Math 113. Sample Final Exam

Let F be a finite field of order $49, R$ be the ring $\mathbf{Z} / \mathbf{1 4 4 Z}$ of residues modulo 144.

1. Show that the multiplicative groups F^{\times}and R^{\times}have the same order N and find this N.
2. Classify all abelian groups of order N up to isomorphism. Which of these groups are isomorphic to F^{\times}?
3. Prove that the ring R is isomorphic to the direct product of the rings $\mathrm{Z} / 9 \mathrm{Z}$ and $\mathrm{Z} / 16 \mathrm{Z}$.
4. Use $\mathbf{3}$ in order to find the place of R^{\times}in your classification.
5. Construct explicitly a field F of order 49 and point out a generator of the group F^{\times}. How many choices of such a generator are available in the group F^{\times}?

Find all those n for which the permutation group S_{n} contains:
6. a subgroup of order 60 ;
7. a cyclic subgroup of order 60 .
8. For any field F, find the greatest common divisor in $F[x]$ of the polynomials $x^{m}-1$ and $x^{n}-1$.
9. Trisect the angle $\pi / 7$ using only straightedge and compass.
10. To commemorate two centuries of Gauss' Disquisitiones Arithmeticae the Institute of Mathematical History is selling necklaces priced $\$ 62.50$ each and consisting of 17 identically shaped symmetrical black or white beads moving freely on a circular band. Find the price the Institute of Historical Mathematics will have to pay for a complete collection of such necklaces.

