(x), put Y := y/
√

~

(and respectively
√

~∂y = ∂Y ) and expand

Φ(x +
√

~Y )

Φ(x)

Φ(x−
√

~Y )

Φ(x)
= eW(Y )+O(~),

where W (Y ) is the quadratic form d2
xφ

(0). Taking ~ = 0 results in a closed system of
equations for φ(0) which, by definition, is the dispersionless KP-hierarchy. Namely,
φ(x) satisfies the differential equations of the dispersionless hierarchy if for all x

the quadratic differential W = d2
xφ satisfies the system of algebraic equations

(51) Resζ=∞ dζ e2
P

j>0 ζjYj e−
P

j>0
ζ−j

j ∂Yj eW(Y ) = 0.

It is an observation of T. Milanov that the condition (51) for a quadratic form W
is equivalent to (50) for the corresponding Gaussian distribution Φ(x) = eW(x)/2~.
(One may in fact take ~ = 1 everywhere.)

Solutions of the (dispersionless) nKdV-hierarchy are those solutions of the (dis-
persionless) KP-hierarchy which do not depend on xi with i divisible by n. �

Remark. The form (50) of the KP-hierarchy is stronger than the usual system
of dynamical equations for the function u := (lnΦ)xx (here x = x1). For example,
the KdV-hierarchy in the form uxi = (Li(u, ux, uxx, ...))x is automatically satisfied
by any Φ = expW/2 since u is constant. We will see in a moment that this is not
at all the case for the algebraic system (51).

Which Gaussian distributions e
P

ij Wijxixj/2 (we put ~ = 1) satisfy the KP- and
nKdV-hierarchies? Consider the corresponding Baker function

bW (x) := e
P

ζjxje−
P

ζ−j∂xj
/jeW(x)/2 = bW (0)e

P

i xi(ζ
i−P

j Wijζ−j/j),

where bW (0) = exp(
∑

ij Wijζ
−i−j/2ij). Let VW denote the subspace in C((ζ−1))

spanned by the Taylor coefficients of the normalized Baker function bW (x)/bW (0).

Lemma 2. A Gaussian distribution expW/2 satisfies the KP-hierarchy (nKdV-
hierarchy) if and only if the corresponding normalized Baker function generates a
semi-infinite subspace VW which is a subring (respectively a C[ζn]-subalgebra) in
C((ζ−1)).

Proof. Indeed, the subspace VW being semi-infinite (which is necessary and
sufficient for a function to satisfy the KP-hierarchy) means that the Laurent series

1, ζ −
∑

W1jζ
−j/j, ζ2 −

∑

W2jζ
−j/j, ...

form a basis in VW . Taylor coefficients of the normalized Baker function are arbi-
trary products of these series which therefore have to be in VW .

Solutions to nKdV-hierarchy correspond to semi-infinite subspaces invariantwith
respect to multiplication by ζn. �.

Note that
(i) the above basis in the space VW is canonical in the sense that it is obtained

by lifting the basis 1, ζ, ζ2, ... from C[ζ] to VW along ζ−1C[[ζ−1]],
(ii) the Baker function of a space V from the principal cell of the semi-infinite

grassmannian is normalized iff the 1st element in the canonical basis is 1,
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(iii) the rest of the basis determines the coefficients Wij unambiguously, which
establishes a 1–1 correspondence between Gaussian distributions satisfying the KP-
hierarchy and semi-infinite subrings V ⊂ C((ζ−1)) from the principal cell of the
grassmannian,

(iv) VW = C[x], where x := ζ −∑W1jζ
−j/j, and W1j, j = 1, 2, ..., are arbitrary

numbers.

Corollary. Gaussian distributions satisfying the nKdV-hierarchy are in 1–1
correspondence with equations of the form

(52) xn + τ1x
n−2 + ...+ τn−1 = λ,

parameterized by τ = (τ1, ..., τn−1).

Proof. When VW = C[x] corresponds to a solution of the nKdV-hierarchy, we
must have ζn ∈ C[x] and therefore ζn = xn+τ0x

n−1+...+τn−1 for some τ0, ..., τn−1.
On the other hand, W1j must vanish for all j divisible by n. Since all n solutions
to the equation have the form x(ǫζ) where ǫ runs through the nth roots of 1, we
conclude that the sum −τ0 of all the n solutions vanishes.

Vice versa, solving the equation for x by perturbation theory near x|τ=0 = λ1/n

yields a series x = ζ +
∑

j≥0wj(τ )ζ
−j in ζ = λ1/n. Since the sum of all the n

solutions x(ǫζ) equals 0, we conclude that wj = 0 for all j divisible by n. The
semi-infinite subspace C[x(ζ)] ⊂ C((ζ)) is invariant under the multiplication by
ζn = λ due to (52). �

The genus-0 descendent potential F (0) of a Frobenius manifold (constructed in
[3]) can be described (due to Proposition 5.3 and Corollary 5.4 in [5]) in terms of
the function W discussed in Section 7:

(53) Wτ (q,q) =

∫ τ

0

∑

([Stq]0, ∂i • [Stq]0)dti

Namely, let us regardW/2 as a family of functions in τ ∈ H depending (quadraticly)
on the parameter q ∈ H+ = H [z]. Then F (0) is the critical value function for this
family. More precisely, the critical points τ are given by the equations ([Sτq]0, ∂i •
[Sτq]0) = 0 for all i. This is equivalent to [Sτq]0 • [Sτq]0 = 0 and is satisfied
whenever [Sτq]0 = 0. Recall that [Sq]0 = q0 + S1q1 + S2q2 + ... where S =
1 + S1z

−1 + ..., q = q0 + q1z + .... When q(z) = t0 − z, we have [Sτq]0 = t0 − τ
and find a critical point τ = t0. In general the equation [Sτq]0 = 0 has a unique
solution τ (t) defined by perturbation theory as a formal function of t = q + z
(dilaton shift). Then F (0)(t) = Wτ(t)/2.

In fact the quadratic differential d2
tF (0) coincides with the quadratic form Wτ(t).

In particular, it depends only on the critical point τ (rather than the parameter
value t). 12 We are going to show that in the case ofAn−1-singularities the Gaussian

12Moreover, according to [2, 8], Frobenius structures equipped with the genus-0 descendent
potentials have the following axiomatic characterization. Let L denote the (germ at −z of a) La-

grangian section in T ∗H+ defined as the graph of dF(0) (subject to the dilaton shift). Identifying

T ∗H+ with (H, Ω) by means of the standard polarization H = H+ ⊕H−, we may regard L as a
Lagrangian submanifold in H = H((z−1)). Then L is a cone with the vertex at the origin and

such that L is tangent to its tangent spaces L along zL. In particular, L is swept by the spaces
zL varying in dimL/zL = dimH-parametric family, and the tangent spaces to L along each zL

are constant and coincide with L.
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distributions eWτ /2 defined by (53) satisfy the nKdV-hierarchy — of course, modulo
the rescaling (14): qi,k = i(i+ n)...(i+ kn)xi+kn.

Lemma 3. The normalized Baker function of the Gaussian distribution eWτ /2

corresponding to (53) is equal to

(54) exp



Ω



Sτ (z)q(z),
∑

k≥0

I(−1−k)
α (λ, τ )(−z)−1−k







 .

Proof. By definition, the Baker function bWτ is e−Wτ /2~ΓαeWτ /2~ which after
normalization and at ~ = 1 becomes

(55) e−
P

k≥0(I(−1−k)
α (λ,0),qk)eWτ (

P

k≥0(−z)kI(k)
α (λ,0),q).

Theorem 2 from Section 5 says that

Sτ (z)
∑

(−z)kI(k)
α (λ, 0) =

∑

(−z)kI(k)
α (λ, τ ).

On the other hand, dI
(m−1)
α = −a∧ I(m)

α and dS = a∧S/z where a =
∑

(∂i•)dti =
at. In particular d[Sq]m = a∧ [Sq]m+1. Therefore computing the second exponent
in (55) from (53) and integrating by parts we find

∫ τ

0

(I(0)
α (λ, t), a(t) ∧ [Stq]0) =

∫ τ

0

(a ∧ I(0)
α , [Sq]0) = −

∫ τ

0

(dI−1
α , [Sq]0) =

−(I−1
α , [Sq]0)|τ0 +

∫ τ

0

(I−1
α , a∧ [Sq]1) = ... = −

∑

k≥0

(I(−1−k)
α , [Sq]k)|τ0 .

(The integral term eventually disappears because q is a polynomial in z.) The value
at the lower limit t = 0 cancels with the first exponent in (55), and the value at
t = τ coincides with (54). �

Corollary. The vector space VWτ corresponding to the normalized Baker func-

tion (54) is spanned by 1 and by the components (I
(−1−k)
α (λ, τ ), [φi]) of the period

maps I
(m)
α with m < 0.

The components of I
(−1)
α are periods of the differential 0-forms x, x2/2, ...,

xn−1/(n− 1) on the level sets

(56)
xn

n
+ τ1x

n−2 + ...+ τn−1 = λ

in the miniversal deformation of the An−1-singularity. In the case when α is a one-
point cycle (i.e. x), the C[λ]-module generated by 1, x, x2, ..., xn−1 is a subring in

C((λ1/n)) due to (56). It remains to show therefore that this subring coincides with

VWτ , i.e. that it contains all components of I
(m)
α for m < −1. Thus the following

lemma completes the proof.

Lemma 4. The period maps I
(m)
α satisfy the equation

(µ+ 1/2−m)I(m−1)
α = (λ −E•)I(m)

α

where E =
∑

i(deg τi)τi∂τi is the Euler field and µ+1/2 is the spectral matrix, i.e.
the diagonal matrix with entries 1/n, 2/n, ..., n− 1/n.
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Proof. In view of the equations ∂iI = (∂i•)∂n−1I and ∂n−1I = −∂λI satisfied by

all I
(k)
α , the lemma is a reformulation of the homogeneity condition (λ∂λ +E)I

(k)
α =

(µ− 1/2− k)I
(k)
α discussed in Section 5. �

Remark. According to a uniqueness result of Dubrovin and Zhang [4], the total
descendent potential of a semisimple Frobenius manifold is completely character-
ized as an asymptotical function exp ~g−1F (g) which satisfies (i) the Virasoro con-
straints, (ii) the so-called 3g − 2-jet condition, and (iii) whose genus-0 part F (0)

coincides with the genus-0 descendent potential of the Frobenius manifold (con-
structed in [3]). According to [5], the function DAn−1 satisfies (i),(ii),(iii) and thus
would coincide with the tau-function G0 of the Wn-gravity theory (see Section 10),
if G0 were shown to satisfy (i),(ii),(iii) as well. In fact, the Virasoro constraints
for G0 are well-known (see for instance [18]) and follow from the invariance of the

corresponding semi-infinite subspace V0 ⊂ C√
h((λ−1/n)) under the operators λmA

(where A is given by (49)). It is plausible (although at the moment we don’t know a
direct proof of this) that the 3g−2-jet property, which is equivalent to the ancestor

potentials Aτ := ŜτG0 being tame for all τ ∈ H , can be derived from a Lax-type
description of the nKdV-hierarchy. Thus, since the results of this Appendix imply
(iii), this would give another proof of Theorems 1 and 5. Also, Dubrovin and Zhang
have informed the author that (yet another?) proof of these results can be obtained
on the basis of their axiomatic theory of integrable hierarchies [4].
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