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Review

e [ C SL(2,R) Schottky group, Ar C R limit set, Ar(h) = Ar + [—h, h]

o Ls:H(D) — H(D) transfer operator, Zy(s) = det(/ — Ls)
o By p: L2(R) — L(R) defined by

Byaf(x) = (k)3 /R x =y~ Fx(xy)F(y) dy

where x € C°(R?), suppx N{x =y} =10
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Review

e I C SL(2,R) Schottky group, Ar C R limit set, Ar(h) = Ar + [—h, h]
o Ls:H(D) — H(D) transfer operator, Zy(s) = det(/ — Ls)
o By p: L2(R) — L(R) defined by

1 2i
Bunf) = @em) [ Jx =y x(e) () dy
where y € C®(R?), suppxN{x=y} =10

Theorem

Assume that for some fixed 8 and all x

| Inc () Brh Ine () | 2wy 12(my = O(h°) as h— 0.

Then for each v > 1 — 3, Zp(s) has finitely many zeroes with Re s > «.

v

This lecture will present a proof of this theorem, due to D—Zworski '20
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Outline of the proof

@ Since resonances form a discrete set and there are none with Res > §,
enough to show there are no resonances with Res > a, [Ims| > 1

oTakes:a+%whereoz>%—Band0<h<<1
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Outline of the proof

@ Since resonances form a discrete set and there are none with Res > §,
enough to show there are no resonances with Res > a, [Ims| > 1

oTake5:a+%whereoz>%—Band0<h<<1

@ Recall that s is a resonance iff | — L5 is not invertible. Assume that
Lsu = u for some u € H(D); we will show that u =0
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Outline of the proof

@ Since resonances form a discrete set and there are none with Res > 4,
enough to show there are no resonances with Res > a, [Ims| > 1

° Take5:oz+£whereoz>%—6and0<h<<1

@ Recall that s is a resonance iff | — L5 is not invertible. Assume that
Lsu = u for some u € H(D); we will show that u =0

o Step 1: get a rough bound on how fast u oscillates
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Outline of the proof

@ Since resonances form a discrete set and there are none with Res > §,
enough to show there are no resonances with Res > a, [Ims| > 1

° Take5:oz+£whereoz>%—6and0<h<<1

@ Recall that s is a resonance iff | — L5 is not invertible. Assume that
Lsu = u for some u € H(D); we will show that u =0

o Step 1: get a rough bound on how fast u oscillates

o Step 2: get finer information on the frequency localization of u

and write it in terms of u|x (s where Ar(h) = Ar + [—h, h]
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Outline of the proof

Since resonances form a discrete set and there are none with Res > ¢,
enough to show there are no resonances with Res > a, [Ims| > 1

oTake5:oz+ﬁ'whereoz>%—ﬂand0<h<<1

@ Recall that s is a resonance iff | — L5 is not invertible. Assume that
Lsu = u for some u € H(D); we will show that u =0

o Step 1: get a rough bound on how fast u oscillates
o Step 2: get finer information on the frequency localization of u
and write it in terms of u|x (s where Ar(h) = Ar + [—h, h]

o Step 3: use FUP to get [|ula-(wlli2 < Ch* 27| ula. 2
which gives u =0
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Outline of the proof

Since resonances form a discrete set and there are none with Res > §,
enough to show there are no resonances with Res > a, [Ims| > 1
° Take5:oz+£whereoz>%—6and0<h<<1

@ Recall that s is a resonance iff | — L5 is not invertible. Assume that
Lsu = u for some u € H(D); we will show that u =0

o Step 1: get a rough bound on how fast u oscillates

o Step 2: get finer information on the frequency localization of u
and write it in terms of u|x (s where Ar(h) = Ar + [—h, h]

o Step 3: use FUP to get [|ula-(wlli2 < Ch* 27| ula. 2
which gives u =0

o Note: some notation is different from D-Zworski '20

Semyon Dyatlov Minicourse on FUP, Lecture 3—4 March 22-25, 2021 3/16



Step 1: a priori bounds

How fast does the solution u = L u oscillate?

Recall from Lecture 1 the picture for Lof(x) = >,z f(7a(x)), x € Ip:

L
o
fepl]

L=

O )=}

Et
S \[9=

o L.f oscillates less than f when s is bounded
@ Thus for u = Lsu and s bounded, u should be very smooth
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Step 1: a priori bounds

Now let us plot Lsf with s = o + # h small:

Lsf(x) =Y ()Y F(a(x), x €Iy
a#b
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Step 1: a priori bounds

Now let us plot Lsf with s = o + ﬁ h small:

Lsf(x) =Y ()Y F(a(x), x €y
a#b

[/ .
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Step 1: a priori bounds

Now let us plot Lsf with s = o + ﬁ h small:

LoF(x) =Y ()Y F(a(x), x €y
a#b

L=

R’

e
=
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Step 1: a priori bounds

Now let us plot Lsf with s = o + ﬁ h small:

Ll

i
N

LoF(x) =Y ()Y F(a(x), x €y
a#b

il
o
W
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Step 1: a priori bounds

Now let us plot Lsf with s = o + ﬁ h small:

RN

v =
AN v

u = Lsu oscillates at frequencies < h~1, owing to the factor e '%87:(*)

LoF(x) = 3 (4(x))%eh P F(7,(x)),  x € Iy
a#b

7

=2
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Step 1: a priori bounds

Getting a frequency bound

We prove that u oscillates at frequencies < h™!, starting with
Lemma (Interpolated bound)

Let D:=||,.,D.CC, [:=DNR, D:=|l,c2Da €D,
Dy :=Dn{xImz > 0}, Di—Dﬂ{:l:Imz>0} Then 3¢ > 0:

sup\f!<(sup|f|) sup|f| " forall fe (D).
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Step 1: a priori bounds

Getting a frequency bound

We prove that u oscillates at frequencies < h™!, starting with
Lemma (Interpolated bound)

Let D:=||,.,D.CC, [:=DNR, D:=|l,c2Da €D,
Dy :=Dn{xImz > 0}, Di—Dﬂ{j:Imz>0} Then 3¢ > 0:

sup\f]< sup|f|) sup|f| - forall f e H(Dy).

Proof

o Let Fy : Dy — [0,1] be harmonic with F1|; =1, Fi[sp,\s =0

o log|f| < (logsup, |f[)F+ + (logsupp, |f|)(1 — F+) since this is true
on 9Dy and log |f| is subharmonic. Put ¢ := ming Fi > 0.

v
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Step 1: a priori bounds

For holomorphic functions, oscillating at frequencies < L on R is roughly
equivalent to being bounded by e!l'mzl in C. Define the weight

wi(z) .= e KImzl/h - \where K = K(T') > 1.
Lemma (A priori bound in the complex)
Let u € H(D), u= Lsu, s = a+ 4. Then supp |wxu| < Csup, |ul. J
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Step 1: a priori bounds

For holomorphic functions, oscillating at frequencies < L on R is roughly
equivalent to being bounded by e!!'™2l in C. Define the weight

wi(z) = e KIImzl/h \where K = K(I) > 1.
Lemma (A priori bound in the complex)

Let u € H(D), u= Lsu, s = a+ 4. Then supp |wxu| < Csup, |ul.

Proof

o Assume that supp, [74| < % for all a % b. (If not, use £7u = u and
that |7,| < Ce™9" for alla € W".)

v
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Step 1: a priori bounds

For holomorphic functions, oscillating at frequencies < L on R is roughly
equivalent to being bounded by e!!'™2l in C. Define the weight

wi(z) = e KIImzl/h \where K = K(I) > 1.
Lemma (A priori bound in the complex)

Let u € H(D), u= Lsu, s = a+ 4. Then supp |wxu| < Csup, |ul.

Proof

o Assume that supp, [74| < % for all a % b. (If not, use £7u = u and
that |7,| < Ce™9" for alla € W".)

o For z € Dy and a # b we have | Im,(z)| < 3|Imz|. Now write

(wiu)(2) = D5 ooty (14(2)* (wicu)(15(2))-

Kllmz| _ arg5(z)
h

For K > 1 get tl0Ls|(v3(2))°| < Ce™ 20 e
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Step 1: a priori bounds

For holomorphic functions, oscillating at frequencies < L on R is roughly
equivalent to being bounded by e!!'™2l in C. Define the weight

wi(z) = e KIImzl/h \where K = K(I) > 1.
Lemma (A priori bound in the complex)

Let u € H(D), u= Lsu, s = a+ 4. Then supp |wxu| < Csup, |ul.

Proof

o Assume that supp, [74| < % for all a % b. (If not, use £7u = u and
that |7,| < Ce™9" for alla € W".)

o For z € Dy and a # b we have | Im,(z)| < 3|Imz|. Now write

(wi)(2) = 37 g et (0(2)* (wicw) (7(2))-

mz ar; g(z)
For K> 1 get el |(7(2))*| < Ce™ "3 e ™0

wi (7a(z

@ So supp |wu| < Csupp |wku| < C(sup; [u])(supp |wicul)*—*
where the second inequality follows from the interpolation bound

v
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o Recall: u e H(D), u= Lsu, and supp [e"KI'mzl/hy| < Csup, |ul
o Semiclassical Fourier transform: Fyf(¢) = (2rh) "2 F(£/h)

Lemma (Fourier localization to frequencies < 2K /h)
Fix x € C°(/). Then VN, | Fn(xu)(€)| < Cuh"[¢|~N sup; |u| for €] > 2K.J

In particular this implies sup |xu| < Ch=Y/2||xul|;2 + Cnh" sup, |ul
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o Recall: u e H(D), u= Lsu, and supp [e"KI'mzl/hy| < Csup, |ul
e Semiclassical Fourier transform: Fpf(§) = (27Th)7%?(§/h)

Lemma (Fourier localization to frequencies < 2K /h)

Fix x € C(1). Then VN, |Fp(xu)(§)] < CNhN\f\*N sup, |u| for [£] > 2K.

In particular this implies sup |xu| < Ch=Y/2||xul|;2 + Cnh" sup, |ul

Proof

o Let ¥ € C°(D) be an almost analytic extension of x: X[r = X,
10,X(2)| < Cy|Imz|N.

v
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Step 1: a priori bounds

o Recall: u e H(D), u= Lsu, and supp [e"KI'mzl/hy| < Csup, |ul
e Semiclassical Fourier transform: Fpf(§) = (27Th)7%?(§/h)

Lemma (Fourier localization to frequencies < 2K /h)
Fix x € C(1). Then YN, |Fu(xu)(€)| < Cuh"[€|~N sup, |u| for |€] > 2K.

In particular this implies sup |xu| < Ch=Y/2||xul|;2 + Cnh" sup, |ul

Proof

o Let X € C°(D) be an almost analytic extension of x: X[r = X,
10,X(2)| < Cy|Imz|N. By Green's Theorem on D_ = D N {Imz < 0}

u(z)e_izgi(z) dz = / u(z)e_if;zgézfé(z) dzAdz

Im z<0

wate/m = |

oD_

£l lmz|

e For ¢ > 2K, bound \u(z)e_%zgézi(z)\ < Cye 7 |Ilmz|Nsup, |u]
and integrate. For £ < —2K, integrate instead over {Imz > 0}.
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Step 2: fine frequency localization

Large powers of transfer operators

Henceforth we only study v on / = DNR.

Since Lsu = u we also have L2u = u for all n, where

L) = Y () F(a(x), xel

acW”", a—b

and a — b means b # 3, where a = a; ... a,.
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Step 2: fine frequency localization

Large powers of transfer operators

Henceforth we only study v on / = DNR.

Since Lsu = u we also have L2u = u for all n, where

L) = Y () F(a(x), xel

acW”", a—b

and a — b means b # 3, where a = a; ... a,.

Recalling that s = o + ﬁ rewrite this as

L) = > (a)) e M (a(x)), x €l

acW", a—b

where the phase functions ¢, (x) are defined by
pa(x) = log7a(x), x €y
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Step 2: fine frequency localization

u(x) = Lou(x) = Y () e Pu(ra(x)), x €l

acWn", a—b

Each term in the sum is obtained by the following three operations:
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Step 2: fine frequency localization

u(x) = Lou(x) = Y () e Pu(ra(x)), x €l

acWn", a—b
Each term in the sum is obtained by the following three operations:

e Composition u — 5 u, where v,(x) ~ |la] < 1 when n>> 1. Since u
oscillates at frequencies < h™!, 4 u oscillates at frequencies < h™1|l,|.
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Step 2: fine frequency localization

u(x) = Lou(x) = Y () e Pu(ra(x)), x €l

acWn", a—b
Each term in the sum is obtained by the following three operations:

e Composition u — 5 u, where v,(x) ~ |la] < 1 when n>> 1. Since u
oscillates at frequencies < h™!, 4 u oscillates at frequencies < h™1|l,|.

e Multiplication by weight v — (7)*v where (74)* ~ |/a]*. Does not
change frequency localization much but changes the magnitude.
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Step 2: fine frequency localization

u(x) = Lou(x) = Y () e Pu(ra(x)), x €l

acWn", a—b
Each term in the sum is obtained by the following three operations:

e Composition u — 5 u, where v,(x) ~ |la] < 1 when n>> 1. Since u
oscillates at frequencies < h™!, 4 u oscillates at frequencies < h™1|l,|.

e Multiplication by weight v — (7)*v where (74)* ~ |/a]*. Does not
change frequency localization much but changes the magnitude.

o Phase shift v — ei%av, with the result oscillating at frequencies <

Sl
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Step 2: fine frequency localization

u(x) = Lou(x) = Y () e Pu(ra(x)), x €l

acWn", a—b
Each term in the sum is obtained by the following three operations:

e Composition u — 5 u, where v,(x) ~ |la] < 1 when n>> 1. Since u
oscillates at frequencies < h™1, 4w oscillates at frequencies < h™1|/|.

e Multiplication by weight v — (7)*v where (74)* ~ |/a]*. Does not
change frequency localization much but changes the magnitude.

o Phase shift v — ei%av, with the result oscillating at frequencies <

Sl

We fix p < 1 close to 1 and choose n so that
|l| ~ h” forall aeW”

(Typically impossible, will discuss how to fix this at the end of the lecture.)
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Step 2: fine frequency localization

u(x) = Lou(x) = h* S e ®u(y(x), x €l
acWn", a—b
Each term in the sum is obtained by the following three operations:
e Composition u — 5 u, where v,(x) ~ |la] < 1 when n>> 1. Since u
oscillates at frequencies < h™1, 4w oscillates at frequencies < h™1|/|.
e Multiplication by weight v — (7)*v where (74)* ~ |/a]*. Does not
change frequency localization much but changes the magnitude.

Sl

o Phase shift v — ei%av, with the result oscillating at frequencies <

We fix p < 1 close to 1 and choose n so that
|l| ~ h” forall aeW”

(Typically impossible, will discuss how to fix this at the end of the lecture.)
To simplify, we put p := 1 and replace the weight (7})® by h®
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What does the phase do?

u) = L0u() = b DT eru(ra(x)). x €l

acW", a—b

o We know that each 7 u oscillates at low frequencies < h™ 1|l ~ 1
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What does the phase do?

u) = L0u() = b DT eru(ra(x)). x €l

acW", a—b

o We know that each 7 u oscillates at low frequencies < h™ 1|l ~ 1

@ What does the phase pa(x) = log~,(x) look like?
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What does the phase do?

u) = L0u() = b DT eru(ra(x)). x €l

acW", a—b

o We know that each 7 u oscillates at low frequencies < h™ 1|l ~ 1
@ What does the phase pa(x) = logv,(x) look like?

@ An elementary computation shows that up to an additive constant
©a(x) = —2log(x — x5) where xz:=1, () € k,

a:

3,...a1 € W" istheinverseof a=a;...a,
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Step 2: fine frequency localization

What does the phase do?

u(x) = LIlu(x) = h* Z

_ai
x =@l hu(ra(x)), x€lb
acW" a—b

o We know that each 7 u oscillates at low frequencies < h™ 1|l ~ 1
@ What does the phase pa(x) = logv,(x) look like?

@ An elementary computation shows that up to an additive constant

©a(x) = —2log(x — x5) where xz:=1, () € k,

a:=a,...are W’

is the inverse of a=aj...a,

We plug in the formula for o, (ignoring the constant)
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Step 2: fine frequency localization

u(x) =Lu(x) =k D va(x), x€lb

acW", a—b
where  va(x) == |x — X§|_%’7;U(X), xel\ls

and 7} u oscillates at bounded frequencies.
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u(x) = LIu(x) = h® Z va(x), x€lp

acWn", a—b
where  va(x) =[x — xal_%%fu(x), xel\ k5

and 7} u oscillates at bounded frequencies. Define the operator 5, by
Baf(x) = (2eh) ¢ [ b=y ¥F(y) dy

then ‘similarly’ to Fpf(x) = (27h)~ f e Y f(y) dy we write
Va=DBpwa on [\ /5
for some wg supported in I5(Ch) = I5 + [~ Ch, Ch] and having L? norm
X 1
Iwall2 ~ |Ivall 2 = [[vaull ~ h2lull 2

where in the last estimate we recall that 7, ~ |[l| ~ hon I\ |5
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u(x) = LIu(x) = h® Z va(x), x€lp

acWn", a—b
where  va(x) =[x — xil_%%fu(x), xel\ k5

and 7} u oscillates at bounded frequencies. Define the operator 5, by
Baf(x) = (2eh) ¢ [ b=y ¥F(y) dy

then ‘similarly’ to Fpf(x) = (27h)~ f e Y f(y) dy we write
Va=DBpwa on [\ /5
for some wg supported in I5(Ch) = I5 + [~ Ch, Ch] and having L? norm
Iwall 2 ~ lIvall iz = [vaulliz ~ A2 ull 2y

where in the last estimate we recall that 7, ~ |[l| ~ hon I\ |5

(Cheating here, in reality would need p < 1 and O(h>°) remainder. . .)
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End of the proof: applying FUP

u(x) = LIu(x) = h* Z Va(x), x € Ip,

acW" a—b

_2i -1
Va = |x — xa| " hyau = Bywa, suppws C I5(Ch), [lwall2 ~ h72||ull2)

Byf(x) = (2rh) %/\x—yy (y) dy
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End of the proof: applying FUP

u(x) = LIu(x) = h* Z Va(x), x € Ip,

acW" a—b

2i 1
Vo= x — xa| " Fn3u = Bywa,  suppws C s(Ch), [|walliz ~ h~ 3 |ull iz
Byf(x) = (2rh) / x— y|" 3 F(y) dy
R
Define w := >, yyn Wa, then u = h*B, ,w on | where
_1 _2i
By pw(x) = (2h) 3 /R x — yI™ ¥ xC0 y)wiy) dy,

xGCCOO(]R2), suppxﬂ<|_|la><la>:®, x=1 on |_|la><lb
acA a#£b
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End of the proof: applying FUP

u(x) = LIu(x) = h* Z Va(x), x € Ip,

acW" a—b

2i 1
vo = |x — xa| Fntu = Byws, suppws C h(Ch), [lwalliz ~ A}l iz
Byf(x) = (2rh) / x— y|" 3 F(y) dy
R

Define w := >, yyn Wa, then u = h*B, ,w on | where

By w(x) = (2rh) 3 /R x =y ¥ x(y)wiy) dy,

xGCCOO(]R2), suppxﬂ<|_|la><la>:®, x=1 on |_|la><lb
acA a#£b

Since |k| ~ |la| ~ h, get suppw C Ar(Ch) and ||w/||;2 ~ h*%HuHLz(,\r(C,,))
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Step 3: applying FUP

To recap, we started with u € H(D), u = Lsu= Llu, s = a + 1 and got

_1
u=h*Byswonl, suppw CAr(Ch), |w|p~h2 HuHLz(,\r(Ch)),
Ar(Ch) := Ar + [~ Ch, CH],

Bunw(x) i= @rh) % [ ey Fxtxy)wly) dy
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Step 3: applying FUP

To recap, we started with u € H(D), u = Lsu= Llu, s = a + 1 and got

_1
u=h*Byswonl, suppw CAr(Ch), |w|p~h2 HuHLz(,\r(Ch)),
Ar(Ch) := Ar + [~ Ch, CH],

1
Bunw(x) i= @rh) % [ ey Fxtxy)wly) dy
Now the Fractal Uncertainty Principle gives

H ]I/\r(Ch) BX:h ]l/\l—(Ch) ||L2(R)—>L2(R) < Chﬁ
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Step 3: applying FUP

To recap, we started with u € H(D), u = Lsu= Llu, s = a + 1 and got

_1
u=h*Byswonl, suppw CAr(Ch), |w|p~h2 HUHB(/\r(Ch))a
Ar(Ch) := Ar + [~ Ch, CH],

1
Bunw(x) i= @rh) % [ ey Fxtxy)wly) dy
Now the Fractal Uncertainty Principle gives

H ]I/\r(Ch) BX:h ]l/\r(Ch) ||L2(R)—>L2(]R) < Chﬁ
so we estimate

lull c2ac(chyy = 1A In(chy By Inc(cnywll 2wy
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Step 3: applying FUP

To recap, we started with u € H(D), u = Lsu= Llu, s = a + 1 and got

_1
u=h*Byswonl, suppw CAr(Ch), |w|p~h2 HUHB(/\r(Ch))a
Ar(Ch) := Ar + [~ Ch, CH],

Bypw(x) = (2rh)~3 /R x =y~ x(x, y)wly) dy

Now the Fractal Uncertainty Principle gives

H ]I/\r(Ch) BX:h ]l/\r(Ch) ||L2(R)—>L2(]R) < Chﬁ
so we estimate

lulliz(ar(chy) = 1A% Inc(chy By Ine(cmywll gy < ChP |l 2w
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Step 3: applying FUP

To recap, we started with u € H(D), u = Lsu= Llu, s = a + 1 and got
1
u=h*By,swonl, suppw CAr(Ch), |lwl2~ h_EHUHLz(/\r(Ch))a
Ar(Ch) = Ar + [~ Ch, Ch],

Bypw(x) = (2rh)~3 /R x =y~ x(x, y)wly) dy

Now the Fractal Uncertainty Principle gives

H ]I/\r(Ch) BX:h ]I/\r(Ch) ||L2(]R)—>L2(]R) < Chﬁ
so we estimate

lulliz(ar(chy) = 1A% Inc(chy By Ine(cmywll gy < ChP |l 2w
_1
< Ch P72 || ;2 (ar (chy)

Semyon Dyatlov Minicourse on FUP, Lecture 3—4

March 22-25, 2021 14 / 16



Step 3: applying FUP

To recap, we started with u € H(D), u = Lsu= Llu, s = a + 1 and got

_1
u=h*Byswonl, suppw CAr(Ch), |w|p~h2 HUHB(/\r(Ch))a
Ar(Ch) == Ar + [~ Ch, Ch],

Bypw(x) = (2rh)~3 /R x =y~ x(x, y)wly) dy

Now the Fractal Uncertainty Principle gives

H ]I/\r(Ch) BX:h ]I/\r(Ch) ||L2(]R)—>L2(]R) < Chﬁ
so we estimate

lulliz(ar(chy) = 1A% Inc(chy By Ine(cmywll gy < ChP |l 2w
_1
< Ch P2 |lul| ;2 ar (cmy) < [l i2ar (cmy)
where we use that a > % — B and h< 1.

This gives u[z.(chy = 0 and thus u = 0, finishing the proof.
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Adapted transfer operator

@ As remarked above, it is typically impossible to fix n such that
|la| ~ h* for all words a of length n

@ So we instead consider the adapted partition
Z=Z(h):={aeW: || <h <|l|}

Note that Ar = | |,c-(Ar N fa).
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Adapted transfer operator

o As remarked above, it is typically impossible to fix n such that
|la| ~ h* for all words a of length n

@ So we instead consider the adapted partition
Z=Z(h)={aecW: || <h <|L|}
Note that Ar = | |,c-(Ar N fa).

o If Lou = uthen L u=uwhere Z:={a]ac Z},

= > (W) FOw(x), x €,

acZ,a~b

fora=aj...a,, a~bmeansa,=b,anda’ :=a;...a,_1
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Adapted transfer operator

@ As remarked above, it is typically impossible to fix n such that
|la] ~ h” for all words a of length n

@ So we instead consider the adapted partition
Z=Z(h):={aeW’: |L| <h <]t}

Note that Ar = | |,c-(Ar N fa).
o If Lu=uthen L5 u=uwhere Z:={a|ac Z},

= > (W) FOw(x), x €,

acZ,a~b

fora=aj...a,, a~bmeansa,=b,anda’ :=a;...a,_1
@ Run the previous argument for this £ _, using that Zis an

approximate partition (bounded overlap of I, a € Z) and | /5| ~ | /4]
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Thank you for your attention!
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