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When we talked about rotations of the circle, we saw that the addition of angles
was done “modulo 360.” That is to say, if the result of addition of two angles is
greater than 360 degrees, we subtract from it 360 to bring it into the range from 0
to 360. For example, rotation by 450 degrees is the same as rotation by 90 degrees,
because 450−360= 90.

We also encounter this arithmetic when we use the clock. If we start working at
10 o’clock in the morning and work for 8 hours, when do we finish? Well, 10+8= 18,
so a natural thing to say would be: “We finish at 18 o’clock.” This would be perfectly
fine to say in France where they record hours as numbers from 0 to 24. But in the
U.S. we say: “We finish at 6 pm.” How do we get 6 out of 18? We subtract 12 from
it: 18−12= 6.

So we use the same idea with hours as we do with angles. In the first case, we
do addition “modulo 360.” In the second case, we do addition “modulo 12.”

Likewise, we can do addition modulo any natural number N. Consider the set
of all consecutive whole numbers between 0 and N −1,

{0,1,2, . . . , N −2, N −1}.

If N = 12, this is the set of possible hours. In general, the role of 12 is played by
number N, so that it’s not 12 that takes us back to 0, but N.

We define addition on the set of these numbers in the same way as for the hours.
Given any two numbers from this set, we add them up, and if the result is greater
than N, we subtract N from it to get a number from the same set. The operation
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of addition modulo N makes this set into a group. Recall that a group is a set
with an operation that assigns an element of the set to any pair of elements and
satisfies certain properties (identity element, inverse elements, and associativity).
In our case these properties are as follows. The identity element is the number 0:
adding it to any other number does not change it. Indeed, we have n+0 = n for
any number n from our set. And for any n, its “additive inverse” is N −n, because
n+ (N − n) = N, which is the same as 0 according to our rules. (The associativity
property also holds.)

For example, let’s take N = 3. Then we have the set {0,1,2} and addition modulo
3. For example, we have

2+2= 1 modulo 3

in this system, because 2+2 = 4, but since 4 = 3+1, the number 4 is equal to 1
modulo 3.

So if someone says to you: “2 plus 2 equals 4” to indicate a well-established fact,
you can now say (with a condescending smile if you like): “Well, actually, that’s not
always true.” And if they ask you to explain what you mean, you can tell them, “If
you do addition modulo 3, then 2 plus 2 is equal to 1.”

Given any two numbers from the above set, we can also multiply them. The
result may not be between 0 and N −1, but there will be a unique number in this
range which will differ from the result of multiplication by something divisible
by N. However, in general, the set {1,2, ..., N − 1} is not a group with respect to
multiplication. We do have the identity element: number 1. But not every element
has the multiplicative inverse modulo N. This happens if and only if N is a prime
number, that is, a number that is not divisible by any other natural number other
than 1 and itself.

For each prime number p, the set of p elements: {0,1,2, ..., p−1} is a numerical
system with operations of addition, subtraction, multiplication, and division mod-
ulo p, which obey the same rules as the corresponding operations on the rational
and real numbers.

There is also something special about this numerical system. If you take any
element of the finite field {0,1,2, ..., p−1} and raise it to pth power – in the sense of
the arithmetic modulo p – you will get back the same number! In other words,

ap = a modulo p.
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This formula was proved by Pierre Fermat, the mathematician who came up with
Fermat’s Last Theorem. Unlike the proof of the latter, though, the proof of the
above formula is fairly simple. The idea is to view it from the point of view of group
theory. Consider the non-zero elements of the finite field: 1,2, ..., p−1. They form a
group with respect to multiplication. Indeed, the identity element with respect to
multiplication is the number 1: if we multiply any element a by 1, we get back a.
And each element has an inverse: for any a in {1,2, ..., p−1}, there is an element b
such that a ·b = 1 modulo p.

This group has p−1 elements. There is a general fact that holds for any finite
group G with M elements: the Mth power of each element a of this group is equal
to the identity element (which we will denote by 1):

aM = 1.

To prove this, consider the following elements in the group G: 1,a,a2, ... Because the
group G is finite, these elements cannot all be distinct. There have to be repetitions.
Let k be the smallest natural number such that ak is equal to 1 or a j for some
j = 1, ...,k−1. Suppose that the latter is the case. Let a−1 denote the inverse of a,
so that a ·a−1 = 1 and take its jth power (a−1) j. Multiply both sides of the equation
ak = a j with (a−1) j on the right. Each time we encounter a · a−1 we replace it by
1. Multiplying by 1 does not change the result, so we can always remove 1 from
the product. We see then that each a−1 will cancel one of the a’s. Hence, the left-
hand side will be equal to ak− j, and the right-hand side will be equal to 1. We
obtain that ak− j = 1. But k− j is smaller than k, and this contradicts our choice of
k. Therefore, the first repetition on our list will necessarily have the form ak = 1,
so that the elements 1,a,a2, ...,ak−1 are all distinct. This means that they form a
group of k elements: {1,a,a2, ...,ak−1}. It is a subgroup of our original group G of
M elements, in the sense that it is a subset of elements of G such that the result of
multiplication of any two elements of this subset is again an element of the subset,
this subset contains the identity element of G, and this subset contains the inverse
of each of its elements.

Now, it is known that the number of elements of any subgroup always divides
the number of elements of the group. This statement is called the Lagrange theo-
rem. I’ll leave it for you to prove (or you may Google it).
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Applying the Lagrange theorem to the subgroup {1,a,a2, ...,ak−1}, which has k
elements, we find that k must divide M, the number of elements of the group G.
Thus, M = kl for some natural number l. But since ak = 1, we obtain that

aM = (ak) · (ak) · ... · (ak)= 1 ·1 · ... ·1= 1,

which is what we wanted to prove.
Let’s go back to the group {1,2, ..., p−1} with respect to multiplication. It has

p−1 elements. This is our group G, so our M is equal to p−1. Applying the general
result in this case, we find that ap−1 = 1 modulo p for all a in {1,2, ..., p−1}. But
then

ap = a ·ap−1 = a ·1= a modulo p.

It is easy to see that the last formula actually holds for all integers. This is the
statement of Fermat’s little theorem. To distinguish this result from Fermat’s Last
Theorem (sometimes also referred as Fermat’s Great Theorem), it is called Fermat’s
little theorem.

For example, set p = 5. Then our finite field is {0,1,2,3,4}. Let’s raise each of
them to the 5th power. Surely, 0 to any power is 0, and 1 to any power is 1, so no
surprises here. Next, let’s raise 2 to the 5th power: we then get 32. But 32= 2+5·6,
so modulo 5 this is 2 – we get back 2, as promised. Let’s take the 5th power of 3: we
get 243, but this is 3+5 ·48, so it is 3 modulo 5. Again, we get back the number we
started with. And finally, let’s try the same with 4: its 5th power is 1024, which is 4
modulo 5. Bingo! I encourage you to check that a3 = a modulo 3, and a7 = a modulo
7 (for larger primes you might need a calculator to verify Fermat’s little theorem).

Up to now, we have considered the arithmetic modulo a prime number p. However,
it turns out that there is a statement analogous to Fermat’s little theorem in the
arithmetic modulo any natural number N. To explain what it is, I need to recall
the Euler function φ(N) equal to the number of natural numbers between 1 and
N−1 which are relatively prime with N; that is, do not have common divisors with
N (other than 1). For instance, if N is a prime, then all numbers between 1 and
N −1 are relatively prime to n, and so φ(N)= N −1.

Now, the analogue of the formula ap−1 = 1 modulo p that we discussed above is
the formula

aφ(N) = 1 modulo N.
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It holds for any natural number N and any natural number a that is relatively
prime to N. It is proved in exactly the same way as before: We take the set of all
natural numbers between 1 and N −1 that are relatively prime to n. There are
φ(n) of them. It is easy to see that they form a group with respect to the operation
of multiplication. Hence, by the Lagrange theorem, for any element of this group,
its φ(N)th power is equal to the identity element.

Consider, for example, the case that N is the product of two prime numbers.
That is, N = pq, where p and q are two distinct prime numbers. In this case, the
numbers that are not relatively prime to N are either divisible by p or by q. The
former have the form pi, where i = 1, . . . , q−1 (there are q−1 of those), and the
latter have the form q j, where j = 1, . . . , p−1 (there are p−1 of those). Hence we
find that

φ(N)= (N −1)− (q−1)− (p−1)= (p−1)(q−1).

Therefore we have
a(p−1)(q−1) = 1 modulo pq

for any number a that is not divisible by p and q. But in fact, it is easy to see that
the formula

a(p−1)(q−1)+1 = a modulo pq

is true for any natural number a.

This equation is the basis of one of the most widely used encryption algorithms,
called RSA algorithm (after Ron Rivest, Adi Shamir, and Leonard Adleman, who
described it in 1977). The idea is that we pick two primes p and q (there are various
algorithms for generating them) and let N be the product pq. Number N is made
public, but the primes p and q are not. Next, we pick a number r that is relatively
prime to (p−1)(q−1). This number is also made public.

The encryption process converts any number a (such as a credit card number)
to ar modulo N:

a 7→ b = ar modulo N.

It turns put that there is an efficient way to reconstruct a from ar. Namely, we
find a number s between 1 and (p−1)(q−1) such that

rs = 1 modulo (p−1)(q−1).



6

In other words,
rs = 1+m(p−1)(q−1)

for some natural number m. Then

ars modulo N = a1+m(p−1)(q−1) modulo N

= a ·am(p−1)(q−1) modulo N

= a modulo N

because a(p−1)(q−1) = 1 modulo N as we have seen above.
Therefore, given b = ar, we can recover the original number a as follows:

b 7→ bs modulo N.

Let’s summarize: we make the numbers N and r public, but keep s secret. The
encryption is given by the formula

a 7→ b = ar modulo N.

Anyone can do it because r and N are publicly available.
The decryption is given by the formula

b 7→ bs modulo N.

Applied to ar, it gives us back the original number a. But only those who know s
can do this.

The reason why this is a good encryption scheme is that in order to find s, which
enables one to reconstruct the numbers being encoded, we must know the value of
(p−1)(q−1). But for this we need to know what p and q are, which are the two
prime divisors of n. Those are kept secret. For N sufficiently large, using known
methods of prime factorization, it may take many months, even on a network of
powerful computers, to find p and q. The RSA algorithm has many uses, and it is
often used as one step in a multi-step encryption protocol.


