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PREFACE

These notes build upon a course I taught at the University of Maryland during

the fall of 1983. My great thanks go to Martino Bardi, who took careful notes,

saved them all these years and recently mailed them to me. Faye Yeager typed up

his notes into a first draft of these lectures as they now appear. Scott Armstrong

read over the notes and suggested many improvements: thanks, Scott. Stephen

Moye of the American Math Society helped me a lot with AMSTeX versus LaTeX

issues. My thanks also to Atilla Yilmaz for spotting lots of typos and errors, which

I have corrected.

I have radically modified much of the notation (to be consistent with my other

writings), updated the references, added several new examples, and provided a proof

of the Pontryagin Maximum Principle. As this is a course for undergraduates, I have

dispensed in certain proofs with various measurability and continuity issues, and as

compensation have added various critiques as to the lack of total rigor.

This current version of the notes is not yet complete, but meets I think the

usual high standards for material posted on the internet. Please email me at

evans@math.berkeley.edu with any corrections or comments.
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CHAPTER 1: INTRODUCTION

1.1. The basic problem

1.2. Some examples

1.3. A geometric solution

1.4. Overview

1.1 THE BASIC PROBLEM.

DYNAMICS. We open our discussion by considering an ordinary differential

equation (ODE) having the form

(1.1)

{
ẋ(t) = f(x(t)) (t > 0)
x(0) = x0.

We are here given the initial point x0 ∈ R
n and the function f : Rn → R

n. The un-

known is the curve x : [0,∞) → R
n, which we interpret as the dynamical evolution

of the state of some “system”.

CONTROLLED DYNAMICS. We generalize a bit and suppose now that

f depends also upon some “control” parameters belonging to a set A ⊂ R
m; so that

f : Rn×A→ R
n. Then if we select some value a ∈ A and consider the corresponding

dynamics:
{

ẋ(t) = f(x(t), a) (t > 0)
x(0) = x0,

we obtain the evolution of our system when the parameter is constantly set to the

value a.

The next possibility is that we change the value of the parameter as the system

evolves. For instance, suppose we define the function α : [0,∞) → A this way:

α(t) =







a1 0 ≤ t ≤ t1
a2 t1 < t ≤ t2
a3 t2 < t ≤ t3 etc.

for times 0 < t1 < t2 < t3 . . . and parameter values a1, a2, a3, · · · ∈ A; and we then

solve the dynamical equation

(1.2)

{
ẋ(t) = f(x(t),α(t)) (t > 0)
x(0) = x0.

The picture illustrates the resulting evolution. The point is that the system may

behave quite differently as we change the control parameters.
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Controlled dynamics

More generally, we call a function α : [0,∞) → A a control. Corresponding to

each control, we consider the ODE

(ODE)

{
ẋ(t) = f(x(t),α(t)) (t > 0)
x(0) = x0,

and regard the trajectory x(·) as the corresponding response of the system.

NOTATION. (i) We will write

f(x, a) =






f1(x, a)
...

fn(x, a)






to display the components of f , and similarly put

x(t) =






x1(t)
...

xn(t)




 .

We will therefore write vectors as columns in these notes and use boldface for

vector-valued functions, the components of which have superscripts.

(ii) We also introduce

A = {α : [0,∞) → A | α(·) measurable}
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to denote the collection of all admissible controls, where

α(t) =






α1(t)
...

αm(t)




 .

Note very carefully that our solution x(·) of (ODE) depends uponα(·) and the initial

condition. Consequently our notation would be more precise, but more complicated,

if we were to write

x(·) = x(·,α(·), x0),
displaying the dependence of the response x(·) upon the control and the initial

value. �

PAYOFFS. Our overall task will be to determine what is the “best” control for

our system. For this we need to specify a specific payoff (or reward) criterion. Let

us define the payoff functional

(P) P [α(·)] :=
∫ T

0

r(x(t),α(t)) dt+ g(x(T )),

where x(·) solves (ODE) for the control α(·). Here r : Rn×A→ R and g : Rn → R

are given, and we call r the running payoff and g the terminal payoff. The terminal

time T > 0 is given as well.

THE BASIC PROBLEM. Our aim is to find a control α∗(·), which maximizes

the payoff. In other words, we want

P [α∗(·)] ≥ P [α(·)]

for all controls α(·) ∈ A. Such a control α∗(·) is called optimal.

This task presents us with these mathematical issues:

(i) Does an optimal control exist?

(ii) How can we characterize an optimal control mathematically?

(iii) How can we construct an optimal control?

These turn out to be sometimes subtle problems, as the following collection of

examples illustrates.

1.2 EXAMPLES

EXAMPLE 1: CONTROL OF PRODUCTION AND CONSUMPTION.

Suppose we own, say, a factory whose output we can control. Let us begin to

construct a mathematical model by setting

x(t) = amount of output produced at time t ≥ 0.
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We suppose that we consume some fraction of our output at each time, and likewise

can reinvest the remaining fraction. Let us denote

α(t) = fraction of output reinvested at time t ≥ 0.

This will be our control, and is subject to the obvious constraint that

0 ≤ α(t) ≤ 1 for each time t ≥ 0.

Given such a control, the corresponding dynamics are provided by the ODE
{
ẋ(t) = kα(t)x(t)
x(0) = x0.

the constant k > 0 modelling the growth rate of our reinvestment. Let us take as a

payoff functional

P [α(·)] =
∫ T

0

(1− α(t))x(t) dt.

The meaning is that we want to maximize our total consumption of the output, our

consumption at a given time t being (1−α(t))x(t). This model fits into our general

framework for n = m = 1, once we put

A = [0, 1], f(x, a) = kax, r(x, a) = (1− a)x, g ≡ 0.

0 Tt*

α* = 1

α* = 0

A bang-bang control

As we will see later in §4.4.2, an optimal control α∗(·) is given by

α∗(t) =

{
1 if 0 ≤ t ≤ t∗

0 if t∗ < t ≤ T

for an appropriate switching time 0 ≤ t∗ ≤ T . In other words, we should reinvest

all the output (and therefore consume nothing) up until time t∗, and afterwards, we

should consume everything (and therefore reinvest nothing). The switchover time

t∗ will have to be determined. We call α∗(·) a bang–bang control. �

EXAMPLE 2: REPRODUCTIVE STATEGIES IN SOCIAL INSECTS
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The next example is from Chapter 2 of the book Caste and Ecology in Social

Insects, by G. Oster and E. O. Wilson [O-W]. We attempt to model how social

insects, say a population of bees, determine the makeup of their society.

Let us write T for the length of the season, and introduce the variables

w(t) = number of workers at time t
q(t) = number of queens
α(t) = fraction of colony effort devoted to increasing work force

The control α is constrained by our requiring that

0 ≤ α(t) ≤ 1.

We continue to model by introducing dynamics for the numbers of workers and

the number of queens. The worker population evolves according to
{
ẇ(t) = −µw(t) + bs(t)α(t)w(t)

w(0) = w0.

Here µ is a given constant (a death rate), b is another constant, and s(t) is the

known rate at which each worker contributes to the bee economy.

We suppose also that the population of queens changes according to
{
q̇(t) = −νq(t) + c(1− α(t))s(t)w(t)

q(0) = q0,

for constants ν and c.

Our goal, or rather the bees’, is to maximize the number of queens at time T :

P [α(·)] = q(T ).

So in terms of our general notation, we have x(t) = (w(t), q(t))T and x0 = (w0, q0)T .

We are taking the running payoff to be r ≡ 0, and the terminal payoff g(w, q) = q.

The answer will again turn out to be a bang–bang control, as we will explain

later. �

EXAMPLE 3: A PENDULUM.

We look next at a hanging pendulum, for which

θ(t) = angle at time t.

If there is no external force, then we have the equation of motion
{
θ̈(t) + λθ̇(t) + ω2θ(t) = 0

θ(0) = θ1, θ̇(0) = θ2;

the solution of which is a damped oscillation, provided λ > 0.
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Now let α(·) denote an applied torque, subject to the physical constraint that

|α| ≤ 1.

Our dynamics now become
{
θ̈(t) + λθ̇(t) + ω2θ(t) = α(t)

θ(0) = θ1, θ̇(0) = θ2.

Define x1(t) = θ(t), x2(t) = θ̇(t), and x(t) = (x1(t), x2(t)). Then we can write the

evolution as the system

ẋ(t) =

(
ẋ1
ẋ2

)

=

(
θ̇

θ̈

)

=

(
x2

−λx2 − ω2x1 + α(t)

)

= f(x, α).

We introduce as well

P [α(·)] = −
∫ τ

0

1 dt = −τ,
for

τ = τ(α(·)) = first time that x(τ) = 0 (that is, θ(τ) = θ̇(τ) = 0.)

We want to maximize P [·], meaning that we want to minimize the time it takes to

bring the pendulum to rest.

Observe that this problem does not quite fall within the general framework

described in §1.1, since the terminal time is not fixed, but rather depends upon the

control. This is called a fixed endpoint, free time problem. �

EXAMPLE 4: A MOON LANDER

This model asks us to bring a spacecraft to a soft landing on the lunar surface,

using the least amount of fuel.

We introduce the notation

h(t) = height at time t

v(t) = velocity = ḣ(t)
m(t) = mass of spacecraft (changing as fuel is burned)
α(t) = thrust at time t

We assume that

0 ≤ α(t) ≤ 1,

and Newton’s law tells us that

mḧ = −gm+ α,

the right hand side being the difference of the gravitational force and the thrust of

the rocket. This system is modeled by the ODE






v̇(t) = −g + α(t)
m(t)

ḣ(t) = v(t)
ṁ(t) = −kα(t).
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height = h(t)

moonÕs surface

A spacecraft landing on the moon

We summarize these equations in the form

ẋ(t) = f(x(t), α(t))

for x(t) = (v(t), h(t), m(t)).

We want to minimize the amount of fuel used up, that is, to maximize the

amount remaining once we have landed. Thus

P [α(·)] = m(τ),

where

τ denotes the first time that h(τ) = v(τ) = 0.

This is a variable endpoint problem, since the final time is not given in advance.

We have also the extra constraints

h(t) ≥ 0, m(t) ≥ 0.

�

EXAMPLE 5: ROCKET RAILROAD CAR.

Imagine a railroad car powered by rocket engines on each side. We introduce

the variables
q(t) = position at time t
v(t) = q̇(t) = velocity at time t
α(t) = thrust from rockets,

where

−1 ≤ α(t) ≤ 1,

9



rocket engines

A rocket car on a train track

the sign depending upon which engine is firing.

We want to figure out how to fire the rockets, so as to arrive at the origin 0 with

zero velocity in a minimum amount of time. Assuming the car has mass m = 1, the

law of motion is

q̈(t) = α(t).

We rewrite by setting x(t) = (q(t), v(t))T . Then






ẋ(t) =

(
0 1

0 0

)

x(t) +
(
0
1

)
α(t)

x(0) = x0 = (q0, v0)
T .

Since our goal is to steer to the origin (0, 0) in minimum time, we take

P [α(·)] = −
∫ τ

0

1 dt = −τ,

for

τ = first time that q(τ) = v(τ) = 0.

1.3 A GEOMETRIC SOLUTION.

To illustrate how actually to solve a control problem, in this last section we

introduce some ad hoc calculus and geometry methods for the rocket car problem,

Example 5 above.

First of all, let us guess that to find an optimal solution we will need only to

consider the cases a = 1 or a = −1. In other words, we will focus our attention only

upon those controls for which at each moment of time either the left or the right

rocket engine is fired at full power. (We will later see in Chapter 2 some theoretical

justification for looking only at such controls.)

CASE 1: Suppose first that α ≡ 1 for some time interval, during which
{
q̇ = v
v̇ = 1.

Then

vv̇ = q̇,
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and so
1

2
(v2)̇ = q̇.

Let t0 belong to the time interval where α ≡ 1 and integrate from t0 to t:

v2(t)

2
− v2(t0)

2
= q(t)− q(t0).

Consequently

(1.1) v2(t) = 2q(t) + (v2(t0)− 2q(t0))
︸ ︷︷ ︸

b

.

In other words, so long as the control is set for α ≡ 1, the trajectory stays on the

curve v2 = 2q + b for some constant b.

α =1

q-axis

v-axis

curves v2=2q + b

CASE 2: Suppose now α ≡ −1 on some time interval. Then as above
{
q̇ = v

v̇ = −1,

and hence
1

2
(v2)̇ = −q̇.

Let t1 belong to an interval where α ≡ −1 and integrate:

(1.2) v2(t) = −2q(t) + (2q(t1)− v2(t1))
︸ ︷︷ ︸

c

.

Consequently, as long as the control is set for α ≡ −1, the trajectory stays on the

curve v2 = −2q + c for some constant c.
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α =-1

q-axis

v-axis

curves v2=-2q + c

GEOMETRIC INTERPRETATION. Formula (1.1) says if α ≡ 1, then (q(t), v(t))

lies on a parabola of the form

v2 = 2q + b.

Similarly, (1.2) says if α ≡ −1, then (q(t), v(t)) lies on a parabola

v2 = −2q + c.

Now we can design an optimal control α∗(·), which causes the trajectory to jump

between the families of right– and left–pointing parabolas, as drawn. Say we start

at the black dot, and wish to steer to the origin. This we accomplish by first setting

the control to the value α = −1, causing us to move down along the second family of

parabolas. We then switch to the control α = 1, and thereupon move to a parabola

from the first family, along which we move up and to the left, ending up at the

origin. See the picture.

1.4 OVERVIEW.

Here are the topics we will cover in this course:

• Chapter 2: Controllability, bang-bang principle.

In this chapter, we introduce the simplest class of dynamics, those linear in both

the state x(·) and the control α(·), and derive algebraic conditions ensuring that

the system can be steered into a given terminal state. We introduce as well some

abstract theorems from functional analysis and employ them to prove the existence

of so-called “bang-bang” optimal controls.

• Chapter 3: Time-optimal control.
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How to get to the origin in minimal time

In Chapter 3 we continue to study linear control problems, and turn our atten-

tion to finding optimal controls that steer our system into a given state as quickly

as possible. We introduce a maximization principle useful for characterizing an

optimal control, and will later recognize this as a first instance of the Pontryagin

Maximum Principle.

• Chapter 4: Pontryagin Maximum Principle.

Chapter 4’s discussion of the Pontryagin Maximum Principle and its variants

is at the heart of these notes. We postpone proof of this important insight to the

Appendix, preferring instead to illustrate its usefulness with many examples with

nonlinear dynamics.

• Chapter 5: Dynamic programming.

Dynamic programming provides an alternative approach to designing optimal

controls, assuming we can solve a nonlinear partial differential equation, called

the Hamilton-Jacobi-Bellman equation. This chapter explains the basic theory,

works out some examples, and discusses connections with the Pontryagin Maximum

Principle.

• Chapter 6: Game theory.

We discuss briefly two-person, zero-sum differential games and how dynamic

programming and maximum principle methods apply.

• Chapter 7: Introduction to stochastic control theory.

This chapter provides a very brief introduction to the control of stochastic dif-

ferential equations by dynamic programming techniques. The Itô stochastic calculus

tells us how the random effects modify the corresponding Hamilton-Jacobi-Bellman

equation.
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• Appendix: Proof of the Pontryagin Maximum Principle.

We provide here the proof of this important assertion, discussing clearly the

key ideas.

14



CHAPTER 2: CONTROLLABILITY, BANG-BANG PRINCIPLE

2.1 Definitions

2.2 Quick review of linear ODE

2.3 Controllability of linear equations

2.4 Observability

2.5 Bang-bang principle

2.6 References

2.1 DEFINITIONS.

We firstly recall from Chapter 1 the basic form of our controlled ODE:

(ODE)

{
ẋ(t) = f(x(t),α(t))
x(0) = x0.

Here x0 ∈ R
n, f : Rn ×A→ R

n, α : [0,∞) → A is the control, and x : [0,∞) → R
n

is the response of the system.

This chapter addresses the following basic

CONTROLLABILITY QUESTION: Given the initial point x0 and a “target”

set S ⊂ R
n, does there exist a control steering the system to S in finite time?

For the time being we will therefore not introduce any payoff criterion that

would characterize an “optimal” control, but instead will focus on the question as

to whether or not there exist controls that steer the system to a given goal. In

this chapter we will mostly consider the problem of driving the system to the origin

S = {0}.
DEFINITION. We define the reachable set for time t to be

C(t) = set of initial points x0 for which there exists a
control such that x(t) = 0,

and the overall reachable set

C = set of initial points x0 for which there exists a
control such that x(t) = 0 for some finite time t.

Note that

C =
⋃

t≥0

C(t).

Hereafter, let Mn×m denote the set of all n ×m matrices. We assume for the

rest of this and the next chapter that our ODE is linear in both the state x(·) and
the control α(·), and consequently has the form

(ODE)

{
ẋ(t) = Mx(t) +Nα(t) (t > 0)
x(0) = x0,

15



where M ∈ M
n×n and N ∈ M

n×m. We assume the set A of control parameters is

a cube in R
m:

A = [−1, 1]m = {a ∈ R
m | |ai| ≤ 1, i = 1, . . . , m}.

2.2 QUICK REVIEW OF LINEAR ODE.

This section records for later reference some basic facts about linear systems of

ordinary differential equations.

DEFINITION. Let X(·) : R → M
n×n be the unique solution of the matrix

ODE {

Ẋ(t) = MX(t) (t ∈ R)
X(0) = I.

We call X(·) a fundamental solution, and sometimes write

X(t) = etM :=
∞∑

k=0

tkMk

k!
,

the last formula being the definition of the exponential etM . Observe that

X−1(t) = X(−t).

THEOREM 2.1 (SOLVING LINEAR SYSTEMS OF ODE).

(i) The unique solution of the homogeneous system of ODE

{
ẋ(t) = Mx(t)
x(0) = x0

is

x(t) = X(t)x0 = etMx0.

(ii) The unique solution of the nonhomogeneous system

{
ẋ(t) = Mx(t) + f(t)
x(0) = x0.

is

x(t) = X(t)x0 +X(t)

∫ t

0

X−1(s)f(s) ds.

This expression is the variation of parameters formula.

2.3 CONTROLLABILITY OF LINEAR EQUATIONS.
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According to the variation of parameters formula, the solution of (ODE) for a

given control α(·) is

x(t) = X(t)x0 +X(t)

∫ t

0

X−1(s)Nα(s) ds,

where X(t) = etM . Furthermore, observe that

x0 ∈ C(t)

if and only if

(2.1) there exists a control α(·) ∈ A such that x(t) = 0

if and only if

(2.2) 0 = X(t)x0 +X(t)

∫ t

0

X−1(s)Nα(s) ds for some control α(·) ∈ A

if and only if

(2.3) x0 = −
∫ t

0

X−1(s)Nα(s) ds for some control α(·) ∈ A.

We make use of these formulas to study the reachable set:

THEOREM 2.2 (STRUCTURE OF REACHABLE SET).

(i) The reachable set C is symmetric and convex.

(ii) Also, if x0 ∈ C(t̄), then x0 ∈ C(t) for all times t ≥ t̄.

DEFINITIONS.

(i) We say a set S is symmetric if x ∈ S implies −x ∈ S.

(ii) The set S is convex if x, x̂ ∈ S and 0 ≤ λ ≤ 1 imply λx+ (1− λ)x̂ ∈ S.

Proof. 1. (Symmetry) Let t ≥ 0 and x0 ∈ C(t). Then x0 = −
∫ t

0
X−1(s)Nα(s) ds

for some admissible control α ∈ A. Therefore −x0 = −
∫ t

0
X−1(s)N(−α(s)) ds, and

−α ∈ A since the set A is symmetric. Therefore −x0 ∈ C(t), and so each set C(t)
symmetric. It follows that C is symmetric.

2. (Convexity) Take x0, x̂0 ∈ C; so that x0 ∈ C(t), x̂0 ∈ C(t̂) for appropriate

times t, t̂ ≥ 0. Assume t ≤ t̂. Then

x0 = −
∫ t

0
X−1(s)Nα(s) ds for some control α ∈ A,

x̂0 = −
∫ t̂

0
X−1(s)Nα̂(s) ds for some control α̂ ∈ A.

Define a new control

α̃(s) :=

{
α(s) if 0 ≤ s ≤ t

0 if s > t.

17



Then

x0 = −
∫ t̂

0

X−1(s)Nα̃(s) ds,

and hence x0 ∈ C(t̂). Now let 0 ≤ λ ≤ 1, and observe

λx0 + (1− λ)x̂0 = −
∫ t̂

0

X−1(s)N(λα̃(s) + (1− λ)α̂(s)) ds.

Therefore λx0 + (1− λ)x̂0 ∈ C(t̂) ⊆ C.

3. Assertion (ii) follows from the foregoing if we take t̄ = t̂. �

A SIMPLE EXAMPLE. Let n = 2 and m = 1, A = [−1, 1], and write x(t) =

(x1(t), x2(t))T . Suppose
{
ẋ1 = 0
ẋ2 = α(t).

This is a system of the form ẋ =Mx+Nα, for

M =

(
0 0
0 0

)

, N =

(
0

1

)

Clearly C = {(x1, x2) | x1 = 0}, the x2–axis. �

We next wish to establish some general algebraic conditions ensuring that C contains

a neighborhood of the origin.

DEFINITION. The controllability matrix is

G = G(M,N) := [N,MN,M2N, . . . ,Mn−1N ]
︸ ︷︷ ︸

n×(mn) matrix

.

THEOREM 2.3 (CONTROLLABILITY MATRIX). We have

rankG = n

if and only if

0 ∈ C◦.

NOTATION. We write C◦ for the interior of the set C. Remember that

rank of G = number of linearly independent rows of G
= number of linearly independent columns of G.

Clearly rankG ≤ n. �
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Proof. 1. Suppose first that rankG < n. This means that the linear span of

the columns of G has dimension less than or equal to n − 1. Thus there exists a

vector b ∈ R
n, b 6= 0, orthogonal to each column of G. This implies

bTG = 0

and so

bTN = bTMN = · · · = bTMn−1N = 0.

2. We claim next that in fact

(2.4) bTMkN = 0 for all positive integers k.

To confirm this, recall that

p(λ) := det(λI −M)

is the characteristic polynomial of M . The Cayley–Hamilton Theorem states that

p(M) = 0.

So if we write

p(λ) = λn + βn−1λ
n−1 + · · ·+ β1λ

1 + β0,

then

p(M) =Mn + βn−1M
n−1 + · · ·+ β1M + β0I = 0.

Therefore

Mn = −βn−1M
n−1 − βn−2M

n−2 − · · · − β1M − β0I,

and so

bTMnN = bT (−βn−1M
n−1 − . . . )N = 0.

Similarly, bTMn+1N = bT (−βn−1M
n − . . . )N = 0, etc. The claim (2.4) is proved.

Now notice that

bTX−1(s)N = bT e−sMN = bT
∞∑

k=0

(−s)kMkN

k!
=

∞∑

k=0

(−s)k
k!

bTMkN = 0,

according to (2.4).

3. Assume next that x0 ∈ C(t). This is equivalent to having

x0 = −
∫ t

0

X−1(s)Nα(s) ds for some control α(·) ∈ A.

Then

b · x0 = −
∫ t

0

bTX−1(s)Nα(s) ds = 0.

This says that b is orthogonal x0. In other words, C must lie in the hyperplane

orthogonal to b 6= 0. Consequently C◦ = ∅.
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4. Conversely, assume 0 /∈ C◦. Thus 0 /∈ C◦(t) for all t > 0. Since C(t) is

convex, there exists a supporting hyperplane to C(t) through 0. This means that

there exists b 6= 0 such that b · x0 ≤ 0 for all x0 ∈ C(t).
Choose any x0 ∈ C(t). Then

x0 = −
∫ t

0

X−1(s)Nα(s) ds

for some control α, and therefore

0 ≥ b · x0 = −
∫ t

0

bTX−1(s)Nα(s) ds.

Thus
∫ t

0

bTX−1(s)Nα(s) ds ≥ 0 for all controls α(·).

We assert that therefore

(2.5) bTX−1(s)N ≡ 0,

a proof of which follows as a lemma below. We rewrite (2.5) as

(2.6) bT e−sMN ≡ 0.

Let s = 0 to see that bTN = 0. Next differentiate (2.6) with respect to s, to find

that

bT (−M)e−sMN ≡ 0.

For s = 0 this says

bTMN = 0.

We repeatedly differentiate, to deduce

bTMkN = 0 for all k = 0, 1, . . . ,

and so bTG = 0. This implies rankG < n, since b 6= 0. �

LEMMA 2.4 (INTEGRAL INEQUALITIES). Assume that

(2.7)

∫ t

0

bTX−1(s)Nα(s) ds ≥ 0

for all α(·) ∈ A. Then

bTX−1(s)N ≡ 0.
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Proof. Replacing α by −α in (2.7), we see that
∫ t

0

bTX−1(s)Nα(s) ds = 0

for all α(·) ∈ A. Define

v(s) := bTX−1(s)N.

If v 6≡ 0, then v(s0) 6= 0 for some s0. Then there exists an interval I such that

s0 ∈ I and v 6= 0 on I. Now define α(·) ∈ A this way:
{
α(s) = 0 (s /∈ I)

α(s) = v(s)
|v(s)|

1√
n

(s ∈ I),

where |v| :=
(∑n

i=1 |vi|2
) 1

2 . Then

0 =

∫ t

0

v(s) ·α(s) ds =

∫

I

v(s)√
n

· v(s)

|v(s)| ds =
1√
n

∫

I

|v(s)| ds

This implies the contradiction that v ≡ 0 in I. �

DEFINITION. We say the linear system (ODE) is controllable if C = R
n.

THEOREM 2.5 (CRITERION FOR CONTROLLABILITY). Let A be

the cube [−1, 1]n in R
n. Suppose as well that rankG = n, and Re λ < 0 for each

eigenvalue λ of the matrix M .

Then the system (ODE) is controllable.

Proof. Since rankG = n, Theorem 2.3 tells us that C contains some ball B

centered at 0. Now take any x0 ∈ R
n and consider the evolution

{
ẋ(t) = Mx(t)
x(0) = x0;

in other words, take the control α(·) ≡ 0. Since Reλ < 0 for each eigenvalue λ

of M , then the origin is asymptotically stable. So there exists a time T such that

x(T ) ∈ B. Thus x(T ) ∈ B ⊂ C; and hence there exists a control α(·) ∈ A steering

x(T ) into 0 in finite time. �

EXAMPLE. We once again consider the rocket railroad car, from §1.2, for which
n = 2, m = 1, A = [−1, 1], and

ẋ =

(
0 1
0 0

)

x+

(
0

1

)

α.

Then

G = [N,MN ] =

(
0 1
1 0

)

.
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Therefore

rankG = 2 = n.

Also, the characteristic polynomial of the matrix M is

p(λ) = det(λI −M) = det

(
λ −1
0 λ

)

= λ2.

Since the eigenvalues are both 0, we fail to satisfy the hypotheses of Theorem 2.5.

�

This example motivates the following extension of the previous theorem:

THEOREM 2.6 (IMPROVED CRITERION FOR CONTROLLABIL-

ITY). Assume rankG = n and Reλ ≤ 0 for each eigenvalue λ of M .

Then the system (ODE) is controllable.

Proof. 1. If C 6= R
n, then the convexity of C implies that there exist a vector

b 6= 0 and a real number µ such that

(2.8) b · x0 ≤ µ

for all x0 ∈ C. Indeed, in the picture we see that b · (x0 − z0) ≤ 0; and this implies

(2.8) for µ := b · z0.

b

xo

zo

C

We will derive a contradiction.

2. Given b 6= 0, µ ∈ R, our intention is to find x0 ∈ C so that (2.8) fails. Recall

x0 ∈ C if and only if there exist a time t > 0 and a control α(·) ∈ A such that

x0 = −
∫ t

0

X−1(s)Nα(s) ds.

Then

b · x0 = −
∫ t

0

bTX−1(s)Nα(s) ds

Define

v(s) := bTX−1(s)N
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3. We assert that

(2.9) v 6≡ 0.

To see this, suppose instead that v ≡ 0. Then k times differentiate the expression

bTX−1(s)N with respect to s and set s = 0, to discover

bTMkN = 0

for k = 0, 1, 2, . . . . This implies b is orthogonal to the columns of G, and so rankG <

n. This is a contradiction to our hypothesis, and therefore (2.9) holds.

4. Next, define α(·) this way:

α(s) :=

{
− v(s)

|v(s)| if v(s) 6= 0

0 if v(s) = 0.

Then

b · x0 = −
∫ t

0

v(s)α(s) ds =

∫ t

0

|v(s)| ds.

We want to find a time t > 0 so that
∫ t

0
|v(s)| ds > µ. In fact, we assert that

(2.10)

∫ ∞

0

|v(s)| ds = +∞.

To begin the proof of (2.10), introduce the function

φ(t) :=

∫ ∞

t

v(s) ds.

We will find an ODE φ satisfies. Take p(·) to be the characteristic polynomial

of M . Then

p

(

− d

dt

)

v(t) = p

(

− d

dt

)

[bT e−tMN ] = bT
(

p

(

− d

dt

)

e−tM

)

N = bT (p(M)e−tM )N ≡ 0,

since p(M) = 0, according to the Cayley–Hamilton Theorem. But since p
(
− d

dt

)
v(t) ≡

0, it follows that

− d

dt
p

(

− d

dt

)

φ(t) = p

(

− d

dt

)(

− d

dt
φ

)

= p

(

− d

dt

)

v(t) = 0.

Hence φ solves the (n+ 1)th order ODE

d

dt
p

(

− d

dt

)

φ(t) = 0.

We also know φ(·) 6≡ 0. Let µ1, . . . , µn+1 be the solutions of µp(−µ) = 0. According

to ODE theory, we can write

φ(t) = sum of terms of the form pi(t)e
µit
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for appropriate polynomials pi(·).

Furthermore, we see that µn+1 = 0 and µk = −λk, where λ1, . . . , λn are the

eigenvalues of M . By assumption Reµk ≥ 0, for k = 1, . . . , n. If
∫∞
0

|v(s)| ds <∞,

then

|φ(t)| ≤
∫ ∞

t

|v(s)| ds→ 0 as t→ ∞;

that is, φ(t) → 0 as t → ∞. This is a contradiction to the representation formula

of φ(t) = Σpi(t)e
µit, with Reµi ≥ 0. Assertion (2.10) is proved.

5. Consequently given any µ, there exists t > 0 such that

b · x0 =

∫ t

0

|v(s)| ds > µ,

a contradiction to (2.8). Therefore C = R
n. �

2.4 OBSERVABILITY

We again consider the linear system of ODE

(ODE)

{
ẋ(t) =Mx(t)

x(0) = x0

where M ∈ M
n×n.

In this section we address the observability problem, modeled as follows. We

suppose that we can observe

(O) y(t) := Nx(t) (t ≥ 0),

for a given matrix N ∈ M
m×n. Consequently, y(t) ∈ R

m. The interesting situa-

tion is when m << n and we interpret y(·) as low-dimensional “observations” or

“measurements” of the high-dimensional dynamics x(·).

OBSERVABILITY QUESTION: Given the observations y(·), can we in prin-

ciple reconstruct x(·)? In particular, do observations of y(·) provide enough infor-

mation for us to deduce the initial value x0 for (ODE)?

DEFINITION. The pair (ODE),(O) is called observable if the knowledge of

y(·) on any time interval [0, t] allows us to compute x0.

More precisely, (ODE),(O) is observable if for all solutions x1(·),x2(·), Nx1(·) ≡
Nx2(·) on a time interval [0, t] implies x1(0) = x2(0).

TWO SIMPLE EXAMPLES. (i) If N ≡ 0, then clearly the system is not

observable.
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(ii) On the other hand, ifm = n andN is invertible, then clearly x(t) = N−1y(t)

is observable.

The interesting cases lie between these extremes. �

THEOREM 2.7 (OBSERVABILITY AND CONTROLLABILITY). The

system

(2.11)

{
ẋ(t) = Mx(t)
y(t) = Nx(t)

is observable if and only if the system

(2.12) ż(t) =MT z(t) +NTα(t), A = R
m

is controllable, meaning that C = R
n.

INTERPRETATION. This theorem asserts that somehow “observability and

controllability are dual concepts” for linear systems.

Proof. 1. Suppose (2.11) is not observable. Then there exist points x1 6= x2 ∈
R

n, such that
{

ẋ1(t) =Mx1(t), x1(0) = x1

ẋ2(t) =Mx2(t), x2(0) = x2

but y(t) := Nx1(t) ≡ Nx2(t) for all times t ≥ 0. Let

x(t) := x1(t)− x2(t), x0 := x1 − x2.

Then

ẋ(t) =Mx(t), x(0) = x0 6= 0,

but

Nx(t) = 0 (t ≥ 0).

Now

x(t) = X(t)x0 = etMx0.

Thus

NetMx0 = 0 (t ≥ 0).

Let t = 0, to find Nx0 = 0. Then differentiate this expression k times in t and

let t = 0, to discover as well that

NMkx0 = 0

for k = 0, 1, 2, . . . . Hence (x0)T (Mk)TNT = 0, and hence (x0)T (MT )kNT = 0.

This implies

(x0)T [NT ,MTNT , . . . , (MT )n−1NT ] = 0.

Since x0 6= 0, rank[NT , . . . , (MT )n−1NT ] < n. Thus problem (2.12) is not control-

lable. Consequently, (2.12) controllable implies (2.11) is observable.
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2. Assume now (2.12) not controllable. Then rank[NT , . . . , (MT )n−1NT ] < n,

and consequently according to Theorem 2.3 there exists x0 6= 0 such that

(x0)T [NT , . . . , (MT )n−1NT ] = 0.

That is, NMkx0 = 0 for all k = 0, 1, 2, . . . , n− 1.

We want to show that y(t) = Nx(t) ≡ 0, where
{

ẋ(t) = Mx(t)
x(0) = x0.

According to the Cayley–Hamilton Theorem, we can write

Mn = −βn−1M
n−1 − · · · − β0I.

for appropriate constants. Consequently NMnx0 = 0. Likewise,

Mn+1 =M(−βn−1M
n−1 − · · · − β0I) = −βn−1M

n − · · · − β0M ;

and so NMn+1x0 = 0. Similarly, NMkx0 = 0 for all k.

Now

x(t) = X(t)x0 = eMtx0 =

∞∑

k=0

tkMk

k!
x0;

and therefore Nx(t) = N
∑∞

k=0
tkMk

k!
x0 = 0.

We have shown that if (2.12) is not controllable, then (2.11) is not observable.

�

2.5 BANG-BANG PRINCIPLE.

For this section, we will again take A to be the cube [−1, 1]m in R
m.

DEFINITION. A control α(·) ∈ A is called bang-bang if for each time t ≥ 0

and each index i = 1, . . . , m, we have |αi(t)| = 1, where

α(t) =






α1(t)
...

αm(t)




 .

THEOREM 2.8 (BANG-BANG PRINCIPLE). Let t > 0 and suppose x0 ∈
C(t), for the system

ẋ(t) =Mx(t) +Nα(t).

Then there exists a bang-bang control α(·) which steers x0 to 0 at time t.

To prove the theorem we need some tools from functional analysis, among

them the Krein–Milman Theorem, expressing the geometric fact that every bounded

convex set has an extreme point.
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2.5.1 SOME FUNCTIONAL ANALYSIS. We will study the “geometry” of

certain infinite dimensional spaces of functions.

NOTATION:

L∞ = L∞(0, t;Rm) = {α(·) : (0, t) → R
m | sup

0≤s≤t
|α(s)| <∞}.

‖α‖L∞ = sup
0≤s≤t

|α(s)|.

DEFINITION. Let αn ∈ L∞ for n = 1, . . . and α ∈ L∞. We say αn con-

verges to α in the weak* sense, written

αn
∗
⇀ α,

provided
∫ t

0

αn(s) · v(s) ds→
∫ t

0

α(s) · v(s) ds

as n→ ∞, for all v(·) : [0, t] → R
m satisfying

∫ t

0
|v(s)| ds <∞.

We will need the following useful weak* compactness theorem for L∞:

ALAOGLU’S THEOREM. Let αn ∈ A, n = 1, . . . . Then there exists a

subsequence αnk
and α ∈ A, such that

αnk

∗
⇀ α.

DEFINITIONS. (i) The set K is convex if for all x, x̂ ∈ K and all real numbers

0 ≤ λ ≤ 1,

λx+ (1− λ)x̂ ∈ K.

(ii) A point z ∈ K is called extreme provided there do not exist points x, x̂ ∈ K

and 0 < λ < 1 such that

z = λx+ (1− λ)x̂.

KREIN-MILMAN THEOREM. Let K be a convex, nonempty subset of L∞,

which is compact in the weak ∗ topology.

Then K has at least one extreme point.

2.5.2 APPLICATION TO BANG-BANG CONTROLS.

The foregoing abstract theory will be useful for us in the following setting. We

will take K to be the set of controls which steer x0 to 0 at time t, prove it satisfies

the hypotheses of Krein–Milman Theorem and finally show that an extreme point

is a bang-bang control.

27



So consider again the linear dynamics

(ODE)

{
ẋ(t) = Mx(t) +Nα(t)
x(0) = x0.

Take x0 ∈ C(t) and write

K = {α(·) ∈ A |α(·) steers x0 to 0 at time t}.

LEMMA 2.9 (GEOMETRY OF SET OF CONTROLS). The collection K

of admissible controls satisfies the hypotheses of the Krein–Milman Theorem.

Proof. Since x0 ∈ C(t), we see that K 6= ∅.
Next we show that K is convex. For this, recall that α(·) ∈ K if and only if

x0 = −
∫ t

0

X−1(s)Nα(s) ds.

Now take also α̂ ∈ K and 0 ≤ λ ≤ 1. Then

x0 = −
∫ t

0

X−1(s)Nα̂(s) ds;

and so

x0 = −
∫ t

0

X−1(s)N(λα(s) + (1− λ)α̂(s)) ds

Hence λα+ (1− λ)α̂ ∈ K.

Lastly, we confirm the compactness. Let αn ∈ K for n = 1, . . . . According to

Alaoglu’s Theorem there exist nk → ∞ and α ∈ A such that αnk

∗
⇀ α. We need

to show that α ∈ K.

Now αnk
∈ K implies

x0 = −
∫ t

0

X−1(s)Nαnk
(s) ds→ −

∫ t

0

X−1(s)Nα(s) ds

by definition of weak-* convergence. Hence α ∈ K. �

We can now apply the Krein–Milman Theorem to deduce that there exists

an extreme point α∗ ∈ K. What is interesting is that such an extreme point

corresponds to a bang-bang control.

THEOREM 2.10 (EXTREMALITY AND BANG-BANG PRINCIPLE). The

control α∗(·) is bang-bang.
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Proof. 1. We must show that for almost all times 0 ≤ s ≤ t and for each

i = 1, . . . , m, we have

|αi∗(s)| = 1.

Suppose not. Then there exists an index i ∈ {1, . . . , m} and a subset E ⊂ [0, t]

of positive measure such that |αi∗(s)| < 1 for s ∈ E. In fact, there exist a number

ε > 0 and a subset F ⊆ E such that

|F | > 0 and |αi∗(s)| ≤ 1− ε for s ∈ F.

Define

IF (β(·)) :=
∫

F

X−1(s)Nβ(s) ds,

for

β(·) := (0, . . . , β(·), . . . , 0)T ,
the function β in the ith slot. Choose any real-valued function β(·) 6≡ 0, such that

IF (β(·)) = 0

and |β(·)| ≤ 1. Define
α1(·) := α∗(·) + εβ(·)
α2(·) := α∗(·)− εβ(·),

where we redefine β to be zero off the set F

2. We claim that

α1(·),α2(·) ∈ K.

To see this, observe that

−
∫ t

0
X−1(s)Nα1(s) ds = −

∫ t

0
X−1(s)Nα∗(s) ds− ε

∫ t

0
X−1(s)Nβ(s) ds

= x0 − ε

∫

F

X−1(s)Nβ(s) ds

︸ ︷︷ ︸

IF (β(·))=0

= x0.

Note also α1(·) ∈ A. Indeed,
{

α1(s) = α∗(s) (s /∈ F )

α1(s) = α∗(s) + εβ(s) (s ∈ F ).

But on the set F , we have |α∗
i (s)| ≤ 1− ε, and therefore

|α1(s)| ≤ |α∗(s)|+ ε|β(s)| ≤ 1− ε+ ε = 1.

Similar considerations apply for α2. Hence α1,α2 ∈ K, as claimed above.

3. Finally, observe that
{

α1 = α∗ + εβ, α1 6= α∗

α2 = α∗ − εβ, α2 6= α∗.
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But
1

2
α1 +

1

2
α2 = α∗;

and this is a contradiction, since α∗ is an extreme point of K. �

2.6 REFERENCES.

See Chapters 2 and 3 of Macki–Strauss [M-S]. An interesting recent article on

these matters is Terrell [T].
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CHAPTER 3: LINEAR TIME-OPTIMAL CONTROL

3.1 Existence of time-optimal controls

3.2 The Maximum Principle for linear time-optimal control

3.3 Examples

3.4 References

3.1 EXISTENCE OF TIME-OPTIMAL CONTROLS.

Consider the linear system of ODE:

(ODE)

{
ẋ(t) =Mx(t) +Nα(t)
x(0) = x0,

for given matrices M ∈ M
n×n and N ∈ M

n×m. We will again take A to be the

cube [−1, 1]m ⊂ R
m.

Define next

(P) P [α(·)] := −
∫ τ

0

1 ds = −τ,

where τ = τ(α(·)) denotes the first time the solution of our ODE (3.1) hits the

origin 0. (If the trajectory never hits 0, we set τ = ∞.)

OPTIMAL TIME PROBLEM: We are given the starting point x0 ∈ R
n, and

want to find an optimal control α∗(·) such that

P [α∗(·)] = max
α(·)∈A

P [α(·)].

Then

τ∗ = −P[α∗(·)] is the minimum time to steer to the origin.

THEOREM 3.1 (EXISTENCE OF TIME-OPTIMAL CONTROL). Let

x0 ∈ R
n. Then there exists an optimal bang-bang control α∗(·).

Proof. Let τ∗ := inf{t | x0 ∈ C(t)}. We want to show that x0 ∈ C(τ∗); that
is, there exists an optimal control α∗(·) steering x0 to 0 at time τ∗.

Choose t1 ≥ t2 ≥ t3 ≥ . . . so that x0 ∈ C(tn) and tn → τ∗. Since x0 ∈ C(tn),
there exists a control αn(·) ∈ A such that

x0 = −
∫ tn

0

X−1(s)Nαn(s) ds.

If necessary, redefine αn(s) to be 0 for tn ≤ s. By Alaoglu’s Theorem, there exists

a subsequence nk → ∞ and a control α∗(·) so that

αn
∗
⇀ α∗.
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We assert that α∗(·) is an optimal control. It is easy to check that α∗(s) = 0,

s ≥ τ∗. Also

x0 = −
∫ tnk

0

X−1(s)Nαnk
(s) ds = −

∫ t1

0

X−1(s)Nαnk
(s) ds,

since αnk
= 0 for s ≥ tnk

. Let nk → ∞:

x0 = −
∫ t1

0

X−1(s)Nα∗(s) ds = −
∫ τ∗

0

X−1(s)Nα∗(s) ds

because α∗(s) = 0 for s ≥ τ∗. Hence x0 ∈ C(τ∗), and therefore α∗(·) is optimal.

According to Theorem 2.10 there in fact exists an optimal bang-bang control.

�

3.2 THE MAXIMUM PRINCIPLE FOR LINEAR TIME-OPTIMAL

CONTROL

The really interesting practical issue now is understanding how to compute an

optimal control α∗(·).

DEFINITION. We define K(t, x0) to be the reachable set for time t. That is,

K(t, x0) = {x1 | there exists α(·) ∈ A which steers from x0 to x1 at time t}.

Since x(·) solves (ODE), we have x1 ∈ K(t, x0) if and only if

x1 = X(t)x0 +X(t)

∫ t

0

X−1(s)Nα(s) ds = x(t)

for some control α(·) ∈ A.

THEOREM 3.2 (GEOMETRY OF THE SET K). The set K(t, x0) is con-

vex and closed.

Proof. 1. (Convexity) Let x1, x2 ∈ K(t, x0). Then there exists α1,α2 ∈ A
such that

x1 = X(t)x0 +X(t)

∫ t

0

X−1(s)Nα1(s) ds

x2 = X(t)x0 +X(t)

∫ t

0

X−1(s)Nα2(s) ds.

Let 0 ≤ λ ≤ 1. Then

λx1 + (1− λ)x2 = X(t)x0 +X(t)

∫ t

0

X−1(s)N(λα1(s) + (1− λ)α2(s))
︸ ︷︷ ︸

∈A

ds,
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and hence λx1 + (1− λ)x2 ∈ K(t, x0).

2. (Closedness) Assume xk ∈ K(t, x0) for (k = 1, 2, . . . ) and xk → y. We must

show y ∈ K(t, x0). As xk ∈ K(t, x0), there exists αk(·) ∈ A such that

xk = X(t)x0 +X(t)

∫ t

0

X−1(s)Nαk(s) ds.

According to Alaoglu’s Theorem, there exist a subsequence kj → ∞ and α ∈ A
such that αk

∗
⇀α. Let k = kj → ∞ in the expression above, to find

y = X(t)x0 +X(t)

∫ t

0

X−1(s)Nα(s) ds.

Thus y ∈ K(t, x0), and hence K(t, x0) is closed. �

NOTATION. If S is a set, we write ∂S to denote the boundary of S.

Recall that τ∗ denotes the minimum time it takes to steer to 0, using the optimal

control α∗. Note that then 0 ∈ ∂K(τ∗, x0).

THEOREM 3.3 (PONTRYAGIN MAXIMUM PRINCIPLE FOR LIN-

EAR TIME-OPTIMAL CONTROL). There exists a nonzero vector h such that

(M) hTX−1(t)Nα∗(t) = max
a∈A

{hTX−1(t)Na}

for each time 0 ≤ t ≤ τ∗.

INTERPRETATION. The significance of this assertion is that if we know

h then the maximization principle (M) provides us with a formula for computing

α∗(·), or at least extracting useful information.

We will see in the next chapter that assertion (M) is a special case of the general

Pontryagin Maximum Principle.

Proof. 1. We know 0 ∈ ∂K(τ∗, x0). Since K(τ∗, x0) is convex, there exists a

supporting plane to K(τ∗, x0) at 0; this means that for some g 6= 0, we have

g · x1 ≤ 0 for all x1 ∈ K(τ∗, x0).

2. Now x1 ∈ K(τ∗, x0) if and only if there exists α(·) ∈ A such that

x1 = X(τ∗)x0 +X(τ∗)

∫ τ∗

0

X−1(s)Nα(s) ds.

Also

0 = X(τ∗)x0 +X(τ∗)

∫ τ∗

0

X−1(s)Nα∗(s) ds.
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Since g · x1 ≤ 0, we deduce that

gT

(

X(τ∗)x0 +X(τ∗)

∫ τ∗

0

X−1(s)Nα(s) ds

)

≤ 0 = gT

(

X(τ∗)x0 +X(τ∗)

∫ τ∗

0

X−1(s)Nα∗(s) ds

)

.

Define hT := gTX(τ∗). Then

∫ τ∗

0

hTX−1(s)Nα(s) ds ≤
∫ τ∗

0

hTX−1(s)Nα∗(s) ds;

and therefore
∫ τ∗

0

hTX−1(s)N(α∗(s)−α(s)) ds ≥ 0

for all controls α(·) ∈ A.

3. We claim now that the foregoing implies

hTX−1(s)Nα∗(s) = max
a∈A

{hTX−1(s)Na}

for almost every time s.

For suppose not; then there would exist a subset E ⊂ [0, τ∗] of positive measure,

such that

hTX−1(s)Nα∗(s) < max
a∈A

{hTX−1(s)Na}
for s ∈ E. Design a new control α̂(·) as follows:

α̂(s) =

{
α∗(s) (s /∈ E)

α(s) (s ∈ E)

where α(s) is selected so that

max
a∈A

{hTX−1(s)Na} = hTX−1(s)Nα(s).

Then ∫

E

hTX−1(s)N(α∗(s)− α̂(s))
︸ ︷︷ ︸

<0

ds ≥ 0.

This contradicts Step 2 above. �

For later reference, we pause here to rewrite the foregoing into different notation;

this will turn out to be a special case of the general theory developed later in Chapter

4. First of all, define the Hamiltonian

H(x, p, a) := (Mx+Na) · p (x, p ∈ R
n, a ∈ A).
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THEOREM 3.4 (ANOTHER WAY TO WRITE PONTRYAGIN MAXI-

MUM PRINCIPLE FOR TIME-OPTIMAL CONTROL). Let α∗(·) be a time

optimal control and x∗(·) the corresponding response.

Then there exists a function p∗(·) : [0, τ∗] → R
n, such that

(ODE) ẋ∗(t) = ∇pH(x∗(t),p∗(t),α∗(t)),

(ADJ) ṗ∗(t) = −∇xH(x∗(t),p∗(t),α∗(t)),

and

(M) H(x∗(t),p∗(t),α∗(t)) = max
a∈A

H(x∗(t),p∗(t), a).

We call (ADJ) the adjoint equations and (M) the maximization principle. The

function p∗(·) is the costate.

Proof. 1. Select the vector h as in Theorem 3.3, and consider the system
{

ṗ∗(t) = −MTp∗(t)

p∗(0) = h.

The solution is p∗(t) = e−tMT

h; and hence

p∗(t)T = hTX−1(t),

since (e−tMT

)T = e−tM = X−1(t).

2. We know from condition (M) in Theorem 3.3 that

hTX−1(t)Nα∗(t) = max
a∈A

{hTX−1(t)Na}

Since p∗(t)T = hTX−1(t), this means that

p∗(t)T (Mx∗(t) +Nα∗(t)) = max
a∈A

{p∗(t)T (Mx∗(t) +Na)}.

3. Finally, we observe that according to the definition of the Hamiltonian H,

the dynamical equations for x∗(·),p∗(·) take the form (ODE) and (ADJ), as stated

in the Theorem. �

3.3 EXAMPLES

EXAMPLE 1: ROCKET RAILROAD CAR. We recall this example, intro-

duced in §1.2. We have

(ODE) ẋ(t) =

(
0 1
0 0

)

︸ ︷︷ ︸

M

x(t) +

(
0
1

)

︸ ︷︷ ︸

N

α(t)
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for

x(t) =

(
x1(t)
x2(t)

)

, A = [−1, 1].

According to the Pontryagin Maximum Principle, there exists h 6= 0 such that

(M) hTX−1(t)Nα∗(t) = max
|a|≤1

{hTX−1(t)Na}.

We will extract the interesting fact that an optimal control α∗ switches at most one

time.

We must compute etM . To do so, we observe

M0 = I, M =

(
0 1
0 0

)

, M2 =

(
0 1
0 0

)(
0 1
0 0

)

= 0;

and therefore Mk = 0 for all k ≥ 2. Consequently,

etM = I + tM =

(
1 t
0 1

)

.

Then

X−1(t) =

(
1 −t
0 1

)

X−1(t)N =

(
1 −t
0 1

)(
0
1

)

=

(
−t
1

)

hTX−1(t)N = (h1, h2)

(
−t
1

)

= −th1 + h2.

The Maximum Principle asserts

(−th1 + h2)α
∗(t) = max

|a|≤1
{(−th1 + h2)a};

and this implies that

α∗(t) = sgn(−th1 + h2)

for the sign function

sgnx =







1 x > 0

0 x = 0

−1 x < 0.

Therefore the optimal control α∗ switches at most once; and if h1 = 0, then α∗ is

constant.

Since the optimal control switches at most once, then the control we constructed

by a geometric method in §1.3 must have been optimal. �

EXAMPLE 2: CONTROL OF A VIBRATING SPRING. Consider next

the simple dynamics

ẍ+ x = α,
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spring

mass

where we interpret the control as an exterior force acting on an oscillating weight

(of unit mass) hanging from a spring. Our goal is to design an optimal exterior

forcing α∗(·) that brings the motion to a stop in minimum time.

We have n = 2, m = 1. The individual dynamical equations read:
{
ẋ1(t) = x2(t)

ẋ2(t) = −x1(t) + α(t);

which in vector notation become

(ODE) ẋ(t) =

(
0 1
−1 0

)

︸ ︷︷ ︸

M

x(t) +

(
0
1

)

︸ ︷︷ ︸

N

α(t)

for |α(t)| ≤ 1. That is, A = [−1, 1].

Using the maximum principle. We employ the Pontryagin Maximum Prin-

ciple, which asserts that there exists h 6= 0 such that

(M) hTX−1(t)Nα∗(t) = max
a∈A

{hTX−1(t)Na}.

To extract useful information from (M) we must compute X(·). To do so, we

observe that the matrix M is skew symmetric, and thus

M0 = I, M =

(
0 1
−1 0

)

, M2 =

(
−1 0
0 −1

)

= −I

Therefore
Mk=I if k = 0, 4, 8, . . .
Mk=M if k = 1, 5, 9, . . .
Mk=−I if k = 2, 6, . . .
Mk=−M if k = 3, 7, . . . ;

and consequently

etM = I + tM +
t2

2!
M2 + . . .

= I + tM − t2

2!
I − t3

3!
M +

t4

4!
I + . . .

= (1− t2

2!
+
t4

4!
− . . . )I + (t− t3

3!
+
t5

5!
− . . . )M

= cos tI + sin tM =

(
cos t sin t
− sin t cos t

)

.

37



So we have

X−1(t) =

(
cos t − sin t
sin t cos t

)

and

X−1(t)N =

(
cos t − sin t
sin t cos t

)(
0
1

)

=

(
− sin t
cos t

)

;

whence

hTX−1(t)N = (h1, h2)

(
− sin t
cos t

)

= −h1 sin t+ h2 cos t.

According to condition (M), for each time t we have

(−h1 sin t+ h2 cos t)α
∗(t) = max

|a|≤1
{(−h1 sin t+ h2 cos t)a}.

Therefore

α∗(t) = sgn(−h1 sin t+ h2 cos t).

Finding the optimal control. To simplify further, we may assume h21+h
2
2 =

1. Recall the trig identity sin(x + y) = sinx cos y + cosx sin y, and choose δ such

that −h1 = cos δ, h2 = sin δ. Then

α∗(t) = sgn(cos δ sin t+ sin δ cos t) = sgn(sin(t+ δ)).

We deduce therefore that α∗ switches from +1 to −1, and vice versa, every π units

of time.

Geometric interpretation. Next, we figure out the geometric consequences.

When α ≡ 1, our (ODE) becomes
{
ẋ1 = x2

ẋ2 = −x1 + 1.

In this case, we can calculate that

d

dt
((x1(t)− 1)2 + (x2)2(t)) = 2(x1(t)− 1)ẋ1(t) + 2x2(t)ẋ2(t)

= 2(x1(t)− 1)x2(t) + 2x2(t)(−x1(t) + 1) = 0.

Consequently, the motion satisfies (x1(t)− 1)2 + (x2)2(t) ≡ r21, for some radius r1,

and therefore the trajectory lies on a circle with center (1, 0), as illustrated.

If α ≡ −1, then (ODE) instead becomes
{
ẋ1 = x2

ẋ2 = −x1 − 1;

in which case
d

dt
((x1(t) + 1)2 + (x2)2(t)) = 0.
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r1

(1,0)

r2

(-1,0)

(-1,0) (1,0)

Thus (x1(t)+ 1)2 +(x2)2(t) = r22 for some radius r2, and the motion lies on a circle

with center (−1, 0).

39



In summary, to get to the origin we must switch our control α(·) back and forth

between the values ±1, causing the trajectory to switch between lying on circles

centered at (±1, 0). The switches occur each π units of time.
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CHAPTER 4: THE PONTRYAGIN MAXIMUM PRINCIPLE

4.1 Calculus of variations, Hamiltonian dynamics

4.2 Review of Lagrange multipliers

4.3 Statement of Pontryagin Maximum Principle

4.4 Applications and examples

4.5 Maximum Principle with transversality conditions

4.6 More applications

4.7 Maximum Principle with state constraints

4.8 More applications

4.9 References

This important chapter moves us beyond the linear dynamics assumed in Chap-

ters 2 and 3, to consider much wider classes of optimal control problems, to intro-

duce the fundamental Pontryagin Maximum Principle, and to illustrate its uses in

a variety of examples.

4.1 CALCULUS OF VARIATIONS, HAMILTONIAN DYNAMICS

We begin in this section with a quick introduction to some variational methods.

These ideas will later serve as motivation for the Pontryagin Maximum Principle.

Assume we are given a smooth function L : Rn × R
n → R, L = L(x, v); L is

called the Lagrangian. Let T > 0, x0, x1 ∈ R
n be given.

BASIC PROBLEM OF THE CALCULUS OF VARIATIONS. Find a

curve x∗(·) : [0, T ] → R
n that minimizes the functional

(4.1) I[x(·)] :=
∫ T

0

L(x(t), ẋ(t)) dt

among all functions x(·) satisfying x(0) = x0 and x(T ) = x1.

Now assume x∗(·) solves our variational problem. The fundamental question is

this: how can we characterize x∗(·)?

4.1.1 DERIVATION OF EULER–LAGRANGE EQUATIONS.

NOTATION.We write L = L(x, v), and regard the variable x as denoting position,

the variable v as denoting velocity. The partial derivatives of L are

∂L

∂xi
= Lxi

,
∂L

∂vi
= Lvi

(1 ≤ i ≤ n),

and we write

∇xL := (Lx1
, . . . , Lxn

), ∇vL := (Lv1
, . . . , Lvn

).
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THEOREM 4.1 (EULER–LAGRANGE EQUATIONS). Let x∗(·) solve

the calculus of variations problem. Then x∗(·) solves the Euler–Lagrange differential
equations:

(E-L)
d

dt
[∇vL(x

∗(t), ẋ∗(t))] = ∇xL(x
∗(t), ẋ∗(t)).

The significance of preceding theorem is that if we can solve the Euler–Lagrange

equations (E-L), then the solution of our original calculus of variations problem

(assuming it exists) will be among the solutions.

Note that (E-L) is a quasilinear system of n second–order ODE. The ith com-

ponent of the system reads

d

dt
[Lvi

(x∗(t), ẋ∗(t))] = Lxi
(x∗(t), ẋ∗(t)).

Proof. 1. Select any smooth curve y[0, T ] → R
n, satisfying y(0) = y(T ) = 0.

Define

i(τ) := I[x(·) + τy(·)]
for τ ∈ R and x(·) = x∗(·). (To simplify we omit the superscript ∗.) Notice

that x(·) + τy(·) takes on the proper values at the endpoints. Hence, since x(·) is
minimizer, we have

i(τ) ≥ I[x(·)] = i(0).

Consequently i(·) has a minimum at τ = 0, and so

i′(0) = 0.

2. We must compute i′(τ). Note first that

i(τ) =

∫ T

0

L(x(t) + τy(t), ẋ(t) + τ ẏ(t)) dt;

and hence

i′(τ) =

∫ T

0

(
n∑

i=1

Lxi
(x(t) + τy(t), ẋ(t) + τ ẏ(t))yi(t) +

n∑

i=1

Lvi
(· · · )ẏi(t)

)

dt.

Let τ = 0. Then

0 = i′(0) =
n∑

i=1

∫ T

0

Lxi
(x(t), ẋ(t))yi(t) + Lvi

(x(t), ẋ(t))ẏi(t) dt.

This equality holds for all choices of y : [0, T ] → R
n, with y(0) = y(T ) = 0.

3. Fix any 1 ≤ j ≤ n. Choose y(·) so that

yi(t) ≡ 0 i 6= j, yj(t) = ψ(t),
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where ψ is an arbitary function. Use this choice of y(·) above:

0 =

∫ T

0

Lxj
(x(t), ẋ(t))ψ(t) + Lvj

(x(t), ẋ(t))ψ̇(t) dt.

Integrate by parts, recalling that ψ(0) = ψ(T ) = 0:

0 =

∫ T

0

[

Lxj
(x(t), ẋ(t))− d

dt

(
Lvj

(x(t), ẋ(t))
)
]

ψ(t) dt.

This holds for all ψ : [0, T ] → R, ψ(0) = ψ(T ) = 0 and therefore

Lxj
(x(t), ẋ(t))− d

dt

(
Lvj

(x(t), ẋ(t))
)
= 0

for all times 0 ≤ t ≤ T. To see this, observe that otherwise Lxj
− d

dt (Lvj
) would be,

say, positive on some subinterval on I ⊆ [0, T ]. Choose ψ ≡ 0 off I, ψ > 0 on I.

Then
∫ T

0

(

Lxj
− d

dt

(
Lvj

)
)

ψ dt > 0,

a contradiction. �

4.1.2 CONVERSION TO HAMILTON’S EQUATIONS.

DEFINITION. For the given curve x(·), define

p(t) := ∇vL(x(t), ẋ(t)) (0 ≤ t ≤ T ).

We call p(·) the generalized momentum.

Our intention now is to rewrite the Euler–Lagrange equations as a system of

first–order ODE for x(·),p(·).

IMPORTANT HYPOTHESIS: Assume that for all x, p ∈ R
n, we can solve the

equation

(4.2) p = ∇vL(x, v)

for v in terms of x and p. That is, we suppose we can solve the identity (4.2) for

v = v(x, p).

DEFINITION. Define the dynamical systems Hamiltonian H : Rn ×R
n → R

by the formula

H(x, p) = p · v(x, p)− L(x,v(x, p)),

where v is defined above.

NOTATION. The partial derivatives of H are

∂H

∂xi
= Hxi

,
∂H

∂pi
= Hpi

(1 ≤ i ≤ n),
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and we write

∇xH := (Hx1
, . . . , Hxn

), ∇pH := (Hp1
, . . . , Hpn

).

THEOREM 4.2 (HAMILTONIAN DYNAMICS). Let x(·) solve the Euler–

Lagrange equations (E-L) and define p(·)as above. Then the pair (x(·),p(·)) solves
Hamilton’s equations:

(H)

{
ẋ(t) = ∇pH(x(t),p(t))

ṗ(t) = −∇xH(x(t),p(t))

Furthermore, the mapping t 7→ H(x(t),p(t)) is constant.

Proof. Recall that H(x, p) = p · v(x, p)− L(x,v(x, p)), where v = v(x, p) or,

equivalently, p = ∇vL(x, v). Then

∇xH(x, p) = p · ∇xv −∇xL(x,v(x, p))−∇vL(x,v(x, p)) · ∇xv

= −∇xL(x,v(x, p))

because p = ∇vL. Now p(t) = ∇vL(x(t), ẋ(t)) if and only if ẋ(t) = v(x(t),p(t)).

Therefore (E-L) implies

ṗ(t) = ∇xL(x(t), ẋ(t))

= ∇xL(x(t),v(x(t),p(t))) = −∇xH(x(t),p(t)).

Also

∇pH(x, p) = v(x, p) + p · ∇pv −∇vL · ∇pv = v(x, p)

since p = ∇vL(x,v(x, p)). This implies

∇pH(x(t),p(t)) = v(x(t),p(t)).

But

p(t) = ∇vL(x(t), ẋ(t))

and so ẋ(t) = v(x(t),p(t)). Therefore

ẋ(t) = ∇pH(x(t),p(t)).

Finally note that

d

dt
H(x(t),p(t)) = ∇xH · ẋ(t) +∇pH · ṗ(t) = ∇xH · ∇pH +∇pH · (−∇xH) = 0.

�

A PHYSICAL EXAMPLE. We define the Lagrangian

L(x, v) =
m|v|2
2

− V (x),
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which we interpret as the kinetic energy minus the potential energy V . Then

∇xL = −∇V (x), ∇vL = mv.

Therefore the Euler-Lagrange equation is

mẍ(t) = −∇V (x(t)),

which is Newton’s law. Furthermore

p = ∇vL(x, v) = mv

is the momentum, and the Hamiltonian is

H(x, p) = p · p
m

− L
(

x,
p

m

)

=
|p|2
m

− m

2

∣
∣
∣
p

m

∣
∣
∣

2

+ V (x) =
|p|2
2m

+ V (x),

the sum of the kinetic and potential energies. For this example, Hamilton’s equa-

tions read
{

ẋ(t) = p(t)
m

ṗ(t) = −∇V (x(t)).

�

4.2 REVIEW OF LAGRANGE MULTIPLIERS.

CONSTRAINTS AND LAGRANGEMULTIPLIERS.What first strikes

us about general optimal control problems is the occurence of many constraints,

most notably that the dynamics be governed by the differential equation

(ODE)

{
ẋ(t) = f(x(t),α(t)) (t > 0)
x(0) = x0.

This is in contrast to standard calculus of variations problems, as discussed in §4.1,
where we could take any curve x(·) as a candidate for a minimizer.

Now it is a general principle of variational and optimization theory that “con-

straints create Lagrange multipliers” and furthermore that these Lagrange multi-

pliers often “contain valuable information”. This section provides a quick review of

the standard method of Lagrange multipliers in solving multivariable constrained

optimization problems.

UNCONSTRAINED OPTIMIZATION. Suppose first that we wish to

find a maximum point for a given smooth function f : Rn → R. In this case there

is no constraint, and therefore if f(x∗) = maxx∈Rn f(x), then x∗ is a critical point

of f :

∇f(x∗) = 0.

45



CONSTRAINED OPTIMIZATION. We modify the problem above by

introducing the region

R := {x ∈ R
n | g(x) ≤ 0},

determined by some given function g : Rn → R. Suppose x∗ ∈ R and f(x∗) =

maxx∈R f(x). We would like a characterization of x∗ in terms of the gradients of f

and g.

Case 1: x∗ lies in the interior of R. Then the constraint is inactive, and so

(4.3) ∇f(x∗) = 0.

R 

X*

gradient of f

figure 1

Case 2: x∗ lies on ∂R. We look at the direction of the vector ∇f(x∗). A

geometric picture like Figure 1 is impossible; for if it were so, then f(y∗) would

be greater that f(x∗) for some other point y∗ ∈ ∂R. So it must be ∇f(x∗) is

perpendicular to ∂R at x∗, as shown in Figure 2.

R = {g < 0}

X*

gradient of f

gradient of g

figure 2
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Since ∇g is perpendicular to ∂R = {g = 0}, it follows that ∇f(x∗) is parallel

to ∇g(x∗). Therefore

(4.4) ∇f(x∗) = λ∇g(x∗)

for some real number λ, called a Lagrange multiplier.

CRITIQUE. The foregoing argument is in fact incomplete, since we implicitly

assumed that ∇g(x∗) 6= 0, in which case the Implicit Function Theorem implies

that the set {g = 0} is an (n− 1)-dimensional surface near x∗ (as illustrated).

If instead ∇g(x∗) = 0, the set {g = 0} need not have this simple form near x∗;

and the reasoning discussed as Case 2 above is not complete.

The correct statement is this:

(4.5)

{
There exist real numbers λ and µ, not both equal to 0, such that

µ∇f(x∗) = λ∇g(x∗).

If µ 6= 0, we can divide by µ and convert to the formulation (4.4). And if∇g(x∗) = 0,

we can take λ = 1, µ = 0, making assertion (4.5) correct (if not particularly useful).

�

4.3 STATEMENT OF PONTRYAGIN MAXIMUM PRINCIPLE

We come now to the key assertion of this chapter, the theoretically interesting

and practically useful theorem that if α∗(·) is an optimal control, then there exists a

function p∗(·), called the costate, that satisfies a certain maximization principle. We

should think of the function p∗(·) as a sort of Lagrange multiplier, which appears

owing to the constraint that the optimal curve x∗(·) must satisfy (ODE). And just

as conventional Lagrange multipliers are useful for actual calculations, so also will

be the costate.

We quote Francis Clarke [C2]: “The maximum principle was, in fact, the culmi-

nation of a long search in the calculus of variations for a comprehensive multiplier

rule, which is the correct way to view it: p(t) is a “Lagrange multiplier” . . . It

makes optimal control a design tool, whereas the calculus of variations was a way

to study nature.”

4.3.1 FIXED TIME, FREE ENDPOINT PROBLEM. Let us review the

basic set-up for our control problem.

We are given A ⊆ R
m and also f : Rn×A→ R

n, x0 ∈ R
n. We as before denote

the set of admissible controls by

A = {α(·) : [0,∞) → A | α(·) is measurable}.
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Then given α(·) ∈ A, we solve for the corresponding evolution of our system:

(ODE)

{
ẋ(t) = f(x(t),α(t)) (t ≥ 0)

x(0) = x0.

We also introduce the payoff functional

(P) P [α(·)] =
∫ T

0

r(x(t),α(t)) dt+ g(x(T )),

where the terminal time T > 0, running payoff r : Rn ×A→ R and terminal payoff

g : Rn → R are given.

BASIC PROBLEM: Find a control α∗(·) such that

P [α∗(·)] = max
α(·)∈A

P [α(·)].

The Pontryagin Maximum Principle, stated below, asserts the existence of a

function p∗(·), which together with the optimal trajectory x∗(·) satisfies an analog

of Hamilton’s ODE from §4.1. For this, we will need an appropriate Hamiltonian:

DEFINITION. The control theory Hamiltonian is the function

H(x, p, a) := f(x, a) · p+ r(x, a) (x, p ∈ R
n, a ∈ A).

THEOREM 4.3 (PONTRYAGIN MAXIMUM PRINCIPLE). Assume α∗(·)
is optimal for (ODE), (P) and x∗(·) is the corresponding trajectory.

Then there exists a function p∗ : [0, T ] → R
n such that

(ODE) ẋ∗(t) = ∇pH(x∗(t),p∗(t),α∗(t)),

(ADJ) ṗ∗(t) = −∇xH(x∗(t),p∗(t),α∗(t)),

and

(M) H(x∗(t),p∗(t),α∗(t)) = max
a∈A

H(x∗(t),p∗(t), a) (0 ≤ t ≤ T ).

In addition,

the mapping t 7→ H(x∗(t),p∗(t),α∗(t)) is constant.

Finally, we have the terminal condition

(T ) p∗(T ) = ∇g(x∗(T )).

REMARKS AND INTERPRETATIONS. (i) The identities (ADJ) are

the adjoint equations and (M) the maximization principle. Notice that (ODE) and

(ADJ) resemble the structure of Hamilton’s equations, discussed in §4.1.
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We also call (T) the transversality condition and will discuss its significance

later.

(ii) More precisely, formula (ODE) says that for 1 ≤ i ≤ n, we have

ẋi∗(t) = Hpi
(x∗(t),p∗(t),α∗(t)) = f i(x∗(t),α∗(t)),

which is just the original equation of motion. Likewise, (ADJ) says

ṗi∗(t) = −Hxi
(x∗(t),p∗(t),α∗(t))

= −
n∑

j=1

pj∗(t)f j
xi
(x∗(t),α∗(t))− rxi

(x∗(t),α∗(t)).

�

4.3.2 FREE TIME, FIXED ENDPOINT PROBLEM. Let us next record

the appropriate form of the Maximum Principle for a fixed endpoint problem.

As before, given a control α(·) ∈ A, we solve for the corresponding evolution

of our system:

(ODE)

{
ẋ(t) = f(x(t),α(t)) (t ≥ 0)

x(0) = x0.

Assume now that a target point x1 ∈ R
n is given. We introduce then the payoff

functional

(P) P [α(·)] =
∫ τ

0

r(x(t),α(t)) dt

Here r : Rn ×A→ R is the given running payoff, and τ = τ [α(·)] ≤ ∞ denotes the

first time the solution of (ODE) hits the target point x1.

As before, the basic problem is to find an optimal control α∗(·) such that

P [α∗(·)] = max
α(·)∈A

P [α(·)].

Define the Hamiltonian H as in §4.3.1.

THEOREM 4.4 (PONTRYAGIN MAXIMUM PRINCIPLE). Assume α∗(·)
is optimal for (ODE), (P) and x∗(·) is the corresponding trajectory.

Then there exists a function p∗ : [0, τ∗] → R
n such that

(ODE) ẋ∗(t) = ∇pH(x∗(t),p∗(t),α∗(t)),

(ADJ) ṗ∗(t) = −∇xH(x∗(t),p∗(t),α∗(t)),

and

(M) H(x∗(t),p∗(t),α∗(t)) = max
a∈A

H(x∗(t),p∗(t), a) (0 ≤ t ≤ τ∗).
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Also,

H(x∗(t),p∗(t),α∗(t)) ≡ 0 (0 ≤ t ≤ τ∗).

Here τ∗ denotes the first time the trajectory x∗(·) hits the target point x1. We

call x∗(·) the state of the optimally controlled system and p∗(·) the costate.

REMARK AND WARNING. More precisely, we should define

H(x, p, q, a) = f(x, a) · p+ r(x, a)q (q ∈ R).

A more careful statement of the Maximum Principle says “there exists a constant

q ≥ 0 and a function p∗ : [0, t∗] → R
n such that (ODE), (ADJ), and (M) hold”.

If q > 0, we can renormalize to get q = 1, as we have done above. If q = 0, then

H does not depend on running payoff r and in this case the Pontryagin Maximum

Principle is not useful. This is a so–called “abnormal problem”.

Compare these comments with the critique of the usual Lagrange multiplier

method at the end of §4.2, and see also the proof in §A.5 of the Appendix. �

4.4 APPLICATIONS AND EXAMPLES

HOW TO USE THE MAXIMUM PRINCIPLE. We mentioned earlier

that the costate p∗(·) can be interpreted as a sort of Lagrange multiplier.

Calculations with Lagrange multipliers. Recall our discussion in §4.2
about finding a point x∗ that maximizes a function f , subject to the requirement

that g ≤ 0. Now x∗ = (x∗1, . . . , x
∗
n)

T has n unknown components we must find.

Somewhat unexpectedly, it turns out in practice to be easier to solve (4.4) for the

n + 1 unknowns x∗1, . . . , x
∗
n and λ. We repeat this key insight: it is actually easier

to solve the problem if we add a new unknown, namely the Lagrange multiplier.

Worked examples abound in multivariable calculus books.

Calculations with the costate. This same principle is valid for our much

more complicated control theory problems: it is usually best not just to look for an

optimal control α∗(·) and an optimal trajectory x∗(·) alone, but also to look as well

for the costate p∗(·). In practice, we add the equations (ADJ) and (M) to (ODE)

and then try to solve for α∗(·),x∗(·) and for p∗(·).
The following examples show how this works in practice, in certain cases for

which we can actually solve everything explicitly or, failing that, at least deduce

some useful information.
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4.4.1 EXAMPLE 1: LINEAR TIME-OPTIMAL CONTROL. For this ex-

ample, let A denote the cube [−1, 1]n in R
n. We consider again the linear dynamics:

(ODE)

{
ẋ(t) =Mx(t) +Nα(t)

x(0) = x0,

for the payoff functional

(P) P [α(·)] = −
∫ τ

0

1 dt = −τ,

where τ denotes the first time the trajectory hits the target point x1 = 0. We have

r ≡ −1, and so

H(x, p, a) = f · p+ r = (Mx+Na) · p− 1.

In Chapter 3 we introduced the Hamiltonian H = (Mx+Na) · p, which differs

by a constant from the present H. We can redefine H in Chapter III to match the

present theory: compare then Theorems 3.4 and 4.4. �

4.4.2 EXAMPLE 2: CONTROL OF PRODUCTION AND CONSUMP-

TION. We return to Example 1 in Chapter 1, a model for optimal consumption in

a simple economy. Recall that

x(t) = output of economy at time t,
α(t) = fraction of output reinvested at time t.

We have the constraint 0 ≤ α(t) ≤ 1; that is, A = [0, 1] ⊂ R. The economy evolves

according to the dynamics

(ODE)

{
ẋ(t) = α(t)x(t) (0 ≤ t ≤ T )

x(0) = x0

where x0 > 0 and we have set the growth factor k = 1. We want to maximize the

total consumption

(P) P [α(·)] :=
∫ T

0

(1− α(t))x(t) dt

How can we characterize an optimal control α∗(·)?

Introducing the maximum principle. We apply Pontryagin Maximum

Principle, and to simplify notation we will not write the superscripts ∗ for the

optimal control, trajectory, etc. We have n = m = 1,

f(x, a) = xa, g ≡ 0, r(x, a) = (1− a)x;

and therefore

H(x, p, a) = f(x, a)p+ r(x, a) = pxa+ (1− a)x = x+ ax(p− 1).
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The dynamical equation is

(ODE) ẋ(t) = Hp = α(t)x(t),

and the adjoint equation is

(ADJ) ṗ(t) = −Hx = −1− α(t)(p(t)− 1).

The terminal condition reads

(T) p(T ) = gx(x(T )) = 0.

Lastly, the maximality principle asserts

(M) H(x(t), p(t), α(t)) = max
0≤a≤1

{x(t) + ax(t)(p(t)− 1)}.

Using the maximum principle. We now deduce useful information from

(ODE), (ADJ), (M) and (T).

According to (M), at each time t the control value α(t) must be selected to

maximize a(p(t)− 1) for 0 ≤ a ≤ 1. This is so, since x(t) > 0. Thus

α(t) =

{
1 if p(t) > 1

0 if p(t) ≤ 1.

Hence if we know p(·), we can design the optimal control α(·).

So next we must solve for the costate p(·). We know from (ADJ) and (T ) that
{
ṗ(t) = −1− α(t)[p(t)− 1] (0 ≤ t ≤ T )

p(T ) = 0.

Since p(T ) = 0, we deduce by continuity that p(t) ≤ 1 for t close to T , t < T . Thus

α(t) = 0 for such values of t. Therefore ṗ(t) = −1, and consequently p(t) = T − t

for times t in this interval. So we have that p(t) = T − t so long as p(t) ≤ 1. And

this holds for T − 1 ≤ t ≤ T

But for times t ≤ T − 1, with t near T − 1, we have α(t) = 1; and so (ADJ)

becomes

ṗ(t) = −1− (p(t)− 1) = −p(t).
Since p(T − 1) = 1, we see that p(t) = eT−1−t > 1 for all times 0 ≤ t ≤ T − 1. In

particular there are no switches in the control over this time interval.

Restoring the superscript * to our notation, we consequently deduce that an

optimal control is

α∗(t) =

{
1 if 0 ≤ t ≤ t∗

0 if t∗ ≤ t ≤ T

for the optimal switching time t∗ = T − 1.
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We leave it as an exercise to compute the switching time if the growth constant

k 6= 1. �

4.4.3 EXAMPLE 3: A SIMPLE LINEAR-QUADRATIC REGULA-

TOR.We take n = m = 1 for this example, and consider the simple linear dynamics

(ODE)

{
ẋ(t) = x(t) + α(t)

x(0) = x0,

with the quadratic cost functional

∫ T

0

x(t)2 + α(t)2 dt,

which we want to minimize. So we want to maximize the payoff functional

(P) P [α(·)] = −
∫ T

0

x(t)2 + α(t)2 dt.

For this problem, the values of the controls are not constrained; that is, A = R.

Introducing the maximum principle. To simplify notation further we again

drop the superscripts ∗. We have n = m = 1,

f(x, a) = x+ a, g ≡ 0, r(x, a) = −x2 − a2;

and hence

H(x, p, a) = fp+ r = (x+ a)p− (x2 + a2)

The maximality condition becomes

(M) H(x(t), p(t), α(t)) = max
a∈R

{−(x(t)2 + a2) + p(t)(x(t) + a)}

We calculate the maximum on the right hand side by setting Ha = −2a + p = 0.

Thus a = p
2
, and so

α(t) =
p(t)

2
.

The dynamical equations are therefore

(ODE) ẋ(t) = x(t) +
p(t)

2

and

(ADJ) ṗ(t) = −Hx = 2x(t)− p(t).

Moreover x(0) = x0, and the terminal condition is

(T) p(T ) = 0.

53



Using the Maximum Principle. So we must look at the system of equations
(
ẋ
ṗ

)

=

(
1 1/2
2 −1

)

︸ ︷︷ ︸

M

(
x
p

)

,

the general solution of which is
(
x(t)
p(t)

)

= etM
(
x0

p0

)

.

Since we know x0, the task is to choose p0 so that p(T ) = 0.

Feedback controls. An elegant way to do so is to try to find optimal control

in linear feedback form; that is, to look for a function c(·) : [0, T ] → R for which

α(t) = c(t) x(t).

We henceforth suppose that an optimal feedback control of this form exists,

and attempt to calculate c(·). Now

p(t)

2
= α(t) = c(t)x(t);

whence c(t) = p(t)
2x(t)

. Define now

d(t) :=
p(t)

x(t)
;

so that c(t) = d(t)
2 .

We will next discover a differential equation that d(·) satisfies. Compute

ḋ =
ṗ

x
− pẋ

x2
,

and recall that {
ẋ = x+ p

2

ṗ = 2x− p.

Therefore

ḋ =
2x− p

x
− p

x2

(

x+
p

2

)

= 2− d− d

(

1 +
d

2

)

= 2− 2d− d2

2
.

Since p(T ) = 0, the terminal condition is d(T ) = 0.

So we have obtained a nonlinear first–order ODE for d(·) with a terminal bound-

ary condition:

(R)

{
ḋ = 2− 2d− 1

2d
2 (0 ≤ t < T )

d(T ) = 0.

This is called the Riccati equation.
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In summary so far, to solve our linear–quadratic regulator problem, we need to

first solve the Riccati equation (R) and then set

α(t) =
1

2
d(t)x(t).

How to solve the Riccati equation. It turns out that we can convert (R) it

into a second–order, linear ODE. To accomplish this, write

d(t) =
2ḃ(t)

b(t)

for a function b(·) to be found. What equation does b(·) solve? We compute

ḋ =
2b̈

b
− 2(ḃ)2

b2
=

2b̈

b
− d2

2
.

Hence (R) gives

2b̈

b
= ḋ+

d2

2
= 2− 2d = 2− 2

2ḃ

b
;

and consequently
{
b̈ = b− 2ḃ (0 ≤ t < T )

ḃ(T ) = 0, b(T ) = 1.

This is a terminal-value problem for second–order linear ODE, which we can solve

by standard techniques. We then set d = 2ḃ
b , to derive the solution of the Riccati

equation (R).

We will generalize this example later to systems, in §5.2. �

4.4.4 EXAMPLE 4: MOON LANDER. This is a much more elaborate

and interesting example, already introduced in Chapter 1. We follow the discussion

of Fleming and Rishel [F-R].

Introduce the notation

h(t) = height at time t

v(t) = velocity = ḣ(t)
m(t) = mass of spacecraft (changing as fuel is used up)
α(t) = thrust at time t.

The thrust is constrained so that 0 ≤ α(t) ≤ 1; that is, A = [0, 1]. There are also

the constraints that the height and mass be nonnegative: h(t) ≥ 0, m(t) ≥ 0.

The dynamics are

(ODE)







ḣ(t) = v(t)

v̇(t) = −g + α(t)
m(t)

ṁ(t) = −kα(t),
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with initial conditions 





h(0) = h0 > 0

v(0) = v0

m(0) = m0 > 0.

The goal is to land on the moon safely, maximizing the remaining fuel m(τ),

where τ = τ [α(·)] is the first time h(τ) = v(τ) = 0. Since α = − ṁ
k , our intention is

equivalently to minimize the total applied thrust before landing; so that

(P) P [α(·)] = −
∫ τ

0

α(t) dt.

This is so since ∫ τ

0

α(t) dt =
m0 −m(τ)

k
.

Introducing the maximum principle. In terms of the general notation, we

have

x(t) =





h(t)
v(t)
m(t)



 , f =





v
−g + a/m

−ka



 .

Hence the Hamiltonian is

H(x, p, a) = f · p+ r

= (v,−g + a/m,−ka) · (p1, p2, p3)− a

= −a+ p1v + p2

(

−g + a

m

)

+ p3(−ka).

We next have to figure out the adjoint dynamics (ADJ). For our particular

Hamiltonian,

Hx1
= Hh = 0, Hx2

= Hv = p1, Hx3
= Hm = −p2a

m2
.

Therefore

(ADJ)







ṗ1(t) = 0

ṗ2(t) = −p1(t)
ṗ3(t) = p2(t)α(t)

m(t)2 .

The maximization condition (M) reads

(M)
H(x(t),p(t), α(t)) = max

0≤a≤1
H(x(t),p(t), a)

= max
0≤a≤1

{

−a+ p1(t)v(t) + p2(t)

[

−g + a

m(t)

]

+ p3(t)(−ka)
}

= p1(t)v(t)− p2(t)g + max
0≤a≤1

{

a

(

−1 +
p2(t)

m(t)
− kp3(t)

)}

.
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Thus the optimal control law is given by the rule:

α(t) =







1 if 1− p2(t)
m(t) + kp3(t) < 0

0 if 1− p2(t)
m(t) + kp3(t) > 0.

Using the maximum principle. Now we will attempt to figure out the form

of the solution, and check it accords with the Maximum Principle.

Let us start by guessing that we first leave rocket engine of (i.e., set α ≡ 0) and

turn the engine on only at the end. Denote by τ the first time that h(τ) = v(τ) = 0,

meaning that we have landed. We guess that there exists a switching time t∗ < τ

when we turned engines on at full power (i.e., set α ≡ 1).Consequently,

α(t) =

{
0 for 0 ≤ t ≤ t∗

1 for t∗ ≤ t ≤ τ.

Therefore, for times t∗ ≤ t ≤ τ our ODE becomes






ḣ(t) = v(t)

v̇(t) = −g + 1
m(t) (t∗ ≤ t ≤ τ)

ṁ(t) = −k
with h(τ) = 0, v(τ) = 0, m(t∗) = m0. We solve these dynamics:







m(t) = m0 + k(t∗ − t)

v(t) = g(τ − t) + 1
k log

[
m0+k(t∗−τ)
m0+k(t∗−t)

]

h(t) = complicated formula.

Now put t = t∗:






m(t∗) = m0

v(t∗) = g(τ − t∗) + 1
k log

[
m0+k(t∗−τ)

m0

]

h(t∗) = −g(t∗−τ)2

2 − m0

k2 log
[
m0+k(t∗−τ)

m0

]

+ t∗−τ
k .

Suppose the total amount of fuel to start with was m1; so that m0 −m1 is the

weight of the empty spacecraft. When α ≡ 1, the fuel is used up at rate k. Hence

k(τ − t∗) ≤ m1,

and so 0 ≤ τ − t∗ ≤ m1

k .

Before time t∗, we set α ≡ 0. Then (ODE) reads






ḣ = v

v̇ = −g
ṁ = 0;
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v axis

h axis

τ−t*=m1/k

powered descent trajectory (α = 1)

and thus 





m(t) ≡ m0

v(t) = −gt+ v0

h(t) = −1
2gt

2 + tv0 + h0.

We combine the formulas for v(t) and h(t), to discover

h(t) = h0 −
1

2g
(v2(t)− v20) (0 ≤ t ≤ t∗).

We deduce that the freefall trajectory (v(t), h(t)) therefore lies on a parabola

h = h0 −
1

2g
(v2 − v20).

v axis

h axis

freefall trajectory (α = o)

powered trajectory (α = 1)

If we then move along this parabola until we hit the soft-landing curve from

the previous picture, we can then turn on the rocket engine and land safely.

In the second case illustrated, we miss switching curve, and hence cannot land

safely on the moon switching once.
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v axis

h axis

To justify our guess about the structure of the optimal control, let us now find

the costate p(·) so that α(·) and x(·) described above satisfy (ODE), (ADJ), (M).

To do this, we will have have to figure out appropriate initial conditions

p1(0) = λ1, p
2(0) = λ2, p

3(0) = λ3.

We solve (ADJ) for α(·) as above, and find







p1(t) ≡ λ1 (0 ≤ t ≤ τ)

p2(t) = λ2 − λ1t (0 ≤ t ≤ τ)

p3(t) =

{
λ3 (0 ≤ t ≤ t∗)

λ3 +
∫ t

t∗
λ2−λ1s

(m0+k(t∗−s))2
ds (t∗ ≤ t ≤ τ).

Define

r(t) := 1− p2(t)

m(t)
+ p3(t)k;

then

ṙ = − ṗ
2

m
+
p2ṁ

m2
+ ṗ3k =

λ1
m

+
p2

m2
(−kα) +

(
p2α

m2

)

k =
λ1
m(t)

.

Choose λ1 < 0, so that r is decreasing. We calculate

r(t∗) = 1− (λ2 − λ1t
∗)

m0
+ λ3k

and then adjust λ2, λ3 so that r(t∗) = 0.

Then r is nonincreasing, r(t∗) = 0, and consequently r > 0 on [0, t∗), r < 0 on

(t∗, τ ]. But (M) says

α(t) =

{
1 if r(t) < 0

0 if r(t) > 0.

Thus an optimal control changes just once from 0 to 1; and so our earlier guess of

α(·) does indeed satisfy the Pontryagin Maximum Principle. �
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4.5 MAXIMUMPRINCIPLE WITH TRANSVERSALITYCONDITIONS

Consider again the dynamics

(ODE) ẋ(t) = f(x(t),α(t)) (t > 0)

In this section we discuss another variant problem, one for which the initial

position is constrained to lie in a given set X0 ⊂ R
n and the final position is also

constrained to lie within a given set X1 ⊂ R
n.

X1

X0

X0

X1

So in this model we get to choose the starting point x0 ∈ X0 in order to

maximize

(P) P [α(·)] =
∫ τ

0

r(x(t),α(t)) dt,

where τ = τ [α(·)] is the first time we hit X1.

NOTATION. We will assume that X0, X1 are in fact smooth surfaces in R
n.

We let T0 denote the tangent plane to X0 at x0, and T1 the tangent plane to X1 at

x1.

THEOREM 4.5 (MORE TRANSVERSALITY CONDITIONS). Let α∗(·)
and x∗(·) solve the problem above, with

x0 = x∗(0), x1 = x∗(τ∗).

Then there exists a function p∗(·) : [0, τ∗] → R
n, such that (ODE), (ADJ) and

(M) hold for 0 ≤ t ≤ τ∗. In addition,

(T)

{
p∗(τ∗) is perpendicular to T1,

p∗(0) is perpendicular to T0.
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We call (T ) the transversality conditions.

REMARKS AND INTERPRETATIONS. (i) If we have T > 0 fixed and

P [α(·)] =
∫ T

0

r(x(t),α(t)) dt+ g(x(T )),

then (T) says

p∗(T ) = ∇g(x∗(T )),

in agreement with our earlier form of the terminal/transversality condition.

(ii) Suppose that the surface X1 is the graphX1 = {x | gk(x) = 0, k = 1, . . . , l}.
Then (T) says that p∗(τ∗) belongs to the “orthogonal complement” of the subspace

T1. But orthogonal complement of T1 is the span of ∇gk(x1) (k = 1, . . . , l). Thus

p∗(τ∗) =
l∑

k=1

λk∇gk(x1)

for some unknown constants λ1, . . . , λl. �

4.6 MORE APPLICATIONS

4.6.1 EXAMPLE 1: DISTANCE BETWEEN TWO SETS. As a first

and simple example, let

(ODE) ẋ(t) = α(t)

for A = S1, the unit sphere in R
2: a ∈ S1 if and only if |a|2 = a21+a

2
2 = 1. In other

words, we are considering only curves that move with unit speed.

We take

(P)

P [α(·)] = −
∫ τ

0

|ẋ(t)| dt = − the length of the curve

= −
∫ τ

0

dt = − time it takes to reach X1.

We want to minimize the length of the curve and, as a check on our general

theory, will prove that the minimum is of course a straight line.

Using the maximum principle. We have

H(x, p, a) = f(x, a) · p+ r(x, a)

= a · p− 1 = p1a1 + p2a2 − 1.

The adjoint dynamics equation (ADJ) says

ṗ(t) = −∇xH(x(t),p(t),α(t)) = 0,
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and therefore

p(t) ≡ constant = p0 6= 0.

The maximization principle (M) tells us that

H(x(t),p(t),α(t)) = max
a∈S1

[−1 + p01a1 + p02a2].

The right hand side is maximized by a0 = p0

|p0| , a unit vector that points in the same

direction of p0. Thus α(·) ≡ a0 is constant in time. According then to (ODE) we

have ẋ = a0, and consequently x(·) is a straight line.

Finally, the transversality conditions say that

(T) p(0) ⊥ T0, p(t1) ⊥ T1.

In other words, p0 ⊥ T0 and p0 ⊥ T1; and this means that the tangent planes T0
and T1 are parallel.

X1

X0

X0

X1

T1
T0

Now all of this is pretty obvious from the picture, but it is reassuring that the

general theory predicts the proper answer. �

4.6.2 EXAMPLE 2: COMMODITY TRADING. Next is a simple model

for the trading of a commodity, say wheat. We let T be the fixed length of trading

period, and introduce the variables

x1(t) = money on hand at time t

x2(t) = amount of wheat owned at time t

α(t) = rate of buying or selling of wheat

q(t) = price of wheat at time t (known)

λ = cost of storing a unit amount of wheat for a unit of time.
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We suppose that the price of wheat q(t) is known for the entire trading period

0 ≤ t ≤ T (although this is probably unrealistic in practice). We assume also that

the rate of selling and buying is constrained:

|α(t)| ≤M,

where α(t) > 0 means buying wheat, and α(t) < 0 means selling.

Our intention is to maximize our holdings at the end time T , namely the sum

of the cash on hand and the value of the wheat we then own:

(P) P [α(·)] = x1(T ) + q(T )x2(T ).

The evolution is

(ODE)

{
ẋ1(t) = −λx2(t)− q(t)α(t)

ẋ2(t) = α(t).

This is a nonautonomous (= time dependent) case, but it turns out that the Pon-

tryagin Maximum Principle still applies.

Using the maximum principle. What is our optimal buying and selling

strategy? First, we compute the Hamiltonian

H(x, p, t, a) = f · p+ r = p1(−λx2 − q(t)a) + p2a,

since r ≡ 0. The adjoint dynamics read

(ADJ)

{
ṗ1 = 0

ṗ2 = λp1,

with the terminal condition

(T) p(T ) = ∇g(x(T )).

In our case g(x1, x2) = x1 + q(T )x2, and hence

(T)

{
p1(T ) = 1

p2(T ) = q(T ).

We then can solve for the costate:
{
p1(t) ≡ 1

p2(t) = λ(t− T ) + q(T ).

The maximization principle (M) tells us that

(M)

H(x(t),p(t), t, α(t)) = max
|a|≤M

{p1(t)(−λx2(t)− q(t)a) + p2(t)a}

= −λp1(t)x2(t) + max
|a|≤M

{a(−q(t) + p2(t))}.
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So

α(t) =

{
M if q(t) < p2(t)

−M if q(t) > p2(t)

for p2(t) := λ(t− T ) + q(T ).

CRITIQUE. In some situations the amount of money on hand x1(·) becomes

negative for part of the time. The economic problem has a natural constraint x2 ≥ 0

(unless we can borrow with no interest charges) which we did not take into account

in the mathematical model. �

4.7 MAXIMUM PRINCIPLE WITH STATE CONSTRAINTS

We return once again to our usual setting:

(ODE)

{
ẋ(t) = f(x(t),α(t))

x(0) = x0,

(P) P [α(·)] =
∫ τ

0

r(x(t),α(t)) dt

for τ = τ [α(·)], the first time that x(τ) = x1. This is the fixed endpoint problem.

STATE CONSTRAINTS. We introduce a new complication by asking that

our dynamics x(·) must always remain within a given region R ⊂ R
n. We will as

above suppose that R has the explicit representation

R = {x ∈ R
n | g(x) ≤ 0}

for a given function g(·) : Rn → R.

DEFINITION. It will be convenient to introduce the quantity

c(x, a) := ∇g(x) · f(x, a).

Notice that

if x(t) ∈ ∂R for times s0 ≤ t ≤ s1, then c(x(t),α(t)) ≡ 0 (s0 ≤ t ≤ s1).

This is so since f is then tangent to ∂R, whereas ∇g is perpendicular.

THEOREM 4.6 (MAXIMUM PRINCIPLE FOR STATE CONSTRAINTS). Let

α∗(·),x∗(·) solve the control theory problem above. Suppose also that x∗(t) ∈ ∂R

for s0 ≤ t ≤ s1.

Then there exists a costate function p∗(·) : [s0, s1] → R
n such that (ODE) holds.

There also exists λ∗(·) : [s0, s1] → R such that for times s0 ≤ t ≤ s1 we have

(ADJ′) ṗ∗(t) = −∇xH(x∗(t),p∗(t),α∗(t)) + λ∗(t)∇xc(x
∗(t),α∗(t));
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and

(M′) H(x∗(t),p∗(t),α∗(t)) = max
a∈A

{H(x∗(t),p∗(t), a) | c(x∗(t), a) = 0}.

To keep things simple, we have omitted some technical assumptions really

needed for the Theorem to be valid.

REMARKS AND INTERPRETATIONS (i) Let A ⊂ R
m be of this form:

A = {a ∈ R
m | g1(a) ≤ 0, . . . , gs(a) ≤ 0}

for given functions g1, . . . , gs : R
m → R. In this case we can use Lagrange multipliers

to deduce from (M′) that

(M′′) ∇aH(x∗(t),p∗(t),α∗(t)) = λ∗(t)∇ac(x
∗(t),α∗(t)) +

s∑

i=1

µ∗
i (t)∇agi(x

∗(t)).

The function λ∗(·) here is that appearing in (ADJ′).

If x∗(t) lies in the interior of R for say the times 0 ≤ t < s0, then the ordinary

Maximum Principle holds.

(ii) Jump conditions. In the situation above, we always have

p∗(s0 − 0) = p∗(s0 + 0),

where s0 is a time that x∗ hits ∂R. In other words, there is no jump in p∗ when

we hit the boundary of the constraint ∂R.

However,

p∗(s1 + 0) = p∗(s1 − 0)− λ∗(s1)∇g(x∗(s1));

this says there is (possibly) a jump in p∗(·) when we leave ∂R. �

4.8 MORE APPLICATIONS

4.8.1 EXAMPLE 1: SHORTEST DISTANCE BETWEEN TWO POINTS,

AVOIDING AN OBSTACLE.

x1 0

x0r
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What is the shortest path between two points that avoids the disk B = B(0, r),

as drawn?

Let us take

(ODE)

{
ẋ(t) = α(t)

x(0) = x0

for A = S1, with the payoff

(P) P [α(·)] = −
∫ τ

0

|ẋ| dt = −length of the curve x(·).

We have

H(x, p, a) = f · p+ r = p1a1 + p2a2 − 1.

Case 1: avoiding the obstacle. Assume x(t) /∈ ∂B on some time interval.

In this case, the usual Pontryagin Maximum Principle applies, and we deduce as

before that

ṗ = −∇xH = 0.

Hence

(ADJ) p(t) ≡ constant = p0.

Condition (M) says

H(x(t),p(t),α(t)) = max
a∈S1

(−1 + p01a1 + p02a2).

The maximum occurs for α = p0

|p0| . Furthermore,

−1 + p01α1 + p02α2 ≡ 0;

and therefore α · p0 = 1. This means that |p0| = 1, and hence in fact α = p0. We

have proved that the trajectory x(·) is a straight line away from the obstacle.

Case 2: touching the obstacle. Suppose now x(t) ∈ ∂B for some time

interval s0 ≤ t ≤ s1. Now we use the modified version of Maximum Principle,

provided by Theorem 4.6.

First we must calculate c(x, a) = ∇g(x) · f(x, a). In our case,

R = R
2 −B =

{
x | x21 + x22 ≥ r2

}
= {x | g := r2 − x21 − x22 ≤ 0}.

Then ∇g =

(
−2x1
−2x2

)

. Since f =

(
a1
a2

)

, we have

c(x, a) = −2a1x1 − 2a2x2.

Now condition (ADJ′) implies

ṗ(t) = −∇xH + λ(t)∇xc;
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which is to say,

(4.6)

{
ṗ1 = −2λα1

ṗ2 = −2λα2.

Next, we employ the maximization principle (M′). We need to maximize

H(x(t),p(t), a)

subject to the requirements that c(x(t), a) = 0 and g1(a) = a21 + a22 − 1 = 0, since

A = {a ∈ R
2 | a21 + a22 = 1}. According to (M′′) we must solve

∇aH = λ(t)∇ac+ µ(t)∇ag1;

that is,
{
p1 = λ(−2x1) + µ2α1

p2 = λ(−2x2) + µ2α2.

We can combine these identities to eliminate µ. Since we also know that x(t) ∈ ∂B,

we have (x1)2 + (x2)2 = r2; and also α = (α1, α2)T is tangent to ∂B. Using these

facts, we find after some calculations that

(4.7) λ =
p2α1 − p1α2

2r
.

But we also know

(4.8) (α1)2 + (α2)2 = 1

and

H ≡ 0 = −1 + p1α1 + p2α2;

hence

(4.9) p1α1 + p2α2 ≡ 1.

Solving for the unknowns. We now have the five equations (4.6) − (4.9)

for the five unknown functions p1, p2, α1, α2, λ that depend on t. We introduce the

angle θ, as illustrated, and note that d
dθ = r d

dt . A calculation then confirms that

the solutions are {
α1(θ) = − sin θ

α2(θ) = cos θ,

λ = −k + θ

2r
,

and {
p1(θ) = k cos θ − sin θ + θ cos θ

p2(θ) = k sin θ + cos θ + θ sin θ

for some constant k.

67



0
θ

α

x(t)

Case 3: approaching and leaving the obstacle. In general, we must piece

together the results from Case 1 and Case 2. So suppose now x(t) ∈ R = R
2 − B

for 0 ≤ t < s0 and x(t) ∈ ∂B for s0 ≤ t ≤ s1.

We have shown that for times 0 ≤ t < s0, the trajectory x(·) is a straight line.

For this case we have shown already that p = α and therefore

{
p1 ≡ − cosφ0

p2 ≡ sinφ0,

for the angle φ0 as shown in the picture.

By the jump conditions, p(·) is continuous when x(·) hits ∂B at the time s0,

meaning in this case that

{
k cos θ0 − sin θ0 + θ0 cos θ0 = − cosφ0

k sin θ0 + cos θ0 + θ0 sin θ0 = sinφ0.

These identities hold if and only if

{
k = −θ0
θ0 + φ0 = π

2 .

The second equality says that the optimal trajectory is tangent to the disk B when

it hits ∂B.

0
x0θ0

φ0
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We turn next to the trajectory as it leaves ∂B: see the next picture. We then

have
{
p1(θ−1 ) = −θ0 cos θ1 − sin θ1 + θ1 cos θ1

p2(θ−1 ) = −θ0 sin θ1 + cos θ1 + θ1 sin θ1.

Now our formulas above for λ and k imply λ(θ1) = θ0−θ1
2r . The jump conditions

give

p(θ+1 ) = p(θ−1 )− λ(θ1)∇g(x(θ1))
for g(x) = r2 − x21 − x22. Then

λ(θ1)∇g(x(θ1)) = (θ1 − θ0)

(
cos θ1
sin θ1

)

.

x1
0

θ1φ1

Therefore
{
p1(θ+1 ) = − sin θ1

p2(θ+1 ) = cos θ1,

and so the trajectory is tangent to ∂B. If we apply usual Maximum Principle after

x(·) leaves B, we find

p1 ≡ constant = − cosφ1

p2 ≡ constant = − sinφ1.

Thus { − cosφ1 = − sin θ1

− sinφ1 = cos θ1
and so θ1 − φ1 = π

2 .

CRITIQUE. We have carried out elaborate calculations to derive some pretty

obvious conclusions in this example. It is best to think of this as a confirmation in

a simple case of Theorem 4.6, which applies in far more complicated situations.

�
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4.8.2 AN INVENTORY CONTROL MODEL. Now we turn to a simple

model for ordering and storing items in a warehouse. Let the time period T > 0 be

given, and introduce the variables

x(t) = amount of inventory at time t

α(t) = rate of ordering from manufacturers, α ≥ 0,

d(t) = customer demand (known)

γ = cost of ordering 1 unit

β = cost of storing 1 unit.

Our goal is to fill all customer orders shipped from our warehouse, while keeping

our storage and ordering costs at a minimum. Hence the payoff to be maximized is

(P) P [α(·)] = −
∫ T

0

γα(t) + βx(t) dt.

We have A = [0,∞) and the constraint that x(t) ≥ 0. The dynamics are

(ODE)

{
ẋ(t) = α(t)− d(t)

x(0) = x0 > 0.

Guessing the optimal strategy. Let us just guess the optimal control strat-

egy: we should at first not order anything (α = 0) and let the inventory in our

warehouse fall off to zero as we fill demands; thereafter we should order just enough

to meet our demands (α = d).

s0

x axis

x0

t axis

Using the maximum principle. We will prove this guess is right, using the

Maximum Principle. Assume first that x(t) > 0 on some interval [0, s0]. We then
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have

H(x, p, a, t) = (a− d(t))p− γa− βx;

and (ADJ) says ṗ = −∇xH = β. Condition (M) implies

H(x(t), p(t), α(t), t) = max
a≥0

{−γa− βx(t) + p(t)(a− d(t))}

= −βx(t) − p(t)d(t) + max
a≥0

{a(p(t)− γ)}.

Thus

α(t) =

{
0 if p(t) ≤ γ

+∞ if p(t) > γ.

If α(t) ≡ +∞ on some interval, then P [α(·)] = −∞, which is impossible, because

there exists a control with finite payoff. So it follows that α(·) ≡ 0 on [0, s0]: we

place no orders.

According to (ODE), we have
{
ẋ(t) = −d(t) (0 ≤ t ≤ s0)

x(0) = x0.

Thus s0 is first time the inventory hits 0. Now since x(t) = x0 −
∫ t

0
d(s) ds, we

have x(s0) = 0. That is,
∫ s0
0
d(s) ds = x0 and we have hit the constraint. Now use

Pontryagin Maximum Principle with state constraint for times t ≥ s0

R = {x ≥ 0} = {g(x) := −x ≤ 0}

and

c(x, a, t) = ∇g(x) · f(x, a, t) = (−1)(a− d(t)) = d(t)− a.

We have

(M′) H(x(t), p(t), α(t), t) = max
a≥0

{H(x(t), p(t), a, t) | c(x(t), a, t) = 0}.

But c(x(t), α(t), t) = 0 if and only if α(t) = d(t). Then (ODE) reads

ẋ(t) = α(t)− d(t) = 0

and so x(t) = 0 for all times t ≥ s0.

We have confirmed that our guess for the optimal strategy was right. �
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CHAPTER 5: DYNAMIC PROGRAMMING

5.1 Derivation of Bellman’s PDE

5.2 Examples

5.3 Relationship with Pontryagin Maximum Principle

5.4 References

5.1 DERIVATION OF BELLMAN’S PDE

5.1.1 DYNAMIC PROGRAMMING. We begin with some mathematical wis-

dom: “It is sometimes easier to solve a problem by embedding it within a larger

class of problems and then solving the larger class all at once.”

A CALCULUS EXAMPLE. Suppose we wish to calculate the value of the

integral
∫ ∞

0

sinx

x
dx.

This is pretty hard to do directly, so let us as follows add a parameter α into the

integral:

I(α) :=

∫ ∞

0

e−αx sinx

x
dx.

We compute

I ′(α) =

∫ ∞

0

(−x)e−αx sinx

x
dx = −

∫ ∞

0

sinx e−αx dx = − 1

α2 + 1
,

where we integrated by parts twice to find the last equality. Consequently

I(α) = − arctanα+ C,

and we must compute the constant C. To do so, observe that

0 = I(∞) = − arctan(∞) + C = −π
2
+ C,

and so C = π
2 . Hence I(α) = − arctanα+ π

2 , and consequently
∫ ∞

0

sinx

x
dx = I(0) =

π

2
.

�

We want to adapt some version of this idea to the vastly more complicated

setting of control theory. For this, fix a terminal time T > 0 and then look at the

controlled dynamics

(ODE)

{
ẋ(s) = f(x(s),α(s)) (0 < s < T )

x(0) = x0,
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with the associated payoff functional

(P) P [α(·)] =
∫ T

0

r(x(s),α(s)) ds+ g(x(T )).

We embed this into a larger family of similar problems, by varying the starting

times and starting points:

(5.1)

{
ẋ(s) = f(x(s),α(s)) (t ≤ s ≤ T )

x(t) = x.

with

(5.2) Px,t[α(·)] =
∫ T

t

r(x(s),α(s)) ds+ g(x(T )).

Consider the above problems for all choices of starting times 0 ≤ t ≤ T and all

initial points x ∈ R
n.

DEFINITION. For x ∈ R
n, 0 ≤ t ≤ T , define the value function v(x, t) to be

the greatest payoff possible if we start at x ∈ R
n at time t. In other words,

(5.3) v(x, t) := sup
α(·)∈A

Px,t[α(·)] (x ∈ R
n, 0 ≤ t ≤ T ).

Notice then that

(5.4) v(x, T ) = g(x) (x ∈ R
n).

5.1.2 DERIVATION OF HAMILTON-JACOBI-BELLMAN EQUATION.

Our first task is to show that the value function v satisfies a certain nonlinear partial

differential equation.

Our derivation will be based upon the reasonable principle that “it’s better to

be smart from the beginning, than to be stupid for a time and then become smart”.

We want to convert this philosophy of life into mathematics.

To simplify, we hereafter suppose that the set A of control parameter values is

compact.

THEOREM 5.1 (HAMILTON-JACOBI-BELLMAN EQUATION). Assume

that the value function v is a C1 function of the variables (x, t). Then v solves the

nonlinear partial differential equation

(HJB) vt(x, t) + max
a∈A

{f(x, a) · ∇xv(x, t) + r(x, a)} = 0 (x ∈ R
n, 0 ≤ t < T ),

with the terminal condition

v(x, T ) = g(x) (x ∈ R
n).

73



REMARK.We call (HJB) the Hamilton–Jacobi–Bellman equation, and can rewrite

it as

(HJB) vt(x, t) +H(x,∇xv) = 0 (x ∈ R
n, 0 ≤ t < T ),

for the partial differential equations Hamiltonian

H(x, p) := max
a∈A

H(x, p, a) = max
a∈A

{f(x, a) · p+ r(x, a)}

where x, p ∈ R
n. �

Proof. 1. Let x ∈ R
n, 0 ≤ t < T and let h > 0 be given. As always

A = {α(·) : [0,∞) → A measurable}.

Pick any parameter a ∈ A and use the constant control

α(·) ≡ a

for times t ≤ s ≤ t + h. The dynamics then arrive at the point x(t + h), where

t + h < T . Suppose now a time t + h, we switch to an optimal control and use it

for the remaining times t+ h ≤ s ≤ T .

What is the payoff of this procedure? Now for times t ≤ s ≤ t+ h, we have
{

ẋ(s) = f(x(s), a)

x(t) = x.

The payoff for this time period is
∫ t+h

t
r(x(s), a) ds. Furthermore, the payoff in-

curred from time t+ h to T is v(x(t+ h), t+ h), according to the definition of the

payoff function v. Hence the total payoff is

∫ t+h

t

r(x(s), a) ds+ v(x(t+ h), t+ h).

But the greatest possible payoff if we start from (x, t) is v(x, t). Therefore

(5.5) v(x, t) ≥
∫ t+h

t

r(x(s), a) ds+ v(x(t+ h), t+ h).

2. We now want to convert this inequality into a differential form. So we

rearrange (5.5) and divide by h > 0:

v(x(t+ h), t+ h)− v(x, t)

h
+

1

h

∫ t+h

t

r(x(s), a) ds ≤ 0.

Let h→ 0:

vt(x, t) +∇xv(x(t), t) · ẋ(t) + r(x(t), a) ≤ 0.
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But x(·) solves the ODE

{
ẋ(s) = f(x(s), a) (t ≤ s ≤ t+ h)

x(t) = x.

Employ this above, to discover:

vt(x, t) + f(x, a) · ∇xv(x, t) + r(x, a) ≤ 0.

This inequality holds for all control parameters a ∈ A, and consequently

(5.6) max
a∈A

{vt(x, t) + f(x, a) · ∇xv(x, t) + r(x, a)} ≤ 0.

3. We next demonstrate that in fact the maximum above equals zero. To see

this, suppose α∗(·), x∗(·) were optimal for the problem above. Let us utilize the

optimal control α∗(·) for t ≤ s ≤ t+ h. The payoff is

∫ t+h

t

r(x∗(s),α∗(s)) ds

and the remaining payoff is v(x∗(t+ h), t+ h). Consequently, the total payoff is

∫ t+h

t

r(x∗(s),α∗(s)) ds+ v(x∗(t+ h), t+ h) = v(x, t).

Rearrange and divide by h:

v(x∗(t+ h), t+ h)− v(x, t)

h
+

1

h

∫ t+h

t

r(x∗(s),α∗(s)) ds = 0.

Let h→ 0 and suppose α∗(t) = a∗ ∈ A. Then

vt(x, t) +∇xv(x, t) · ẋ∗(t)
︸ ︷︷ ︸

f(x,a∗)

+ r(x, a∗) = 0;

and therefore

vt(x, t) + f(x, a∗) · ∇xv(x, t) + r(x, a∗) = 0

for some parameter value a∗ ∈ A. This proves (HJB). �

5.1.3 THE DYNAMIC PROGRAMMING METHOD

Here is how to use the dynamic programming method to design optimal controls:

Step 1: Solve the Hamilton–Jacobi–Bellman equation, and thereby compute

the value function v.

75



Step 2: Use the value function v and the Hamilton–Jacobi–Bellman PDE to

design an optimal feedback control α∗(·), as follows. Define for each point x ∈ R
n

and each time 0 ≤ t ≤ T ,

α(x, t) = a ∈ A

to be a parameter value where the maximum in (HJB) is attained. In other words,

we select α(x, t) so that

vt(x, t) + f(x,α(x, t)) · ∇xv(x, t) + r(x,α(x, t)) = 0.

Next we solve the following ODE, assuming α(·, t) is sufficiently regular to let us

do so:

(ODE)

{
ẋ∗(s) = f(x∗(s),α(x∗(s), s)) (t ≤ s ≤ T )

x(t) = x.

Finally, define the feedback control

(5.7) α∗(s) := α(x∗(s), s).

In summary, we design the optimal control this way: If the state of system is x

at time t, use the control which at time t takes on the parameter value a ∈ A such

that the minimum in (HJB) is obtained.

We demonstrate next that this construction does indeed provide us with an

optimal control.

THEOREM 5.2 (VERIFICATION OF OPTIMALITY). The control α∗(·)
defined by the construction (5.7) is optimal.

Proof. We have

Px,t[α
∗(·)] =

∫ T

t

r(x∗(s),α∗(s)) ds+ g(x∗(T )).

Furthermore according to the definition (5.7) of α(·):

Px,t[α
∗(·)] =

∫ T

t

(−vt(x∗(s), s)− f(x∗(s),α∗(s)) · ∇xv(x
∗(s), s)) ds+ g(x∗(T ))

= −
∫ T

t

vt(x
∗(s), s) +∇xv(x

∗(s), s) · ẋ∗(s) ds+ g(x∗(T ))

= −
∫ T

t

d

ds
v(x∗(s), s) ds+ g(x∗(T ))

= −v(x∗(T ), T ) + v(x∗(t), t) + g(x∗(T ))

= −g(x∗(T )) + v(x∗(t), t) + g(x∗(T ))

= v(x, t) = sup
α(·)∈A

Px,t[α(·)].
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That is,

Px,t[α
∗(·)] = sup

α(·)∈A
Px,t[α(·)];

and so α∗(·) is optimal, as asserted. �

5.2 EXAMPLES

5.2.1 EXAMPLE 1: DYNAMICS WITH THREE VELOCITIES. Let

us begin with a fairly easy problem:

(ODE)

{
ẋ(s) = α(s) (0 ≤ t ≤ s ≤ 1)

x(t) = x

where our set of control parameters is

A = {−1, 0, 1}.

We want to minimize
∫ 1

t

|x(s)| ds,

and so take for our payoff functional

(P) Px,t[α(·)] = −
∫ 1

t

|x(s)| ds.

As our first illustration of dynamic programming, we will compute the value

function v(x, t) and confirm that it does indeed solve the appropriate Hamilton-

Jacobi-Bellman equation. To do this, we first introduce the three regions:

I

x = t-1

t=1

t=0

III
II

x = 1-t

• Region I = {(x, t) | x < t− 1, 0 ≤ t ≤ 1}.
• Region II = {(x, t) | t− 1 < x < 1− t, 0 ≤ t ≤ 1}.
• Region III = {(x, t) | x > 1− t, 0 ≤ t ≤ 1}.
We will consider the three cases as to which region the initial data (x, t) lie

within.
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(t,x)

α=-1

t axis

x axis

 t=1

(1,x-1+t)

Optimal path in Region III

Region III. In this case we should take α ≡ −1, to steer as close to the origin

0 as quickly as possible. (See the next picture.) Then

v(x, t) = − area under path taken = −(1−t)1
2
(x+x+t−1) = −(1− t)

2
(2x+t−1).

Region I. In this region, we should take α ≡ 1, in which case we can similarly

compute v(x, t) = −
(
1−t
2

)
(−2x+ t− 1).

(t,x)

α=-1

t axis

x axis

 t=1

(t+x,0)

Optimal path in Region II

Region II. In this region we take α ≡ ±1, until we hit the origin, after which

we take α ≡ 0. We therefore calculate that v(x, t) = −x2

2 in this region.
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Checking the Hamilton-Jacobi-Bellman PDE. Now the Hamilton-Jacobi-

Bellman equation for our problem reads

(5.8) vt +max
a∈A

{f · ∇xv + r} = 0

for f = a, r = −|x|. We rewrite this as

vt + max
a=±1,0

{avx} − |x| = 0;

and so

(HJB) vt + |vx| − |x| = 0.

We must check that the value function v, defined explicitly above in Regions I-III,

does in fact solve this PDE, with the terminal condition that v(x, 1) = g(x) = 0.

Now in Region II v = −x2

2 , vt = 0, vx = −x. Hence

vt + |vx| − |x| = 0 + | − x| − |x| = 0 in Region II,

in accordance with (HJB).

In Region III we have

v(x, t) = −(1− t)

2
(2x+ t− 1);

and therefore

vt =
1

2
(2x+ t− 1)− (1− t)

2
= x− 1 + t, vx = t− 1, |t− 1| = 1− t ≥ 0.

Hence

vt + |vx| − |x| = x− 1 + t+ |t− 1| − |x| = 0 in Region III,

because x > 0 there.

Likewise the Hamilton-Jacobi-Bellman PDE holds in Region I.

REMARKS. (i) In the example, v is not continuously differentiable on the bor-

derlines between Regions II and I or III.

(ii) In general, it may not be possible actually to find the optimal feedback

control. For example, reconsider the above problem, but now with A = {−1, 1}.
We still have α = sgn(vx), but there is no optimal control in Region II. �

5.2.2 EXAMPLE 2: ROCKET RAILROAD CAR. Recall that the equa-

tions of motion in this model are
(
ẋ1
ẋ2

)

=

(
0 1
0 0

)(
x1
x2

)

+

(
0
1

)

α, |α| ≤ 1
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and

P [α(·)] = − time to reach (0, 0) = −
∫ τ

0

1 dt = −τ.

To use the method of dynamic programming, we define v(x1, x2) to be minus

the least time it takes to get to the origin (0, 0), given we start at the point (x1, x2).

What is the Hamilton-Jacobi-Bellman equation? Note v does not depend on t,

and so we have

max
a∈A

{f · ∇xv + r} = 0

for

A = [−1, 1], f =

(
x2
a

)

, r = −1

Hence our PDE reads

max
|a|≤1

{x2vx1
+ avx2

− 1} = 0;

and consequently

(HJB)

{
x2vx1

+ |vx2
| − 1 = 0 in R

2

v(0, 0) = 0.

Checking the Hamilton-Jacobi-Bellman PDE. We now confirm that v

really satisfies (HJB). For this, define the regions

I := {(x1, x2) | x1 ≥ −1

2
x2|x2|} and II := {(x1, x2) | x1 ≤ −1

2
x2|x2|}.

A direct computation, the details of which we omit, reveals that

v(x) =

{

−x2 − 2
(
x1 +

1
2x

2
2

) 1
2 in Region I

x2 − 2
(
−x1 + 1

2
x22
) 1

2 in Region II.

In Region I we compute

vx2
= −1−

(

x1 +
x22
2

)− 1
2

x2,

vx1
= −

(

x1 +
x22
2

)− 1
2

;

and therefore

x2vx1
+ |vx2

| − 1 = −x2
(

x1 +
x22
2

)− 1
2

+

[

1 + x2

(

x1 +
x22
2

)− 1
2

]

− 1 = 0.

This confirms that our (HJB) equation holds in Region I, and a similar calculation

holds in Region II.
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Optimal control. Since

max
|a|≤1

{x2vx1
+ avx2

+ 1} = 0,

the optimal control is

α = sgn vx2
.

�

5.2.3 EXAMPLE 3: GENERAL LINEAR-QUADRATIC REGULA-

TOR

For this important problem, we are given matrices M,B,D ∈ M
n×n, N ∈

M
n×m, C ∈ M

m×m; and assume

B,C,D are symmetric and nonnegative definite,

and

C is invertible.

We take the linear dynamics

(ODE)

{
ẋ(s) =Mx(s) +Nα(s) (t ≤ s ≤ T )

x(t) = x,

for which we want to minimize the quadratic cost functional
∫ T

t

x(s)TBx(s) +α(s)TCα(s) ds+ x(T )TDx(T ).

So we must maximize the payoff

(P) Px,t[α(·)] = −
∫ T

t

x(s)TBx(s) +α(s)TCα(s) ds− x(T )TDx(T ).

The control values are unconstrained, meaning that the control parameter values

can range over all of A = R
m.

We will solve by dynamic programming the problem of designing an optimal

control. To carry out this plan, we first compute the Hamilton-Jacobi-Bellman

equation

vt + max
a∈Rm

{f · ∇xv + r} = 0,

where 





f =Mx+Na

r = −xTBx− aTCa

g = −xTDx.
Rewrite:

(HJB) vt + max
a∈Rm

{(∇v)TNa− aTCa}+ (∇v)TMx− xTBx = 0.
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We also have the terminal condition

v(x, T ) = −xTDx

Maximization. For what value of the control parameter a is the minimum in

the original problem attained? To understand this, we define Q(a) := (∇v)TNa −
aTCa, and determine where Q has a maximum by computing the partial derivatives

Qaj
for j = 1, . . . , m and setting them equal to 0. This gives the identitites

Qaj
=

n∑

i=1

vxi
nij − 2aicij = 0.

Therefore (∇v)TN = 2aTC, and then 2CT a = NT∇v. But CT = C. Therefore

a =
1

2
C−1NT∇xv.

This is the formula for the optimal feedback control: It will be very useful once we

compute the value function v.

Finding the value function. We insert our formula a = 1
2
C−1NT∇v into

(HJB), and this PDE then reads

(HJB)

{
vt +

1
4 (∇v)TNC−1NT∇v + (∇v)TMx− xTBx = 0

v(x, T ) = −xTDx.
Our next move is to guess the form of the solution, namely

v(x, t) = xTK(t)x,

provided the symmetric n×n-matrix valued function K(·) is properly selected. Will

this guess work?

Now, since −xTK(T )x = −v(x, T ) = xTDx, we must have the terminal condi-

tion that

K(T ) = −D.
Next, compute that

vt = xT K̇(t)x, ∇xv = 2K(t)x.

We insert our guess v = xTK(t)x into (HJB), and discover that

xT {K̇(t) +K(t)NC−1NTK(t) + 2K(t)M −B}x = 0.

Look at the expression

2xTKMx = xTKMx+ [xTKMx]T

= xTKMx+ xTMTKx.

Then

xT {K̇ +KNC−1NTK +KM +MTK −B}x = 0.
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This identity will hold if K(·) satisfies the matrix Riccati equation

(R)

{
K̇(t) +K(t)NC−1NTK(t) +K(t)M +MTK(t)−B = 0 (0 ≤ t < T )

K(T ) = −D
In summary, if we can solve the Riccati equation (R), we can construct an

optimal feedback control

α∗(t) = C−1NTK(t)x(t)

Furthermore, (R) in fact does have a solution, as explained for instance in the book

of Fleming-Rishel [F-R].

5.3 DYNAMIC PROGRAMMING AND THE PONTRYAGIN MAXI-

MUM PRINCIPLE

5.3.1 THE METHOD OF CHARACTERISTICS.

Assume H : R
n × R

n → R and consider this initial–value problem for the

Hamilton–Jacobi equation:

(HJ)

{
ut(x, t) +H(x,∇xu(x, t)) = 0 (x ∈ R

n, 0 < t < T )

u(x, 0) = g(x).

A basic idea in PDE theory is to introduce some ordinary differential equations,

the solution of which lets us compute the solution u. In particular, we want to find

a curve x(·) along which we can, in principle at least, compute u(x, t).

This section discusses this method of characteristics, to make clearer the con-

nections between PDE theory and the Pontryagin Maximum Principle.

NOTATION.

x(t) =






x1(t)
...

xn(t)




 , p(t) = ∇xu(x(t), t) =






p1(t)
...

pn(t)




 .

Derivation of characteristic equations. We have

pk(t) = uxk
(x(t), t),

and therefore

ṗk(t) = uxkt(x(t), t) +
n∑

i=1

uxkxi
(x(t), t) · ẋi.

Now suppose u solves (HJ). We differentiate this PDE with respect to the variable

xk:

utxk
(x, t) = −Hxk

(x,∇u(x, t))−
n∑

i=1

Hpi
(x,∇u(x, t)) · uxkxi

(x, t).
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Let x = x(t) and substitute above:

ṗk(t) = −Hxk
(x(t),∇xu(x(t), t)

︸ ︷︷ ︸

p(t)

) +

n∑

i=1

(ẋi(t)−Hpi
(x(t),∇xu(x, t)

︸ ︷︷ ︸

p(t)

)uxkxi
(x(t), t).

We can simplify this expression if we select x(·) so that

ẋi(t) = Hpi
(x(t),p(t)), (1 ≤ i ≤ n);

then

ṗk(t) = −Hxk
(x(t),p(t)), (1 ≤ k ≤ n).

These are Hamilton’s equations, already discussed in a different context in §4.1:

(H)

{
ẋ(t) = ∇pH(x(t),p(t))

ṗ(t) = −∇xH(x(t),p(t)).

We next demonstrate that if we can solve (H), then this gives a solution to PDE

(HJ), satisfying the initial conditions u = g on t = 0. Set p0 = ∇g(x0). We solve

(H), with x(0) = x0 and p(0) = p0. Next, let us calculate

d

dt
u(x(t), t) = ut(x(t), t) +∇xu(x(t), t) · ẋ(t)

= −H(∇xu(x(t), t)
︸ ︷︷ ︸

p(t)

,x(t)) +∇xu(x(t), t)
︸ ︷︷ ︸

p(t)

· ∇pH(x(t),p(t))

= −H(x(t),p(t)) + p(t) · ∇pH(x(t),p(t))

Note also u(x(0), 0) = u(x0, 0) = g(x0). Integrate, to compute u along the curve

x(·):
u(x(t), t) =

∫ t

0

−H +∇pH · p ds+ g(x0).

This gives us the solution, once we have calculated x(·) and p(·).

5.3.2 CONNECTIONS BETWEEN DYNAMIC PROGRAMMING AND

THE PONTRYAGIN MAXIMUM PRINCIPLE.

Return now to our usual control theory problem, with dynamics

(ODE)

{
ẋ(s) = f(x(s),α(s)) (t ≤ s ≤ T )

x(t) = x

and payoff

(P) Px,t[α(·)] =
∫ T

t

r(x(s),α(s)) ds+ g(x(T )).

As above, the value function is

v(x, t) = sup
α(·)

Px,t[α(·)].
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The next theorem demonstrates that the costate in the Pontryagin Maximum

Principle is in fact the gradient in x of the value function v, taken along an optimal

trajectory:

THEOREM 5.3 (COSTATES AND GRADIENTS). Assume α∗(·), x∗(·)
solve the control problem (ODE), (P).

If the value function v is C2, then the costate p∗(·) occuring in the Maximum

Principle is given by

p∗(s) = ∇xv(x
∗(s), s) (t ≤ s ≤ T ).

Proof. 1. As usual, suppress the superscript *. Define p(t) := ∇xv(x(t), t).

We claim that p(·) satisfies conditions (ADJ) and (M) of the Pontryagin Max-

imum Principle. To confirm this assertion, look at

ṗi(t) =
d

dt
vxi

(x(t), t) = vxit(x(t), t) +
n∑

j=1

vxixj
(x(t), t)ẋj(t).

We know v solves

vt(x, t) + max
a∈A

{f(x, a) · ∇xv(x, t) + r(x, a)} = 0;

and, applying the optimal control α(·), we find:

vt(x(t), t) + f(x(t),α(t)) · ∇xv(x(t), t) + r(x(t),α(t)) = 0.

2. Now freeze the time t and define the function

h(x) := vt(x, t) + f(x,α(t)) · ∇xv(x, t) + r(x,α(t)) ≤ 0.

Observe that h(x(t)) = 0. Consequently h(·) has a maximum at the point x = x(t);

and therefore for i = 1, . . . , n,

0 = hxi
(x(t)) = vtxi

(x(t), t) + fxi
(x(t),α(t)) · ∇xv(x(t), t)

+ f(x(t),α(t)) · ∇xvxi
(x(t), t) + rxi

(x(t),α(t)).

Substitute above:

ṗi(t) = vxit +

n∑

i=1

vxixj
fj = vxit + f · ∇xvxi

= −fxi
· ∇xv − rxi

.

Recalling that p(t) = ∇xv(x(t), t), we deduce that

ṗ(t) = −(∇xf)p−∇xr.

Recall also

H = f · p+ r, ∇xH = (∇xf)p+∇xr.
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Hence

ṗ(t) = −∇xH(p(t),x(t)),

which is (ADJ).

3. Now we must check condition (M). According to (HJB),

vt(x(t), t) + max
a∈A

{f(x(t), a) · ∇v(x(t), t)
︸ ︷︷ ︸

p(t)

+ r(x(t), t)} = 0,

and maximum occurs for a = α(t). Hence

max
a∈A

{H(x(t),p(t), a)} = H(x(t),p(t),α(t));

and this is assertion (M) of the Maximum Principle. �

INTERPRETATIONS. The foregoing provides us with another way to look

at transversality conditions:

(i) Free endpoint problem: Recall that we stated earlier in Theorem 4.4

that for the free endpoint problem we have the condition

(T) p∗(T ) = ∇g(x∗(T ))

for the payoff functional

∫ T

t

r(x(s),α(s)) ds+ g(x(T )).

To understand this better, note p∗(s) = −∇v(x∗(s), s). But v(x, t) = g(x), and

hence the foregoing implies

p∗(T ) = ∇xv(x
∗(T ), T ) = ∇g(x∗(T )).

(ii) Constrained initial and target sets:

Recall that for this problem we stated in Theorem 4.5 the transversality condi-

tions that

(T)

{
p∗(0) is perpendicular to T0

p∗(τ∗) is perpendicular to T1

when τ∗ denotes the first time the optimal trajectory hits the target set X1.

Now let v be the value function for this problem:

v(x) = sup
α(·)

Px[α(·)],
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with the constraint that we start at x0 ∈ X0 and end at x1 ∈ X1 But then v will

be constant on the set X0 and also constant on X1. Since ∇v is perpendicular to

any level surface, ∇v is therefore perpendicular to both ∂X0 and ∂X1. And since

p∗(t) = ∇v(x∗(t)),

this means that {
p∗ is perpendicular to ∂X0 at t = 0,

p∗ is perpendicular to ∂X1 at t = τ∗.
�

5.4 REFERENCES

See the book [B-CD] by M. Bardi and I. Capuzzo-Dolcetta for more about

the modern theory of PDE methods in dynamic programming. Barron and Jensen

present in [B-J] a proof of Theorem 5.3 that does not require v to be C2.
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CHAPTER 6: DIFFERENTIAL GAMES

6.1 Definitions

6.2 Dynamic Programming

6.3 Games and the Pontryagin Maximum Principle

6.4 Application: war of attrition and attack

6.5 References

6.1 DEFINITIONS

We introduce in this section a model for a two-person, zero-sum differential

game. The basic idea is that two players control the dynamics of some evolving

system, and one tries to maximize, the other to minimize, a payoff functional that

depends upon the trajectory.

What are optimal strategies for each player? This is a very tricky question,

primarily since at each moment of time, each player’s control decisions will depend

upon what the other has done previously.

A MODEL PROBLEM. Let a time 0 ≤ t < T be given, along with sets A ⊆ R
m,

B ⊆ R
l and a function f : Rn × A×B → R

n.

DEFINITION. A measurable mapping α(·) : [t, T ] → A is a control for player

I (starting at time t). A measurable mapping β(·) : [t, T ] → B is a control for player

II.

Corresponding to each pair of controls, we have corresponding dynamics:

(ODE)

{
ẋ(s) = f(x(s),α(s),β(s)) (t ≤ s ≤ T )

x(t) = x,

the initial point x ∈ R
n being given.

DEFINITION. The payoff of the game is

(P) Px,t[α(·),β(·)] :=
∫ T

t

r(x(s),α(s),β(s)) ds+ g(x(T )).

Player I, whose control is α(·), wants to maximize the payoff functional P [·].
Player II has the control β(·) and wants to minimize P [·]. This is a two–person,

zero–sum differential game.

We intend now to define value functions and to study the game using dynamic

programming.
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DEFINITION. The sets of controls for the game of the game are

A(t) := {α(·) : [t, T ] → A,α(·) measurable}
B(t) := {β(·) : [t, T ] → B,β(·) measurable}.

We need to model the fact that at each time instant, neither player knows the

other’s future moves. We will use concept of strategies, as employed by Varaiya

and Elliott–Kalton. The idea is that one player will select in advance, not his

control, but rather his responses to all possible controls that could be selected by

his opponent.

DEFINITIONS. (i) A mapping Φ : B(t) → A(t) is called a strategy for player

I if for all times t ≤ s ≤ T ,

β(τ) ≡ β̂(τ) for t ≤ τ ≤ s

implies

(6.1) Φ[β](τ) ≡ Φ[β̂](τ) for t ≤ τ ≤ s.

We can think of Φ[β] as the response of player I to player II’s selection of

control β(·). Condition (6.1) expresses that player I cannot foresee the future.

(ii) A strategy for player II is a mapping Ψ : A(t) → B(t) such that for all times

t ≤ s ≤ T ,

α(τ) ≡ α̂(τ) for t ≤ τ ≤ s

implies

Ψ[α](τ) ≡ Ψ[α̂](τ) for t ≤ τ ≤ s.

DEFINITION. The sets of strategies are

A(t) := strategies for player I (starting at t)

B(t) := strategies for player II (starting at t).

Finally, we introduce value functions:

DEFINITION. The lower value function is

(6.2) v(x, t) := inf
Ψ∈B(t)

sup
α(·)∈A(t)

Px,t[α(·),Ψ[α](·)],

and the upper value function is

(6.3) u(x, t) := sup
Φ∈A(t)

inf
β(·)∈B(t)

Px,t[Φ[β](·),β(·)].
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One of the two players announces his strategy in response to the other’s choice

of control, the other player chooses the control. The player who “plays second”,

i.e., who chooses the strategy, has an advantage. In fact, it turns out that always

v(x, t) ≤ u(x, t).

6.2 DYNAMIC PROGRAMMING, ISAACS’ EQUATIONS

THEOREM 6.1 (PDE FOR THE UPPER AND LOWER VALUE FUNC-

TIONS). Assume u, v are continuously differentiable. Then u solves the upper

Isaacs’ equation

(6.4)

{
ut +minb∈B maxa∈A{f(x, a, b) · ∇xu(x, t) + r(x, a, b)} = 0

u(x, T ) = g(x),

and v solves the lower Isaacs’ equation

(6.5)

{
vt +maxa∈Aminb∈B{f(x, a, b) · ∇xv(x, t) + r(x, a, b)} = 0

v(x, T ) = g(x).

Isaacs’ equations are analogs of Hamilton–Jacobi–Bellman equation in two–

person, zero–sum control theory. We can rewrite these in the forms

ut +H+(x,∇xu) = 0

for the upper PDE Hamiltonian

H+(x, p) := min
b∈B

max
a∈A

{f(x, a, b) · p+ r(x, a, b)};

and

vt +H−(x,∇xv) = 0

for the lower PDE Hamiltonian

H−(x, p) := max
a∈A

min
b∈B

{f(x, a, b) · p+ r(x, a, b)}.

INTERPRETATIONS AND REMARKS. (i) In general, we have

max
a∈A

min
b∈B

{f(x, a, b) · p+ r(x, a, b)} < min
b∈B

max
a∈A

{f(x, a, b) · p+ r(x, a, b)},

and consequently H−(x, p) < H+(x, p). The upper and lower Isaacs’ equations are

then different PDE and so in general the upper and lower value functions are not

the same: u 6= v.

The precise interpretation of this is tricky, but the idea is to think of a slightly

different situation in which the two players take turns exerting their controls over

short time intervals. In this situation, it is a disadvantage to go first, since the other
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player then knows what control is selected. The value function u represents a sort

of “infinitesimal” version of this situation, for which player I has the advantage.

The value function v represents the reverse situation, for which player II has the

advantage.

If however

(6.6) max
a∈A

min
b∈B

{f(· · · ) · p+ r(· · · )} = min
b∈B

max
a∈A

{f(· · · ) · p+ r(· · · )},

for all p, x, we say the game satisfies the minimax condition, also called Isaacs’

condition. In this case it turns out that u ≡ v and we say the game has value.

(ii) As in dynamic programming from control theory, if (6.6) holds, we can solve

Isaacs’ equation for u ≡ v and then, at least in principle, design optimal controls

for players I and II.

(iii) To say that α∗(·),β∗(·) are optimal means that the pair (α∗(·),β∗(·)) is a
saddle point for Px,t. This means

(6.7) Px,t[α(·),β∗(·)] ≤ Px,t[α
∗(·),β∗(·)] ≤ Px,t[α

∗(·),β(·)]

for all controls α(·),β(·). Player I will select α∗(·) because he is afraid II will play

β∗(·). Player II will play β∗(·), because she is afraid I will play α∗(·). �

6.3 GAMES AND THE PONTRYAGIN MAXIMUM PRINCIPLE

Assume the minimax condition (6.6) holds and we design optimal α∗(·),β∗(·)
as above. Let x∗(·) denote the solution of the ODE (6.1), corresponding to our

controls α∗(·),β∗(·). Then define

p∗(t) := ∇xv(x
∗(t), t) = ∇xu(x

∗(t), t).

It turns out that

(ADJ) ṗ∗(t) = −∇xH(x∗(t),p∗(t),α∗(t),β∗(t))

for the game-theory Hamiltonian

H(x, p, a, b) := f(x, a, b) · p+ r(x, a, b).

6.4 APPLICATION: WAR OF ATTRITION AND ATTACK.

In this section we work out an example, due to R. Isaacs [I].
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6.4.1 STATEMENT OF PROBLEM. We assume that two opponents I

and II are at war with each other. Let us define

x1(t) = supply of resources for I

x2(t) = supply of resources for II.

Each player at each time can devote some fraction of his/her efforts to direct attack,

and the remaining fraction to attrition (= guerrilla warfare). Set A = B = [0, 1],

and define

α(t) = fraction of I’s effort devoted to attrition

1− α(t) = fraction of I’s effort devoted to attack

β(t) = fraction of II’s effort devoted to attrition

1− β(t) = fraction of II’s effort devoted to attack.

We introduce as well the parameters

m1 = rate of production of war material for I

m2 = rate of production of war material for II

c1 = effectiveness of II’s weapons against I’s production

c2 = effectiveness of I’s weapons against II’s production

We will assume

c2 > c1,

a hypothesis that introduces an asymmetry into the problem.

The dynamics are governed by the system of ODE

(6.8)

{
ẋ1(t) = m1 − c1β(t)x

2(t)

ẋ2(t) = m2 − c2α(t)x
1(t).

Let us finally introduce the payoff functional

P [α(·), β(·)] =
∫ T

0

(1− α(t))x1(t)− (1− β(t))x2(t) dt

the integrand recording the advantage of I over II from direct attacks at time t.

Player I wants to maximize P , and player II wants to minimize P .

6.4.2 APPLYING DYNAMIC PROGRAMMING. First, we check the

minimax condition, for n = 2, p = (p1, p2):

f(x, a, b) · p+ r(x, a, b) = (m1 − c1bx2)p1

+ (m2 − c2ax1)p2 + (1− a)x1 − (1− b)x2

= m1p1 +m2p2 + x1 − x2 + a(−x1 − c2x1p2) + b(x2 − c1x2p1).
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Since a and b occur in separate terms, the minimax condition holds. Therefore

v ≡ u and the two forms of the Isaacs’ equations agree:

vt +H(x,∇xv) = 0,

for

H(x, p) := H+(x, p) = H−(x, p).

We recall A = B = [0, 1] and p = ∇xv, and then choose a ∈ [0, 1] to maximize

ax1 (−1− c2vx2
) .

Likewise, we select b ∈ [0, 1] to minimize

bx2 (1− c1vx1
) .

Thus

(6.9) α =

{
1 if −1− c2vx2

≥ 0

0 if −1− c2vx2
< 0,

and

(6.10) β =

{
0 if 1− c1vx1

≥ 0

1 if 1− c1vx1
< 0.

So if we knew the value function v, we could then design optimal feedback controls

for I, II.

It is however hard to solve Isaacs’ equation for v, and so we switch approaches.

6.4.3 APPLYING THE MAXIMUM PRINCIPLE. Assume α(·),β(·)
are selected as above, and x(·) corresponding solution of the ODE (6.8). Define

p(t) := ∇xv(x(t), t).

By results stated above, p(·) solves the adjoint equation

(6.11) ṗ(t) = −∇xH(x(t),p(t),α(t),β(t))

for

H(x, p, a, b) = p · f(x, a, b) + r(x, a, b)

= p1(m1 − c1bx2) + p2(m2 − c2ax1) + (1− a)x1 − (1− b)x2.

Therefore (6.11) reads

(6.12)

{
ṗ1 = α− 1 + p2c2α

ṗ2 = 1− β + p1c1β,

with the terminal conditions p1(T ) = p2(T ) = 0.
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We introduce the further notation

s1 := −1− c2vx2
= −1− c2p

2, s2 := 1− c1vx1
= 1− c1p

1;

so that, according to (6.9) and (6.10), the functions s1 and s2 control when player

I and player II switch their controls.

Dynamics for s1 and s2. Our goal now is to find ODE for s1, s2. We compute

ṡ1 = −c2ṗ2 = c2(β − 1− p1c1β) = c2(−1 + β(1− p1c1)) = c2(−1 + βs2)

and

ṡ2 = −c1ṗ1 = c1(1− α− p2c2α) = c1(1 + α(−1− p2c2)) = c1(1 + αs1).

Therefore

(6.13)

{
ṡ1 = c2(−1 + βs2), s1(T ) = −1

ṡ2 = c1(1 + αs1), s2(T ) = 1.

Recall from (6.9) and (6.10) that

α =

{
1 if s1 ≥ 0

0 if s1 < 0,

β =

{
1 if s2 ≤ 0

0 if s2 > 0.

Consequently, if we can find s1, s2, then we can construct the optimal controls α

and β.

Calculating s1 and s2. We work backwards from the terminal time T . Since

at time T , we have s1 < 0 and s2 > 0, the same inequalities hold near T . Hence we

have α = β ≡ 0 near T , meaning a full attack from both sides.

Next, let t∗ < T be the first time going backward from T at which either I or

II switches stategy. Our intention is to compute t∗. On the time interval [t∗, T ],

we have α(·) ≡ β(·) ≡ 0. Thus (6.13) gives

ṡ1 = −c2, s1(T ) = −1, ṡ2 = c1, s2(T ) = 1;

and therefore

s1(t) = −1 + c2(T − t), s2(t) = 1 + c1(t− T )

for times t∗ ≤ t ≤ T . Hence s1 hits 0 at time T − 1
c2
; s2 hits 0 at time T − 1

c1
.

Remember that we are assuming c2 > c1. Then T − 1
c1
< T − 1

c2
, and hence

t∗ = T − 1

c2
.
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Now define t∗ < t∗ to be the next time going backward when player I or player

II switches. On the time interval [t∗, t∗], we have α ≡ 1, β ≡ 0. Therefore the

dynamics read:
{
ṡ1 = −c2, s1(t∗) = 0

ṡ2 = c1(1 + s1), s2(t∗) = 1− c1
c2
.

We solve these equations and discover that
{
s1(t) = −1 + c2(T − t)

s2(t) = 1− c1
2c2

− c1c2
2 (t− T )2.

(t∗ ≤ t ≤ t∗).

Now s1 > 0 on [t∗, t∗] for all choices of t∗. But s2 = 0 at

t∗ := T − 1

c2

(
2c2
c1

− 1

)1/2

.

If we now solve (6.13) on [0, t∗] with α = β ≡ 1, we learn that s1, s2 do not

change sign.

CRITIQUE. We have assumed that x1 > 0 and x2 > 0 for all times t. If either

x1 or x2 hits the constraint, then there will be a corresponding Lagrange multiplier

and everything becomes much more complicated. �

6.5 REFERENCES

See Isaacs’ classic book [I] or the more recent book by Lewin [L] for many more

worked examples.
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CHAPTER 7: INTRODUCTION TO STOCHASTIC CONTROL THEORY

7.1 Introduction and motivation

7.2 Review of probability theory, Brownian motion

7.3 Stochastic differential equations

7.4 Stochastic calculus, Itô chain rule

7.5 Dynamic programming

7.6 Application: optimal portfolio selection

7.7 References

7.1 INTRODUCTION AND MOTIVATION

This chapter provides a very quick look at the dynamic programming method

in stochastic control theory. The rigorous mathematics involved here is really quite

subtle, far beyond the scope of these notes. And so we suggest that readers new to

these topics just scan the following sections, which are intended only as an informal

introduction.

7.1.1 STOCHASTIC DIFFERENTIAL EQUATIONS.We begin with a brief

overview of random differential equations. Consider a vector field f : Rn → R
n and

the associated ODE

(7.1)

{
ẋ(t) = f(x(t)) (t > 0)

x(0) = x0.

In many cases a better model for some physical phenomenon we want to study

is the stochastic differential equation

(7.2)

{
Ẋ(t) = f(X(t)) + σξ(t) (t > 0)

X(0) = x0,

where ξ(·) denotes a “white noise” term causing random fluctuations. We have

switched notation to a capital letter X(·) to indicate that the solution is random.

A solution of (7.2) is a collection of sample paths of a stochastic process, plus

probabilistic information as to the likelihoods of the various paths.

7.1.2 STOCHASTIC CONTROL THEORY. Now assume f : Rn × A → R
n

and turn attention to the controlled stochastic differential equation:

(SDE)

{
Ẋ(s) = f(X(s),A(s)) + ξ(s) (t ≤ s ≤ T )

X(t) = x0.
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DEFINITIONS. (i) A control A(·) is a mapping of [t, T ] into A, such that

for each time t ≤ s ≤ T , A(s) depends only on s and observations of X(τ) for

t ≤ τ ≤ s.

(ii) The corresponding payoff functional is

(P) Px,t[A(·)] = E

{
∫ T

t

r(X(s),A(s)) ds+ g(X(T ))

}

,

the expected value over all sample paths for the solution of (SDE). As usual, we are

given the running payoff r and terminal payoff g.

BASIC PROBLEM. Our goal is to find an optimal control A∗(·), such that

Px,t[A
∗(·)] = max

A(·)
Px,t[A(·)].

DYNAMIC PROGRAMMING.We will adapt the dynamic programming meth-

ods from Chapter 5. To do so, we firstly define the value function

v(x, t) := sup
A(·)

Px,t[A(·)].

The overall plan to find an optimal control A∗(·) will be (i) to find a Hamilton-

Jacobi-Bellman type of PDE that v satisfies, and then (ii) to utilize a solution of

this PDE in designing A∗.

It will be particularly interesting to see in §7.5 how the stochastic effects modify

the structure of the Hamilton-Jacobi-Bellman (HJB) equation, as compared with

the deterministic case already discussed in Chapter 5.

7.2 REVIEW OF PROBABILITY THEORY, BROWNIAN MOTION.

This and the next two sections provide a very, very rapid introduction to math-

ematical probability theory and stochastic differential equations. The discussion

will be much too fast for novices, whom we advise to just scan these sections. See

§7.7 for some suggested reading to learn more.

DEFINITION. A probability space is a triple (Ω,F , P ), where
(i) Ω is a set,

(ii) F is a σ-algebra of subsets of Ω,

(iii) P is a mapping from F into [0, 1] such that P (∅) = 0, P (Ω) = 1, and

P (∪∞
i=1Ai) =

∑∞
i=1 P (Ai), provided Ai ∩ Aj = ∅ for all i 6= j.

A typical point in Ω is denoted “ω” and is called a sample point. A set A ∈ F
is called an event. We call P a probability measure on Ω, and P (A) ∈ [0, 1] is

probability of the event A.
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DEFINITION. A random variable X is a mapping X : Ω → R such that for

all t ∈ R

{ω | X(ω) ≤ t} ∈ F .

We mostly employ capital letters to denote random variables. Often the depen-

dence of X on ω is not explicitly displayed in the notation.

DEFINITION. LetX be a random variable, defined on some probability space

(Ω,F , P ). The expected value of X is

E[X ] :=

∫

Ω

X dP.

EXAMPLE. Assume Ω ⊆ R
m, and P (A) =

∫

A
f dω for some function f : Rm →

[0,∞), with
∫

Ω
f dω = 1. We then call f the density of the probability P , and write

“dP = fdω”. In this case,

E[X ] =

∫

Ω

Xf dω.

�

DEFINITION. We define also the variance

Var(X) = E[(X −E(X))2] = E[X2]− (E[X ])2.

IMPORTANT EXAMPLE. A random variableX is called normal (or Gaussian)

with mean µ, variance σ2 if for all −∞ ≤ a < b ≤ ∞

P (a ≤ X ≤ b) =
1√
2πσ2

∫ b

a

e−
(x−µ)2

2σ2 dx,

We write “X is N(µ, σ2)”.

DEFINITIONS. (i) Two events A,B ∈ F are called independent if

P (A ∩B) = P (A)P (B).

(ii) Two random variables X and Y are independent if

P (X ≤ t and Y ≤ s) = P (X ≤ t)P (Y ≤ s)

for all t, s ∈ R. In other words, X and Y are independent if for all t, s the events

A = {X ≤ t} and B = {Y ≤ s} are independent.

DEFINITION. A stochastic process is a collection of random variables X(t)

(0 ≤ t <∞), each defined on the same probability space (Ω,F , P ).

The mapping t 7→ X(t, ω) is the ω-th sample path of the process.
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DEFINITION. A real-valued stochastic process W (t) is called a Wiener pro-

cess or Brownian motion if

(i) W (0) = 0,

(ii) each sample path is continuous,

(iii) W (t) is Gaussian with µ = 0, σ2 = t (that is, W (t) is N(0, t)),

(iv) for all choices of times 0 < t1 < t2 < · · · < tm the random variables

W (t1),W (t2)−W (t1), . . . ,W (tm)−W (tm−1)

are independent random variables.

Assertion (iv) says that W has “independent increments”.

INTERPRETATION.We heuristically interpret the one-dimensional “white noise”

ξ(·) as equalling dW (t)
dt . However, this is only formal, since for almost all ω, the sam-

ple path t 7→W (t, ω) is in fact nowhere differentiable. �

DEFINITION. An n-dimensional Brownian motion is

W(t) = (W 1(t),W 2(t), . . . ,Wn(t))T

when the W i(t) are independent one-dimensional Brownian motions.

We use boldface below to denote vector-valued functions and stochastic pro-

cesses.

7.3 STOCHASTIC DIFFERENTIAL EQUATIONS.

We discuss next how to understand stochastic differential equations, driven by

“white noise”. Consider first of all

(7.3)

{
Ẋ(t) = f(X(t)) + σξ(t) (t > 0)

X(0) = x0,

where we informally think of ξ = Ẇ.

DEFINITION. A stochastic process X(·) solves (7.3) if for all times t ≥ 0, we

have

(7.4) X(t) = x0 +

∫ t

0

f(X(s)) ds+ σW(t).

REMARKS. (i) It is possible to solve (7.4) by the method of successive approxi-

mation. For this, we set X0(·) ≡ x, and inductively define

Xk+1(t) := x0 +

∫ t

0

f(Xk(s)) ds+ σW(t).
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It turns out that Xk(t) converges to a limit X(t) for all t ≥ 0 and X(·) solves the

integral identity (7.4).

(ii) Consider a more general SDE

(7.5) Ẋ(t) = f(X(t)) +H(X(t))ξ(t) (t > 0),

which we formally rewrite to read:

dX(t)

dt
= f(X(t)) +H(X(t))

dW(t)

dt

and then

dX(t) = f(X(t))dt+H(X(t))dW(t).

This is an Itô stochastic differential equation. By analogy with the foregoing, we

say X(·) is a solution, with the initial condition X(0) = x0, if

X(t) = x0 +

∫ t

0

f(X(s)) ds+

∫ t

0

H(X(s)) · dW(s)

for all times t ≥ 0. In this expression
∫ t

0
H(X) · dW is called an Itô stochastic

integral. �

REMARK. Given a Brownian motion W(·) it is possible to define the Itô sto-

chastic integral
∫ t

0

Y · dW

for processes Y(·) having the property that for each time 0 ≤ s ≤ t “Y(s) depends

on W (τ) for times 0 ≤ τ ≤ s, but not on W (τ) for times s ≤ τ . Such processes are

called “nonanticipating”.

We will not here explain the construction of the Itô integral, but will just record

one of its useful properties:

(7.6) E

[∫ t

0

Y · dW
]

= 0.

�

7.4 STOCHASTIC CALCULUS, ITÔ CHAIN RULE.

Once the Itô stochastic integral is defined, we have in effect constructed a new

calculus, the properties of which we should investigate. This section explains that

the chain rule in the Itô calculus contains additional terms as compared with the

usual chain rule. These extra stochastic corrections will lead to modifications of the

(HJB) equation in §7.5.
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7.4.1 ONE DIMENSION. We suppose that n = 1 and

(7.7)

{
dX(t) = A(t)dt+B(t)dW (t) (t ≥ 0)

X(0) = x0.

The expression (7.7) means that

X(t) = x0 +

∫ t

0

A(s) ds+

∫ t

0

B(s) dW (s)

for all times t ≥ 0.

Let u : R → R and define

Y (t) := u(X(t)).

We ask: what is the law of motion governing the evolution of Y in time? Or, in

other words, what is dY (t)?

It turns out, quite surprisingly, that it is incorrect to calculate

dY (t) = d(u(X(t)) = u′(X(t))dX(t) = u′(X(t))(A(t)dt+B(t)dW (t)).

ITÔ CHAIN RULE. We try again and make use of the heuristic principle that

“dW = (dt)1/2”. So let us expand u into a Taylor’s series, keeping only terms of

order dt or larger. Then

dY (t) = d(u(X(t)))

= u′(X(t))dX(t) +
1

2
u′′(X(t))dX(t)2 +

1

6
u′′′(X(t))dX(t)3 + . . .

= u′(X(t))[A(t)dt+B(t)dW (t)] +
1

2
u′′(X(t))[A(t)dt+B(t)dW (t)]2 + . . . ,

the last line following from (7.7). Now, formally at least, the heuristic that dW =

(dt)1/2 implies

[A(t)dt+B(t)dW (t)]2 = A(t)2dt2 + 2A(t)B(t)dtdW (t) +B2(t)dW (t)2

= B2(t)dt+ o(dt).

Thus, ignoring the o(dt) term, we derive the one-dimensional Itô chain rule

(7.8)

dY (t) = d(u(X(t)))

=

[

u′(X(t))A(t) +
1

2
B2(t)u′′(X(t))

]

dt+ u′(X(t))B(t)dW (t).
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This means that for each time t > 0

u(X(t)) = Y (t) = Y (0)+

∫ t

0

[

u′(X(s))A(s) +
1

2
B2(s)u′′(X(s))

]

ds

+

∫ t

0

u′(X(s))B(s)dW (s).

7.4.2 HIGHER DIMENSIONS.We turn now to stochastic differential equations

in higher dimensions. For simplicity, we consider only the special form

(7.9)

{
dX(t) = A(t)dt+ σdW(t) (t ≥ 0)

X(0) = x0.

We write

X(t) = (X1(t), X2(t), . . . , Xn(t))T .

The stochastic differential equation means that for each index i, we have dX i(t) =

Ai(t)dt+ σdW i(t).

ITÔ CHAIN RULE AGAIN. Let u : Rn × [0,∞) → R and put

Y (t) := u(X(t), t).

What is dY ? Similarly to the computation above, we calculate

dY (t) = d[u(X(t), t)]

= ut(X(t), t)dt+
n∑

i=1

uxi
(X(t), t)dX i(t)

+
1

2

n∑

i,j=1

uxixj
(X(t), t)dX i(t)dXj(t).

Now use (7.9) and the heuristic rules that

dW i = (dt)1/2 and dW idW j =

{
dt if i = j

0 if i 6= j.

The second rule holds since the components of dW are independent. Plug these

identities into the calculation above and keep only terms of order dt or larger:

(7.10)

dY (t) = ut(X(t), t)dt+
n∑

i=1

uxi
(X(t), t)[Ai(t)dt+ σdW i(t)]

+
σ2

2

n∑

i=1

uxixi
(X(t), t)dt

= ut(X(t), t) +∇xu(X(t), t) · [A(t)dt+ σdW(t)]

+
σ2

2
∆u(X(t), t)dt.
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This is Itô’s chain rule in n-dimensions. Here

∆ =

n∑

i=1

∂2

∂x2i

denotes the Laplacian.

7.4.3 APPLICATIONS TO PDE.

A. A stochastic representation formula for harmonic functions. Con-

sider a region U ⊆ R
n and the boundary-value problem

(7.11)

{
∆u = 0 (x ∈ U)

u = g (x ∈ ∂U)

where, as above, ∆ =
∑n

i=1
∂2

∂x2
i

is the Laplacian. We call u a harmonic function.

We develop a stochastic representation formula for the solution of (7.11). Con-

sider the random process X(t) = W(t) + x; that is,

{
dX(t) = dW(t) (t > 0)

X(0) = x

and W(·) denotes an n-dimensional Brownian motion. To find the link with the

PDE (7.11), we define Y (t) := u(X(t)). Then Itô’s rule (7.10) gives

dY (t) = ∇u(X(t)) · dW(t) +
1

2
∆u(X(t))dt.

Since ∆u ≡ 0, we have

dY (t) = ∇u(X(t)) · dW(t);

which means

u(X(t)) = Y (t) = Y (0) +

∫ t

0

∇u(X(s)) · dW(s).

Let τ denote the (random) first time the sample path hits ∂U . Then, putting

t = τ above, we have

u(x) = u(X(τ))−
∫ τ

0

∇u · dW(s).

But u(X(τ)) = g(X(τ)), by definition of τ . Next, average over all sample paths:

u(x) = E[g(X(τ))]−E

[∫ τ

0

∇u · dW
]

.

The last term equals zero, according to (7.6). Consequently,

u(x) = E[g(X(τ))].
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INTERPRETATION. Consider all the sample paths of the Brownian motion

starting at x and take the average of g(X(τ)). This gives the value of u at x. �

B. A time-dependent problem. We next modify the previous calculation to

cover the terminal-value problem for the inhomogeneous backwards heat equation:

(7.11)

{

ut(x, t) +
σ2

2
∆u(x, t) = f(x, t) (x ∈ R

n, 0 ≤ t < T )

u(x, T ) = g(x).

Fix x ∈ R, 0 ≤ t < T . We introduce the stochastic process
{
dX(s) = σdW(s) (s ≥ t)

X(t) = x.

Use Itô’s chain rule (7.10) to compute du(X(s), s):

du(X(s), s) = us(X(s), s) ds+∇xu(X(s), s) · dX(s) +
σ2

2
∆u(X(s), s) ds.

Now integrate for times t ≤ s ≤ T , to discover

u(X(T ), T ) = u(X(t), t) +

∫ T

t

σ2

2
∆u(X(s), s) + us(X(s), s) ds

+

∫ T

t

σ∇xu(X(s), s) · dW(s).

Then, since u solves (7.11):

u(x, t) = E

(

g(X(T ))−
∫ T

t

f(X(s), s) ds

)

.

This is a stochastic representation formula for the solution u of the PDE (7.11).

�

7.5 DYNAMIC PROGRAMMING.

We now turn our attention to controlled stochastic differential equations, of the

form

(SDE)

{
dX(s) = f(X(s),A(s)) ds+ σdW(s) (t ≤ s ≤ T )

X(t) = x.

Therefore

X(τ) = x+

∫ τ

t

f(X(s),A(s)) ds+ σ[W(τ)−W(t)]

for all t ≤ τ ≤ T . We introduce as well the expected payoff functional

(P) Px,t[A(·)] := E

{
∫ T

t

r(X(s),A(s)) ds+ g(X(T ))

}

.
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The value function is

v(x, t) := sup
A(·)∈A

Px,t[A(·)].

We will employ the method of dynamic programming. To do so, we must (i)

find a PDE satisfied by v, and then (ii) use this PDE to design an optimal control

A∗(·).

7.5.1 A PDE FOR THE VALUE FUNCTION.

Let A(·) be any control, and suppose we use it for times t ≤ s ≤ t+ h, h > 0,

and thereafter employ an optimal control. Then

(7.12) v(x, t) ≥ E

{
∫ t+h

t

r(X(s),A(s)) ds+ v(X(t+ h), t+ h)

}

,

and the inequality in (7.12) becomes an equality if we takeA(·) = A∗(·), an optimal

control.

Now from (7.12) we see for an arbitrary control that

0 ≥ E

{
∫ t+h

t

r(X(s),A(s)) ds+ v(X(t+ h), t+ h)− v(x, t)

}

= E

{
∫ t+h

t

r ds

}

+ E{v(X(t+ h), t+ h)− v(x, t)}.

Recall next Itô’s formula:

(7.13)

dv(X(s), s) = vt(X(s), s) ds+
n∑

i=1

vxi
(X(s), s)dX i(s)

+
1

2

n∑

i,j=1

vxixj
(X(s), s)dX i(s)dXj(s)

= vt ds+∇xv · (f ds+ σdW(s)) +
σ2

2
∆v ds.

This means that

v(X(t+ h), t+ h)− v(X(t), t) =

∫ t+h

t

(

vt +∇xv · f +
σ2

2
∆v

)

ds

+

∫ t+h

t

σ∇xv · dW(s);

and so we can take expected values, to deduce

(7.14) E[v(X(t+ h), t+ h) − v(x, t)] = E

[
∫ t+h

t

(

vt +∇xv · f +
σ2

2
∆v

)

ds

]

.
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We derive therefore the formula

0 ≥ E

[
∫ t+h

t

(

r + vt +∇xv · f +
σ2

2
∆v

)

ds

]

.

Divide by h:

0 ≥ E

[

1

h

∫ t+h

t

r(X(s),A(s)) +

vt(X(s), s) + f(X(s),A(s)) · ∇xv(X(s), s) +
σ2

2
∆v(X(s), s) ds

]

.

If we send h→ 0, recall that X(t) = x and set A(t) := a ∈ A, we see that

0 ≥ r(x, a) + vt(x, t) + f(x, a) · ∇xv(x, t) +
σ2

2
∆v(x, t).

The above identity holds for all x, t, a and is actually an equality for the optimal

control. Hence

max
a∈A

{

vt + f · ∇xv +
σ2

2
∆v + r

}

= 0.

Stochastic Hamilton-Jacobi-Bellman equation. In summary, we have shown

that the value function v for our stochastic control problem solves this PDE:

(HJB)

{

vt(x, t) +
σ2

2
∆v(x, t) + maxa∈A {f(x, a) · ∇xv(x, t) + r(x, a)} = 0

v(x, T ) = g(x).

This semilinear parabolic PDE is the stochastic Hamilton–Jacobi–Bellman equation.

Our derivation has been very imprecise: see the references for rigorous deriva-

tions.

7.5.2 DESIGNING AN OPTIMAL CONTROL.

Assume now that we can somehow solve the (HJB) equation, and therefore

know the function v. We can then compute for each point (x, t) a value a ∈ A for

which ∇xv(x, t) · f(x, a) + r(x, a) attains its maximum. In other words, for each

(x, t) we choose a = α(x, t) such that

max
a∈A

[f(x, a) · ∇xv(x, t) + r(x, a)]

occurs for a = α(x, t). Next solve
{
dX∗(s) = f(X∗(s),α(X∗(s), s)) ds+ σdW(s)

X∗(t) = x.

assuming this is possible. Then A∗(s) = α(X∗(s), s) is an optimal feedback control.

7.6 APPLICATION: OPTIMAL PORTFOLIO SELECTION.
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Following is an interesting example worked out by Merton. In this model we

have the option of investing some of our wealth in either a risk-free bond (growing at

a fixed rate) or a risky stock (changing according to a random differential equation).

We also intend to consume some of our wealth as time evolves. As time goes on,

how can we best (i) allot our money among the investment opportunities and (ii)

select how much to consume?

We assume time runs from 0 to a terminal time T . Introduce the variables

X(t) = wealth at time t (random)

b(t) = price of a risk-free investment, say a bond

S(t) = price of a risky investment, say a stock (random)

α1(t) = fraction of wealth invested in the stock

α2(t) = rate at which wealth is consumed.

Then

(7.15) 0 ≤ α1(t) ≤ 1, 0 ≤ α2(t) (0 ≤ t ≤ T ).

We assume that the value of the bond grows at the known rate r > 0:

(7.16) db = rbdt;

whereas the price of the risky stock changes according to

(7.17) dS = RSdt+ σSdW.

Here r, R, σ are constants, with

R > r > 0, σ 6= 0.

This means that the average return on the stock is greater than that for the risk-free

bond.

According to (7.16) and (7.17), the total wealth evolves as

(7.18) dX = (1− α1(t))Xrdt+ α1(t)X(Rdt+ σdW )− α2(t)dt.

Let

Q := {(x, t) | 0 ≤ t ≤ T, x ≥ 0}
and denote by τ the (random) first time X(·) leaves Q. WriteA(t) = (α1(t), α2(t))T

for the control.

The payoff functional to be maximized is

Px,t[A(·)] = E

(∫ τ

t

e−ρsF (α2(s)) ds

)

,
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where F is a given utility function and ρ > 0 is the discount rate.

Guided by theory similar to that developed in §7.5, we discover that the corre-

sponding (HJB) equation is

(7.19)

ut + max
0≤a1≤1,a2≥0

{
(a1xσ)

2

2
uxx + ((1− a1)xr + a1xR− a2)ux + e−ρtF (a2)

}

= 0,

with the boundary conditions that

(7.20) u(0, t) = 0, u(x, T ) = 0.

We compute the maxima to find

(7.21) α1∗ =
−(R− r)ux
σ2xuxx

, F ′(α2∗) = eρtux,

provided that the constraints 0 ≤ α1∗ ≤ 1 and 0 ≤ α2∗ are valid: we will need to

worry about this later. If we can find a formula for the value function u, we will

then be able to use (7.21) to compute optimal controls.

Finding an explicit solution. To go further, we assume the utility function F

has the explicit form

F (a) = aγ (0 < γ < 1).

Next we guess that our value function has the form

u(x, t) = g(t)xγ,

for some function g to be determined. Then (7.21) implies that

α1∗ =
R − r

σ2(1− γ)
, α2∗ = [eρtg(t)]

1
γ−1 x.

Plugging our guess for the form of u into (7.19) and setting a1 = α1∗, a2 = α2∗, we

find
(

g′(t) + νγg(t) + (1− γ)g(t)(eρtg(t))
1

γ−1

)

xγ = 0

for the constant

ν :=
(R− r)2

2σ2(1− γ)
+ r.

Now put

h(t) := (eρtg(t))
1

1−γ

to obtain a linear ODE for h. Then we find

g(t) = e−ρt

[
1− γ

ρ− νγ

(

1− e
−(ρ−νγ)(T−t)

1−γ

)]1−γ

.

If R− r ≤ σ2(1− γ), then 0 ≤ α1∗ ≤ 1 and α2∗ ≥ 0 as required. �
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7.7 REFERENCES

The lecture notes [E], available online, present a fast but more detailed discus-

sion of stochastic differential equations. See also Oskendal’s nice book [O].

Good books on stochastic optimal control include Fleming-Rishel [F-R], Fleming-

Soner [F-S], and Krylov [Kr].
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APPENDIX: PROOFS OF THE PONTRYAGIN MAXIMUM PRINCIPLE

A.1 An informal derivation

A.2 Simple control variations

A.3 Free endpoint problem, no running payoff

A.4 Free endpoint problem with running payoffs

A.5 Multiple control variations

A.6 Fixed endpoint problem

A.7 References

A.1. AN INFORMAL DERIVATION.

In this first section we present a quick and informative, but imprecise, study of

variations for the free endpoint problem. This discussion motivates the introduction

of the control theory Hamiltonian H(x, p, a) and the costates p∗(·), but will not

provide all the information found in the full maximum principle. Sections A.2-A.6

will build upon the ideas we introduce here.

Adjoint linear dynamics. Let us start by considering an initial value problem

for a simple time-dependent linear system of ODE, having the form
{

ẏ(t) = A(t)y(t) (0 ≤ t ≤ T )

y(0) = y0.

The corresponding adjoint equation reads
{

ṗ(t) = −AT (t)p(t) (0 ≤ t ≤ T )

p(T ) = p0.

Note that this is a terminal value problem. To understand why we introduce the

adjoint equation, look at this calculation:

d

dt
(p · y) = ṗ · y + p · ẏ

= −(ATp) · y + p · (Ay)

= −p · (Ay) + p · (Ay)

= 0.

It follows that t 7→ y(t) · p(t) is constant, and therefore y(T ) · p0 = y0 · p(0). The

point is that by introducing the adjoint dynamics, we get a formula involving y(T ),

which as we will later see is sometimes very useful.

Variations of the control. We turn now to our basic free endpoint control

problem with the dynamics

(ODE)

{
ẋ(t) = f(x(t),α(t)) (t ≥ 0)

x(0) = x0.
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and payoff

(P) P [α(·)] =
∫ T

0

r(x(s),α(s)) ds+ g(x(T )).

Let α∗(·) be an optimal control, corresponding to the optimal trajectory x∗(·).
Our plan is to compute “variations” of the optimal control and to use an adjoint

equation as above to simplify the resulting expression. To simplify notation, we

drop the superscript ∗ for the time being.

Select ε > 0 and define the variation

αε(t) := α(t) + εβ(t) (0 ≤ t ≤ T ),

where β(·) is some given function selected so that αε(·) is an admissible control for

all sufficiently small ε > 0. Let us call such a function β(·) an acceptable variation

and for the time being, just assume it exists.

Denote by xε(·) the solution of (ODE) corresponding to the control αε(·). Then
we can write

xε(t) = x(t) + εy(t) + o(ε) (0 ≤ t ≤ T ),

where

(8.1)

{
ẏ = ∇xf(x,α)y+∇af(x,α)β (0 ≤ t ≤ T )

y(0) = 0.

We will sometimes write this linear ODE as ẏ = A(t)y + ∇af β for A(t) :=

∇xf(x(t),α(t)).

Variations of the payoff. Next, let us compute the variation in the payoff, by

observing that

d

dε
P [αε(·)]

∣
∣
∣
∣
ε=0

≤ 0,

since the control α(·) maximizes the payoff. Putting αε(·) in the formula for P [·]
and differentiating with respect to ε gives us the identity

(8.2)
d

dε
P [αε(·)]

∣
∣
∣
∣
ε=0

=

∫ T

0

∇xr(x,α)y+∇ar(x,α)β ds+∇g(x(T )) · y(T ).

We want to extract useful information from this inequality, but run into a major

problem since the expression on the left involves not only β, the variation of the

control, but also y, the corresponding variation of the state. The key idea now is

to use an adjoint equation for a costate p to get rid of all occurrences of y in (8.2)

and thus to express the variation in the payoff in terms of the control variation β.
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Designing the adjoint dynamics. Our opening discussion of the adjoint problem

strongly suggests that we enforce the terminal condition

p(T ) = ∇g(x(T ));

so that ∇g(x(T )) ·y(T ) = p(T ) ·y(T ), an expression we can presumably rewrite by

computing the time derivative of p · y and integrating. For this to work, our first

guess is that we should require that p(·) should solve ṗ = −ATp. But this does

not quite work, since we need also to get rid of the integral term involving ∇xr y.

But after some experimentation, we learn that everything works out if we re-

quire
{

ṗ = −∇xf p−∇xr (0 ≤ t ≤ T )

p(T ) = ∇g(x(T ).
In other words, we are assuming ṗ = −ATp−∇xr. Now calculate

d

dt
(p · y) = ṗ · y + p · ẏ

= −(ATp+∇xr) · y + p · (Ay +∇af β)

= −∇xr · y + p · ∇af β.

Integrating and remembering that y(0) = 0, we find

∇g(x(T )) · y =

∫ T

0

p · ∇af β −∇xr · y ds.

We plug this expression into (8.2), to learn that
∫ T

0

(p · ∇af +∇ar)β ds =
d

dε
P [αε(·)]

∣
∣
∣
∣
ε=0

≤ 0,

in which f and r are evaluated at (x,α). We have accomplished what we set out to

do, namely to rewrite the variation in the payoff in terms of the control variation

β.

Information about the optimal control. We rewrite the foregoing by reintro-

ducing the subscripts ∗:

(8.3)

∫ T

0

(p∗ · ∇af(x
∗,α∗) +∇ar(x

∗,α∗))β ds ≤ 0.

The inequality (8.3) must hold for every acceptable variation β(·) as above: what

does this tell us?

First, notice that the expression next to β within the integral is∇aH(x∗,p∗,α∗)

for H(x, p, a) = f(x, a) · p + r(x, a). Our variational methods in this section have

therefore quite naturally led us to the control theory Hamiltonian. Second, that

the inequality (8.3) must hold for all acceptable variations suggests that for each
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time, given x∗(t) and p∗(t), we should select α∗(t) as some sort of extremum of

H(x∗(t),p∗(t), a) among control values a ∈ A. And finally, since (8.3) asserts the

integral expression is nonpositive for all acceptable variations, this extremum is

perhaps a maximum. This last is the key assertion of the full Pontryagin Maximum

Principle.

CRITIQUE. To be clear: the variational methods described above do not actually

imply all this, but are nevertheless suggestive and point us in the correct direction.

One big problem is that there may exist no acceptable variations in the sense above

except for β(·) ≡ 0; this is the case if for instance the set A of control values is finite.

The real proof in the following sections must therefore introduce a different sort of

variation, a so-called simple control variation, in order to extract all the available

information.

A.2. SIMPLE CONTROL VARIATIONS.

Recall that the response x(·) to a given control α(·) is the unique solution of

the system of differential equations:

(ODE)

{
ẋ(t) = f(x(t),α(t)) (t ≥ 0)

x(0) = x0.

We investigate in this section how certain simple changes in the control affect the

response.

DEFINITION. Fix a time s > 0 and a control parameter value a ∈ A. Select

ε > 0 so small that 0 < s− ε < s and define then the modified control

αε(t) :=

{
a if s− ε < t < s

α(t) otherwise.

We call αε(·) a simple variation of α(·).

Let xε(·) be the corresponding response to our system:

(8.4)

{
ẋε(t) = f(xε(t),αε(t)) (t > 0)

xε(0) = x0.

We want to understand how our choices of s and a cause xε(·) to differ from x(·),
for small ǫ > 0.

NOTATION. Define the matrix-valued function A : [0,∞) → M
n×n by

A(t) := ∇xf(x(t),α(t)).

In particular, the (i, j)th entry of the matrix A(t) is

f i
xj
(x(t),α(t)) (1 ≤ i, j ≤ n).
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We first quote a standard perturbation assertion for ordinary differential equa-

tions:

LEMMA A.1 (CHANGING INITIAL CONDITIONS). Let yε(·) solve the

initial-value problem:
{

ẏε(t) = f(yε(t),α(t)) (t ≥ 0)

yε(0) = x0 + εy0 + o(ε).

Then

yε(t) = x(t) + εy(t) + o(ε) as ε→ 0,

uniformly for t in compact subsets of [0,∞), where
{

ẏ(t) = A(t)y(t) (t ≥ 0)

y(0) = y0.

Returning now to the dynamics (8.4), we establish

LEMMA A.2 (DYNAMICS AND SIMPLE CONTROL VARIATIONS). We

have

xε(t) = x(t) + εy(t) + o(ε) as ε→ 0,

uniformly for t in compact subsets of [0,∞), where

y(t) ≡ 0 (0 ≤ t ≤ s)

and

(8.5)

{
ẏ(t) = A(t)y(t) (t ≥ s)

y(s) = ys,

for

(8.6) ys := f(x(s), a)− f(x(s),α(s)).

NOTATION. We will sometimes write

y(t) = Y(t, s)ys (t ≥ s)

when (8.5) holds.

Proof. Clearly xε(t) = x(t) for 0 ≤ t ≤ s − ε. For times s − ε ≤ t ≤ s, we

have

xε(t)− x(t) =

∫ t

s−ε

f(xε(r), a)− f(x(r),α(r)) dr.

Thus, in particular,

xε(s)− x(s) = [f(x(s), a)− f(x(s),α(s))]ε+ o(ε).
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On the time interval [s,∞), x(·) and xε(·) both solve the same ODE, but with

differing initial conditions given by

xε(s) = x(s) + εys + o(ε),

for ys defined by (8.5).

According to Lemma A.1, we have

xε(t) = x(t) + εy(t) + o(ε) (t ≥ s),

the function y(·) solving (8.5). �

A.3. FREE ENDPOINT PROBLEM, NO RUNNING COST.

STATEMENT. We return to our usual dynamics

(ODE)

{
ẋ(t) = f(x(t),α(t)) (0 ≤ t ≤ T )

x(0) = x0,

and introduce also the terminal payoff functional

(P) P [α(·)] = g(x(T )),

to be maximized. We assume that α∗(·) is an optimal control for this problem,

corresponding to the optimal trajectory x∗(·).
We are taking the running payoff r ≡ 0, and hence the control theory Hamil-

tonian is

H(x, p, a) = f(x, a) · p.
We must find p∗ : [0, T ] → R

n, such that

(ADJ) ṗ∗(t) = −∇xH(x∗(t),p∗(t),α∗(t)) (0 ≤ t ≤ T )

and

(M) H(x∗(t),p∗(t),α∗(t)) = max
a∈A

H(x∗(t),p∗(t), a).

To simplify notation we henceforth drop the superscript ∗ and so write x(·) for
x∗(·), α(·) for α∗(·), etc. Introduce the function A(·) = ∇xf(x(·),α(·)) and the

control variation αε(·), as in the previous section.

THE COSTATE. We now define p : [0, T ] → R to be the unique solution of the

terminal-value problem

(8.7)

{
ṗ(t) = −AT (t)p(t) (0 ≤ t ≤ T )

p(T ) = ∇g(x(T )).

We employ p(·) to help us calculate the variation of the terminal payoff:
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LEMMA.3 (VARIATION OF TERMINAL PAYOFF). We have

(8.8)
d

dε
P [αε(·)]|ε=0 = p(s) · [f(x(s), a)− f(x(s),α(s))].

Proof. According to Lemma A.2,

P [αε(·)] = g(xε(T )) = g(x(T ) + εy(T ) + o(ε)),

where y(·) satisfies (8.5). We then compute

(8.9)
d

dε
P [αε(·)]|ε=0 = ∇g(x(T )) · y(T ).

On the other hand, (8.5) and (8.7) imply

d

dt
(p(t) · y(t)) = ṗ(t) · y(t) + p(t) · ẏ(t)

= −AT (t)p(t) · y(t) + p(t) ·A(t)y(t)

= 0.

Hence

∇g(x(T )) · y(T ) = p(T ) · y(T ) = p(s) · y(s) = p(s) · ys.
Since ys = f(x(s), a)− f(x(s),α(s)), this identity and (8.9) imply (8.8). �

We now restore the superscripts ∗ in our notation.

THEOREM A.4 (PONTRYAGIN MAXIMUM PRINCIPLE). There ex-

ists a function p∗ : [0, T ] → R
n satisfying the adjoint dynamics (ADJ), the maxi-

mization principle (M) and the terminal/transversality condition (T).

Proof. The adjoint dynamics and terminal condition are both in (8.7). To

confirm (M), fix 0 < s < T and a ∈ A, as above. Since the mapping ε 7→ P [αε(·)]
for 0 ≤ ε ≤ 1 has a maximum at ε = 0, we deduce from Lemma A.3 that

0 ≥ d

dε
P [αε(·)] = p∗(s) · [f(x∗(s), a)− f(x∗(s),α∗(s)].

Hence

H(x∗(s),p∗(s), a) = f(x∗(s), a) · p∗(s)

≤ f(x∗(s),α∗(s)) · p∗(s) = H(x∗(s),p∗(s),α∗(s))

for each 0 < s < T and a ∈ A. This proves the maximization condition (M). �

A.4. FREE ENDPOINT PROBLEM WITH RUNNING COSTS
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We next cover the case that the payoff functional includes a running payoff:

(P) P [α(·)] =
∫ T

0

r(x(s),α(s)) ds+ g(x(T )).

The control theory Hamiltonian is now

H(x, p, a) = f(x, a) · p+ r(x, a)

and we must manufacture a costate function p∗(·) satisfying (ADJ), (M) and (T).

ADDING A NEW VARIABLE. The trick is to introduce another variable

and thereby convert to the previous case. We consider the function xn+1 : [0, T ] → R

given by

(8.10)

{
ẋn+1(t) = r(x(t),α(t)) (0 ≤ t ≤ T )

xn+1(0) = 0,

where x(·) solves (ODE). Introduce next the new notation

x̄ :=

(
x

xn+1

)

=







x1
...
xn
xn+1






, x̄0 :=

(
x0

0

)

=







x01
...
x0n
0






,

x̄(t) :=

(
x(t)

xn+1(t)

)

=







x1(t)
...

xn(t)
xn+1(t)






, f̄(x̄, a) :=

(
f(x, a)
r(x, a)

)

=







f1(x, a)
...

fn(x, a)
r(x, a)






,

and

ḡ(x̄) := g(x) + xn+1.

Then (ODE) and (8.10) produce the dynamics

(ODE)

{
˙̄x(t) = f̄(x̄(t),α(t)) (0 ≤ t ≤ T )

x̄(0) = x̄0.

Consequently our control problem transforms into a new problem with no running

payoff and the terminal payoff functional

(P) P̄ [α(·)] := ḡ(x̄(T )).

We apply Theorem A.4, to obtain p̄∗ : [0, T ] → R
n+1 satisfying (M) for the Hamil-

tonian

(8.11) H̄(x̄, p̄, a) = f̄(x̄, a) · p̄.

Also the adjoint equations (ADJ) hold, with the terminal transversality condition

(T) p̄∗(T ) = ∇ḡ(x̄∗(T )).
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But f̄ does not depend upon the variable xn+1, and so the (n+1)th equation in the

adjoint equations (ADJ) reads

ṗn+1,∗(t) = −H̄xn+1
= 0.

Since ḡxn+1
= 1, we deduce that

(8.12) pn+1,∗(t) ≡ 1.

As the (n + 1)th component of the vector function f̄ is r, we then conclude from

(8.11) that

H̄(x̄, p̄, a) = f(x, a) · p+ r(x, a) = H(x, p, a).

Therefore

p∗(t) :=






p1,∗(t)
...

pn,∗(t)






satisfies (ADJ), (M) for the Hamiltonian H. �

A.5. MULTIPLE CONTROL VARIATIONS.

To derive the Pontryagin Maximum Principle for the fixed endpoint problem in

§A.6 we will need to introduce some more complicated control variations, discussed

in this section.

DEFINITION. Let us select times 0 < s1 < s2 < · · · < sN , positive numbers

0 < λ1, . . . , λN , and also control parameters a1, a2, . . . , aN ∈ A.

We generalize our earlier definition (8.1) by now defining

(8.13) αǫ(t) :=

{
ak if sk − λkǫ ≤ t < sk (k = 1, . . . , N)

α(t) otherwise,

for ǫ > 0 taken so small that the intervals [sk − λkǫ, sk] do not overlap. This we

will call a multiple variation of the control α(·).

Let xǫ(·) be the corresponding response of our system:

(8.14)

{
ẋǫ(t) = f(xǫ(t),αǫ(t)) (t ≥ 0)

xǫ(0) = x0.

NOTATION. (i) As before, A(·) = ∇xf(x(·),α(·)) and we write

(8.15) y(t) = Y(t, s)ys (t ≥ s)

to denote the solution of

(8.16)

{
ẏ(t) = A(t)y(t) (t ≥ s)

y(s) = ys,
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where ys ∈ R
n is given.

(ii) Define

(8.17) ysk := f(x(sk), ak))− f(x(sk),α(sk))

for k = 1, . . . , N .

We next generalize Lemma A.2:

LEMMA A.5 (MULTIPLE CONTROL VARIATIONS). We have

(8.18) xǫ(t) = x(t) + ǫy(t) + o(ǫ) as ǫ→ 0,

uniformly for t in compact subsets of [0,∞), where

(8.19)







y(t) = 0 (0 ≤ t ≤ s1)

y(t) =
∑m

k=1 λkY(t, sk)y
sk (sm ≤ t ≤ sm+1, m = 1, . . . , N − 1)

y(t) =
∑N

k=1 λkY(t, sk)y
sk (sN ≤ t).

DEFINITION. The cone of variations at time t is the set

(8.20) K(t) :=

{
N∑

k=1

λkY(t, sk)y
sk

∣
∣
∣
∣

N = 1, 2, . . . , λk > 0, ak ∈ A,
0 < s1 ≤ s2 ≤ · · · ≤ sN < t

}

.

Observe that K(t) is a convex cone in R
n, which according to Lemma A.5

consists of all changes in the state x(t) (up to order ε) we can effect by multiple

variations of the control α(·).
We will study the geometry of K(t) in the next section, and for this will require

the following topological lemma:

LEMMA A.6 (ZEROES OF A VECTOR FIELD). Let S denote a closed,

bounded, convex subset of Rn and assume p is a point in the interior of S. Suppose

Φ : S → R
n

is a continuous vector field that satisfies the strict inequalities

(8.21) |Φ(x)− x| < |x− p| for all x ∈ ∂S.

Then there exists a point x ∈ S such that

(8.22) Φ(x) = p.
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Proof. 1. Suppose first that S is the unit ball B(0, 1) and p = 0. Squaring

(8.21), we deduce that

Φ(x) · x > 0 for all x ∈ ∂B(0, 1).

Then for small t > 0, the continuous mapping

Ψ(x) := x− tΦ(x)

maps B(0, 1) into itself, and hence has a fixed point x∗ according to Brouwer’s

Fixed Point Theorem. And then Φ(x∗) = 0.

2. In the general case, we can always assume after a translation that p = 0.

Then 0 belongs to the interior of S. We next map S onto B(0, 1) by radial dilation,

and map Φ by rigid motion. This process converts the problem to the previous

situation. �

A.6. FIXED ENDPOINT PROBLEM.

In this last section we treat the fixed endpoint problem, characterized by the

constraint

(8.23) x(τ) = x1,

where τ = τ [α(·)] is the first time that x(·) hits the given target point x1 ∈ R
n.

The payoff functional is

(P) P [α(·)] =
∫ τ

0

r(x(s),α(s)) ds.

ADDING A NEW VARIABLE. As in §A.4 we define the function xn+1 :

[0, τ ] → R by
{
ẋn+1(t) = r(x(t),α(t)) (0 ≤ t ≤ τ)

xn+1(0) = 0,

and reintroduce the notation

x̄ :=

(
x

xn+1

)

=







x1
...
xn
xn+1






, x̄0 :=

(
x0

0

)

=







x01
...
x0n
0






,

x̄(t) :=

(
x(t)

xn+1(t)

)

=







x1(t)
...

xn(t)
xn+1(t)






, f̄(x̄, a) :=

(
f(x, a)
r(x, a)

)

=







f1(x, a)
...

fn(x, a)
r(x, a)






,
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with

ḡ(x̄) = xn+1.

The problem is therefore to find controlled dynamics satisfying

(ODE)

{
˙̄x(t) = f̄(x̄(t),α(t)) (0 ≤ t ≤ τ)

x̄(0) = x̄0,

and maximizing

(P) ḡ(x̄(τ)) = xn+1(τ),

τ being the first time that x(τ) = x1. In other words, the first n components of

x̄(τ) are prescribed, and we want to maximize the (n+ 1)th component.

We assume that α∗(·) is an optimal control for this problem, corresponding

to the optimal trajectory x∗(·); our task is to construct the corresponding costate

p∗(·), satisfying the maximization principle (M). As usual, we drop the superscript

∗ to simplify notation.

THE CONE OF VARIATIONS. We will employ the notation and theory from

the previous section, changed only in that we now work with n+1 variables (as we

will be reminded by the overbar on various expressions).

Our program for building the costate depends upon our taking multiple varia-

tions, as in §A.5, and understanding the resulting cone of variations at time τ :

(8.24) K = K(τ) :=

{
N∑

k=1

λkY(τ, sk)ȳ
sk

∣
∣
∣
∣

N = 1, 2, . . . , λk > 0, ak ∈ A,
0 < s1 ≤ s2 ≤ · · · ≤ sN < τ

}

,

for

(8.25) ȳsk := f̄(x̄(sk), ak)− f̄(x̄(sk),α(sk)).

We are now writing

(8.26) ȳ(t) = Y(t, s)ȳs

for the solution of

(8.27)

{
˙̄y(t) = Ā(t)ȳ(t) (s ≤ t ≤ τ)

ȳ(s) = ȳs,

with Ā(·) := ∇x̄f̄(x̄(·),α(·)).
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LEMMA A.7 (GEOMETRY OF THE CONE OF VARIATIONS). We

have

(8.28) en+1 /∈ K0.

Here K0 denotes the interior of K and ek = (0, . . . , 1, . . . , 0)T , the 1 in the k-th

slot.

Proof. 1. If (8.28) were false, there would then exist n+1 linearly independent

vectors z1, . . . , zn+1 ∈ K such that

en+1 =
n+1∑

k=1

λkz
k

with positive constants

λk > 0

and

(8.29) zk = Y(τ, sk)ȳ
sk

for appropriate times 0 < s1 < s1 < · · · < sn+1 < τ and vectors ȳsk = f̄(x̄(sk), ak))−
f̄(x̄(sk),α(sk)), for k = 1, . . . , n+ 1.

2. We will next construct a control αǫ(·), having the multiple variation form

(8.13), with corresponding response x̄ǫ(·) = (xǫ(·)T , xn+1
ǫ (·))T satisfying

(8.30) xǫ(τ) = x1

and

(8.31) xn+1
ǫ (τ) > xn+1(τ).

This will be a contradiction to the optimality of the control α(·): (8.30) says that

the new control satisfies the endpoint constraint and (8.31) says it increases the

payoff.

3. Introduce for small η > 0 the closed and convex set

S :=

{

x =

n+1∑

k=1

λkz
k

∣
∣
∣
∣
∣
0 ≤ λk ≤ η

}

.

Since the vectors z1, . . . , zn+1 are independent, S has an interior.

Now define for small ǫ > 0 the mapping

Φǫ : S → R
n+1

by setting

Φǫ(x) := x̄ǫ(τ)− x̄(τ)
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for x =
∑n+1

k=1 λkz
k, where x̄ǫ(·) solves (8.14) for the control αε(·) defined by (8.13).

We assert that if µ, η, ǫ > 0 are small enough, then

Φǫ(x) = p := µen+1 = (0, . . . , 0, µ)T

for some x ∈ S. To see this, note that

|Φǫ(x)− x| = |x̄ǫ(τ)− x̄(τ)− x| = o(|x|) as x→ 0, x ∈ S

< |x− p| for all x ∈ ∂S.

Now apply Lemma A.6. �

EXISTENCE OF THE COSTATE. We now restore the superscripts ∗ and so

write x∗(·) for x(·), etc.

THEOREM A.8 (PONTRYAGIN MAXIMUM PRINCIPLE). Assuming

our problem is not abnormal, there exists a function p∗ : [0, τ∗] → R
n satisfying the

adjoint dynamics (ADJ) and the maximization principle (M).

The proof explains what “abnormal” means in this context.

Proof. 1. Since en+1 /∈ K0 according to Lemma A.7, there is a nonzero vector

w ∈ R
n+1 such that

(8.32) w · z ≤ 0 for all z ∈ K

and

(8.33) wn+1 ≥ 0.

Let p̄∗(·) solve (ADJ), with the terminal condition

p̄∗(τ) = w.

Then

(8.34) pn+1,∗(·) ≡ wn+1 ≥ 0.

Fix any time 0 ≤ s < τ , any control value a ∈ A, and set

ȳs := f̄(x̄∗(s), a)− f̄(x̄∗(s),α∗(s)).

Now solve {
˙̄y(t) = Ā(t)ȳ(t) (s ≤ t ≤ τ)

ȳ(s) = ȳs;

so that, as in §A.3,

0 ≥ w · ȳ(τ) = p̄∗(τ) · ȳ(τ) = p̄∗(s) · ȳ(s) = p̄∗(s) · ys.
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Therefore

p̄∗(s) · [f̄(x̄∗(s), a)− f̄(x̄∗(s),α∗(s))] ≤ 0;

and then

(8.35)
H̄(x̄∗(s), p̄∗(s), a) = f̄(x̄∗(s), a) · p̄∗(s)

≤ f̄(x̄∗(s),α∗(s)) · p̄∗(s) = H̄(x̄∗(s), p̄∗(s),α∗(s)),

for the Hamiltonian

H̄(x̄, p̄, a) = f̄(x̄, a) · p̄.

2. We now must address two situations, according to whether

(8.36) wn+1 > 0

or

(8.37) wn+1 = 0.

When (8.36) holds, we can divide p∗(·) by the absolute value of wn+1 and recall

(8.34) to reduce to the case that

pn+1,∗(·) ≡ 1.

Then, as in §A.4, the maximization formula (8.35) implies

H(x∗(s),p∗(s), a) ≤ H(x∗(s),p∗(s),α∗(s))

for

H(x, p, a) = f(x, a) · p+ r(x, a).

This is the maximization principle (M), as required.

When (8.37) holds, we have an abnormal problem, as discussed in the Remarks

and Warning after Theorem 4.4. Those comments explain how to reformulate the

Pontryagin Maximum Principle for abnormal problems. �

CRITIQUE. (i) The foregoing proofs are not complete, in that we have silently

passed over certain measurability concerns and also ignored in (8.29) the possibility

that some of the times sk are equal.

(ii) We have also not (yet) proved that

t 7→ H(x∗(t),p∗(t),α∗(t)) is constant

in §A.3 and A.4, and

H(x∗(t),p∗(t),α∗(t)) ≡ 0

in §A.5. �

124



A.7. REFERENCES.

We mostly followed Fleming-Rishel [F-R] for §A.2–§A.4 and Macki-Strauss [M-

S] for §A.5 and §A.6. Another approach is discussed in Craven [Cr]. Hocking [H]

has a nice heuristic discussion.
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