Math 110. Fall-2011 Final Exam:

1. Express $\operatorname{det}(\operatorname{adj}(A))$ in terms of $\operatorname{det} A$, where A is an $n \times n$-matrix.
2. Solve system of linear equations:

$$
\begin{aligned}
x_{1}-2 x_{2}+3 x_{3}-4 x_{4} & =4 \\
x_{2}-x_{3}+x_{4} & =-3 \\
x_{1}+3 x_{2}-3 x_{4} & =1 \\
-7 x_{2}+3 x_{3}+x_{4} & =-3
\end{aligned}
$$

3. Use Sylvester's rule to find inertia indices of quadratic form:

$$
x_{1} x_{2}-x_{2}^{2}+x_{3}^{2}+2 x_{2} x_{4}+x_{4}^{2} .
$$

4. Transform quadratic form $x_{1} x_{2}+x_{3} x_{4}$ to the normal form by an orthogonal transformation.
5. Find the Jordan normal form of matrix:

$$
\left[\begin{array}{rrr}
0 & 3 & 3 \\
-1 & 8 & 6 \\
2 & -14 & -10
\end{array}\right] .
$$

6. Can a non-zero anti-symmetric matrix be nilpotent? If "yes" give an example, if "no" provide a proof.
7. Classify all linear operators in \mathbb{R}^{2} up to linear changes of coordinates.
8. Find all those values of a_{1}, \ldots, a_{n} for which the following matrix is nilpotent:

$$
\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
. & \cdot & . & . & . \\
0 & \cdots & 0 & 0 & 1 \\
-a_{n} & -a_{n-1} & \ldots & -a_{2} & -a_{1}
\end{array}\right]
$$

9. Find out if the following quadratic hypersurfaces in \mathbb{C}^{4} can be transformed into each other by linear inhomogeneous changes of coordinates:

$$
z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{4}=1 \quad \text { and } \quad z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}=z_{1}+z_{2}+z_{3}+z_{4}
$$

10. Prove that any orthogonal transformation in \mathbb{R}^{4} with the determinant equal to -1 has an invariant 3 -dimensional subspace.
11. For a linear map $A: \mathbb{K}^{n} \rightarrow \mathbb{K}^{n}$, prove that if the null-space of the cofactor matrix $\operatorname{adj}(A)$ is non-zero, then it contains the range of A.
12. Let $Q(\mathbf{x}):=\sum_{i, j=1}^{n} q_{i j} x_{i} x_{j}$ be a quadratic form with integer coefficients $q_{i j}=q_{j i}$. Prove that $\operatorname{det}\left[q_{i j}\right]$ of the coefficient matrix does not change under integer changes of variables, i.e. linear changes $\mathbf{x}=C \mathbf{x}^{\prime}$ where C is an integer square matrix invertible over \mathbb{Z}.
13. Prove that $\operatorname{rk}(A+B) \leq \operatorname{rk} A+\operatorname{rk} B$ for any $m \times n$-matrices A and B.
14. Given three 3-dimensional linear subspaces $\mathcal{U}, \mathcal{V}, \mathcal{W}$, such that $\mathcal{U} \cap \mathcal{V}$ and $\mathcal{V} \cap \mathcal{W}$ have dimension 2 each. Prove that $\operatorname{dim}(\mathcal{U} \cap \mathcal{V} \cap \mathcal{W})>0$.
15. In \mathbb{R}^{6}, find a subspace of maximal dimension on which the quadratic form $x_{1} x_{2}+x_{3} x_{4}+x_{5} x_{6}$ is positive definite.
16. Find an orthonormal basis of eigenvectors of the operator U in the standard Hermitian space \mathbb{C}^{5} given by the permutation of the coordinates: $\left(z_{1}, z_{2}, z_{3}, z_{4}, z_{5}\right) \mapsto\left(z_{3}, z_{4}, z_{5}, z_{1}, z_{2}\right)$.
17. State Courant-Fischer's minimax principle about eigenvalues $\lambda_{1} \geq$ $\cdots \geq \lambda_{n}$ of a quadratic form S in the standard Euclidean space \mathbb{R}^{n}, and deduce from it that the eigenvalues do not decrease when a positive definite quadratic form is added to S.
18. Find the Jordan canonical form of e^{N} where N is a regular nilpotent operator on \mathbb{C}^{n}.
19. Prove that for $n>1$, a regular nilpotent operator $N: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ does not have a cubic root (i.e. an operator M such that $M^{3}=N$).
