
EXERCISES FOR THE MINICOURSE ON
FRACTAL UNCERTAINTY PRINCIPLE

(WITH SOLUTIONS)

SEMYON DYATLOV

Abstract. These are companion exercises to the minicourse given at the Spring

School on Transfer Operators, organized by the Bernoulli Center, Lausanne, in March

2021.

1. Describe all the elements γ ∈ SL(2,R) such that

γ(R \ I◦2 ) = I1 where I1 := [1, 2], I2 := [−1, 0].

Note that these γ are all hyperbolic, i.e. | tr γ| > 2, which implies that γ has two fixed

points on R, one attractive and one repulsive. Find these fixed points. Show that any

point in I◦1 is the attractive point of some γ and similarly for repulsive points and I◦2 .

Solution: We need

γ(−1) = 2, γ(0) = 1.

Writing

γ =

(
a b

c d

)
, ad− bc = 1

we get the equations
b− a
d− c

= 2,
b

d
= 1.

Writing out in terms of a, b, we get

c =
a+ b

2
, d = b,

and using the equation ad− bc = 1 we get

(a− b)b = 2.

So it makes sense to parametrize by b 6= 0, obtaining

γ =

(
b+ 2

b
b

b+ 1
b
b

)
, γ(x) = 1 +

x

(b2 + 1)x+ b2
.

The fixed point equation is γ(x) = x, which can be written as the quadratic equation

cx2 + (d− a)x− b = 0
1
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which has solutions

x± =
a− d±

√
(a+ d)2 − 4

2c
=

1±
√
b4 + b2 + 1

b2 + 1
.

To see which one is attractive and which one is repulsive, compute

γ′(x±) =
1

(cx± + d)2
where cx± + d =

a+ b±
√

(a+ d)2 − 4

2
.

We see that γ′(x+) < 1 < γ′(x−), so x+ is the attractive point and x− is the repulsive

one. From the mapping properties of γ, or by direct computation, we see that x+ ∈ I1

and x− ∈ I2. Moreover, as b→ 0 we have

x+ → 2, x− → 0

and as b→∞ we have

x+ → 1, x− → −1

which gives the last statement.

2. Let Γ ⊂ SL(2,R) be a Schottky group, with generators γ1, . . . , γr. Show that it is

a free group with these generators, i.e. for any word a ∈ W , if γa = I then a = ∅.

Solution: Assume that a = a1 . . . an is a nonempty word. Since ∞ is contained

in the complement of Ian , we have γan(∞) ∈ Ian . Since an 6= an−1, γan(∞) is in

the complement of Ian−1 , thus γan−1an(∞) ∈ Ian−1 . Repeating this argument, we get

γa(∞) ∈ Ia1 . In particular, γa(∞) 6=∞, so γa cannot be the identity.

3. This exercise explains why elements of Schottky groups have bounded distortion.

(a) We first discuss the way that a general element γ ∈ SL(2,R) can map an interval

to another interval. Assume that I, J ⊂ R are intervals such that γ(I) = J . Define

the distortion factor of γ on I by

α(γ, I) := log
γ−1(∞)− x1

γ−1(∞)− x0

∈ R where I = [x0, x1].

(If γ−1(∞) = ∞, that is γ is an affine map, then we put α(γ, I) := 0.) Show that γ

can be factorized as

γ = γJ γα(γ,I) γ
−1
I , γα :=

(
eα/2 0

eα/2 − e−α/2 e−α/2

)
∈ SL(2,R)

where γI , γJ ∈ SL(2,R) are the affine maps such that γI([0, 1]) = I, γJ([0, 1]) = J .

(b) Show that for each R there exists C such that in the notation of part (a)

|α(γ, I)| ≤ R =⇒ C−1 |J |
|I|
≤ γ′(x) ≤ C

|J |
|I|

for all x ∈ I.
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(c) Let Γ be a Schottky group generated by γ1, . . . , γr ∈ SL(2,R). Show that there

exists CΓ such that for all nonempty a = a1 . . . an ∈ W we have

C−1
Γ |Ia| ≤ γ′a′(x) ≤ CΓ|Ia| for all x ∈ Ian .

That is, the derivatives of the map γa′ are of comparable size at different points of Ian .

(d) Using the following special case of Γ-equivariance of the Patterson–Sullivan

measure µ:

µ(Ia) =

∫
Ian

(γ′a′(x))δ dµ(x)

and the fact that µ(Ia) > 0 for every a ∈ A, show that for some constant CΓ depending

only on Γ

C−1
Γ |Ia|

δ ≤ µ(Ia) ≤ CΓ|Ia|δ.
Using this, show that ΛΓ is δ-regular up to scale 0 with some constant depending only

on Γ.

Solution: See §2 in arXiv:1704.02909.

4. This exercise explains why the transfer operator is of trace class on H(D). (See

for instance Dyatlov–Zworski, Mathematical Theory of Scattering Resonances, Appen-

dix B.4, for an introduction to trace class operators.) We consider the following simpler

setting: D ⊂ C is the unit disk, H(D) is the space of holomorphic functions in L2(D)

(it is a closed subspace of L2 and thus a Hilbert space), and we consider the operator

L : H(D)→ H(D), Lf(z) = f(z/2).

Show that L is trace class using one or both of the following methods:

(a) the fact that {zk}k∈N0 is an orthogonal basis in H(D);

Solution: We have L(zk) = 2−kzk, so L is self-adjoint on H(D) and has eigenvalues

2−k, k ∈ N0. The series
∑∞

k=0 2−k converges, so L is trace class.

(b) the Cauchy integral formula, where γ ⊂ D is a contour surrounding the disk {|z| ≤
1
2
}

Lf(z) =
1

2πi

∮
γ

Lwf(z) dw, Lwf(z) =
f(w)

w − z/2
,

together with the fact that each Lw is a rank 1 operator. (This solution easily adapts

to the transfer operators that we study, where the key fact is that γa(Db) b Da when

a 6= b.)

Solution: Each Lw is a rank 1 operator, in fact Lw = uw⊗δw where δw : H(D)→ C
is the delta function at w, δw(f) = f(w), and uw(z) = 1

w−z/2 ∈ H(D). Thus in

particular Lw is trace class. Since both δw and uw depend continuously on w (the first

one as a functional on H(D) with operator norm, the second one as an element of

H(D)), Lw depends continuously on w in the Banach space of trace class operators

http://arxiv.org/abs/1704.02909
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on H(D). So the integral above converges in that Banach space, which shows that L

is trace class.

5. Assume that Γ is a Schottky group generated by just two intervals I1, I2. (The

corresponding convex co-compact hyperbolic surface is a hyperbolic cylinder.) Let

x1 ∈ I1, x2 ∈ I2 be the fixed points of γ1 (and thus of γ2 = γ−1
1 ). Let Ls : H(D) →

H(D) be the transfer operator where D = D1 tD2 ⊂ C.

Show that the resonances (i.e. the values s ∈ C for which the equation Lsu = u has

a nonzero solution u ∈ H(D)) are given by

s = −j +
2πi

`
k, j ∈ N0, k ∈ Z, ` := − log γ′1(x1) = − log γ′2(x2) > 0.

(In fact, ` is the length of the closed geodesic on the cylinder Γ\H2.)

Hint: if Lsu = u, then let j be the vanishing order of u at x1 and expand the

equation at z = x1.

Solution: First of all, putting x := x1, y := x2 in the identity |γ1(x) − γ1(y)|2 =

γ′1(x)γ′1(y)|x− y|2 we get γ′1(x1)γ′1(x2) = 1. Thus the definition of ` makes sense.

We have for u ∈ H(D)

Lsu(z) =

{
(γ′1(z))su(γ1(z)), z ∈ D1;

(γ′2(z))su(γ2(z)), z ∈ D2.

The disks D1, D2 do not interact so we can consider u separately on these two. Let us

focus on D1.

Assume that Lsu = u for some s ∈ C and u ∈ H(D1) \ {0}. Let j ∈ N0 be the

vanishing order of u at z = x1. Multiplying u by a constant we may assume that

u(z) = (z − x1)j +O(|z − x1|j+1) as z → x1.

Expanding the identity u(z) = Lsu(z) at z = x1 and using that

γ1(z)− x1 = e−`(z − x1) +O(|z − x1|2)

we get

(z − x1)j +O(|z − x1|j+1) = e−`(s+j)(z − x1)j +O(|z − x1|j+1)

which implies that e−`(s+j) = 1 and thus

s = −j +
2πi

`
k for some k ∈ Z. (0.1)

Now, assume that s has the form (0.1) for some j ∈ N0, k ∈ Z. We construct a

nonzero u ∈ H(D) such that Lsu = u. Let us write

γ′1(z) = e−ϕ(z), γ1(z)− x1 = (z − x1)e−ψ(z), z ∈ D1
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where ϕ, ψ are holomorphic and bounded on D1 and ϕ(x1) = ψ(x1) = `. We look for

u in the form

u(z) = (z − x1)jev(z)

where v is some bounded holomorphic function on D1. Then Lsu = u is equivalent to

the following equation for v:

ev(z) = e−sϕ(z)−jψ(z)+v(γ1(z)), z ∈ D1.

To satisfy the latter it suffices to construct v such that

v(z) = v(γ1(z)) + θ(z), z ∈ D1 (0.2)

where θ(z) := −sϕ(z)−jψ(z)+2πik is holomorphic and bounded on D1 and θ(x1) = 0.

Now, to solve (0.2) we put

v(z) :=
∞∑
n=0

θ(γn1 (z)), z ∈ D1

where the terms of the series are holomorphic in D1 and the series converges uniformly

in D1 since γn1 (z)→ x1 exponentially fast as n→∞.

6. Show the following version of the ‘Patterson–Sullivan’ gap: if Re s > δ then the

equation Lsu = u has no nonzero solution u ∈ H(D). To do this, show that a

sufficiently large power Lns is a contracting operator on C(I) with the supremum norm,

by writing out Lns as a sum over words in Wn and using the results of Exercise 3.

Solution: Put α := Re s > δ. Take large n. Then for any f ∈ C(I) we have

Lnsf(x) =
∑
a∈Wn
a→b

(γ′a(x))sf(γa(x)), x ∈ Ib

where a→ b means that an 6= b where a = a1 . . . an.

By Exercise 3(c) we have |(γ′a(x))s| = |γ′a(x)|α ≤ C|Ia|α for x ∈ Ib, a → b. Here C

is a constant independent of n. Therefore

sup
I
|Lnsf | ≤ rn sup

I
|f |, rn := C

∑
a∈Wn

|Ia|α.

Now by Exercise 3(d) we have∑
a∈Wn

|Ia|δ ≤ C
∑
a∈Wn

µ(Ia) ≤ C.

Since α > δ and maxa∈Wn |Ia| → 0 as n → ∞, we get rn → 0 as n → ∞. Thus for n

large enough, Lns is a contraction on C(I) with the uniform norm. If u ∈ H(D) and

Lsu = u, then it is easy to see that f := u|I ∈ C(I) and Lnsf = f , which implies that

u|I = 0 and thus (by analytic continuation for instance) u = 0.
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7. Fix δ ∈ [0, 1] and define the h-dependent intervals

X = Y = [−h1−δ, h1−δ].

Show that there exists a constant c > 0 such that

‖ 1lX Fh 1lY ‖L2(R)→L2(R) ≥ chmax(0, 1
2
−δ).

(Hint: apply this operator to a dilated cutoff function supported in Y .)

Solution: Fix χ ∈ C∞c ((−1, 1)) such that ‖χ‖L2 = 1 and χ̂(0) 6= 0 and define

u(y;h) = h
δ−1
2 χ(hδ−1y), ‖u‖L2 = 1, suppu ⊂ Y.

Then

Fhu(x) =
h−δ/2√

2π
χ̂(h−δx),

so we compute

‖ 1lX Fh 1lY u‖L2(R) =
1√
2π
‖χ̂‖L2([−h1−2δ,h1−2δ]) ≥ chmax(0, 1

2
−δ).

8. Let Z ⊂ W be a partition, i.e. a finite set of nonempty words such that

ΛΓ =
⊔
a∈Z

(ΛΓ ∩ Ia).

Let Z := {a | a ∈ Z} where a1 . . . an := an . . . a1. Define the transfer operator LZ,s by

LZ,sf(z) =
∑

a∈Z, a b

(γa′(z))sf(γa′(z)), z ∈ Db

where for a = a1 . . . an we put a′ := a1 . . . an−1 and say a b if an = b. Assume that

u ∈ H(D) satisfies Lsu = u. Show that LZ,su = u.

Solution: See Lemma 2.4 in arXiv:1704.02909.

http://arxiv.org/abs/1704.02909

