Minicourse on fractal uncertainty principle Lecture 3–4: FUP and transfer operators

Semyon Dyatlov (MIT)

March 22-25, 2021

Review

- $\Gamma \subset SL(2,\mathbb{R})$ Schottky group, $\Lambda_{\Gamma} \subset \mathbb{R}$ limit set, $\Lambda_{\Gamma}(h) = \Lambda_{\Gamma} + [-h,h]$
- $\mathcal{L}_s: \mathcal{H}(D) \to \mathcal{H}(D)$ transfer operator, $Z_M(s) = \det(I \mathcal{L}_s)$
- \bullet $\mathcal{B}_{\gamma,h}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ defined by

$$\mathcal{B}_{\chi,h}f(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x-y|^{-\frac{2i}{h}} \chi(x,y)f(y) dy$$

where $\chi \in C_c^{\infty}(\mathbb{R}^2)$, supp $\chi \cap \{x = y\} = \emptyset$

Theorem

Assume that for some fixed eta and all χ

$$\| \mathbb{1}_{\Lambda_{\Gamma}(h)} \mathcal{B}_{\chi,h} \mathbb{1}_{\Lambda_{\Gamma}(h)} \|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} = \mathcal{O}(h^{\beta}) \quad \text{as} \quad h \to 0.$$

Then for each $lpha>rac{1}{2}-eta$, $Z_M(s)$ has finitely many zeroes with Re $s\geq lpha$.

This lecture will present a proof of this theorem, due to D–Zworski '20

Review

- $\Gamma \subset SL(2,\mathbb{R})$ Schottky group, $\Lambda_{\Gamma} \subset \mathbb{R}$ limit set, $\Lambda_{\Gamma}(h) = \Lambda_{\Gamma} + [-h,h]$
- $\mathcal{L}_s : \mathcal{H}(D) \to \mathcal{H}(D)$ transfer operator, $Z_M(s) = \det(I \mathcal{L}_s)$
- \bullet $\mathcal{B}_{\gamma,h}: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ defined by

$$\mathcal{B}_{\chi,h}f(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x-y|^{-\frac{2i}{h}} \chi(x,y) f(y) dy$$

where $\chi \in C_c^{\infty}(\mathbb{R}^2)$, supp $\chi \cap \{x = y\} = \emptyset$

Theorem

Assume that for some fixed β and all χ

$$\| 1\!\!1_{\Lambda_{\Gamma}(h)} \mathcal{B}_{\chi,h} 1\!\!1_{\Lambda_{\Gamma}(h)} \|_{L^2(\mathbb{R}) \to L^2(\mathbb{R})} = \mathcal{O}(h^{\beta}) \quad \text{as} \quad h \to 0.$$

Then for each $\alpha > \frac{1}{2} - \beta$, $Z_M(s)$ has finitely many zeroes with Re $s \ge \alpha$.

This lecture will present a proof of this theorem, due to D–Zworski '20

- Since resonances form a discrete set and there are none with Re $s>\delta$, enough to show there are no resonances with Re $s\geq\alpha$, $|\operatorname{Im} s|\gg1$
- Take $s = \alpha + \frac{i}{h}$ where $\alpha > \frac{1}{2} \beta$ and $0 < h \ll 1$
- Recall that s is a resonance iff $I \mathcal{L}_s$ is not invertible. Assume that $\mathcal{L}_s u = u$ for some $u \in \mathcal{H}(D)$; we will show that u = 0
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $u|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h) = \Lambda_{\Gamma} + [-h, h]$
- Step 3: use FUP to get $||u|_{\Lambda_{\Gamma}(h)}||_{L^2} \le Ch^{\alpha-\frac{1}{2}+\beta}||u|_{\Lambda_{\Gamma}(h)}||_{L^2}$ which gives u=0
- Note: some notation is different from D-Zworski '20

- Since resonances form a discrete set and there are none with Re $s>\delta$, enough to show there are no resonances with Re $s\geq\alpha$, $|\operatorname{Im} s|\gg1$
- Take $s = \alpha + \frac{i}{h}$ where $\alpha > \frac{1}{2} \beta$ and $0 < h \ll 1$
- Recall that s is a resonance iff $I \mathcal{L}_s$ is not invertible. Assume that $\mathcal{L}_s u = u$ for some $u \in \mathcal{H}(D)$; we will show that u = 0
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $u|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h) = \Lambda_{\Gamma} + [-h, h]$
- Step 3: use FUP to get $\|u|_{\Lambda_{\Gamma}(h)}\|_{L^2} \le Ch^{\alpha-\frac{1}{2}+\beta}\|u|_{\Lambda_{\Gamma}(h)}\|_{L^2}$ which gives u=0
- Note: some notation is different from D-Zworski '20

- Since resonances form a discrete set and there are none with Re $s>\delta$, enough to show there are no resonances with Re $s\geq\alpha$, $|\operatorname{Im} s|\gg1$
- Take $s = \alpha + \frac{i}{h}$ where $\alpha > \frac{1}{2} \beta$ and $0 < h \ll 1$
- Recall that s is a resonance iff $I \mathcal{L}_s$ is not invertible. Assume that $\mathcal{L}_s u = u$ for some $u \in \mathcal{H}(D)$; we will show that u = 0
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $u|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h) = \Lambda_{\Gamma} + [-h, h]$
- Step 3: use FUP to get $||u|_{\Lambda_{\Gamma}(h)}||_{L^2} \le Ch^{\alpha-\frac{1}{2}+\beta}||u|_{\Lambda_{\Gamma}(h)}||_{L^2}$ which gives u=0
- Note: some notation is different from D-Zworski '20

- Since resonances form a discrete set and there are none with Re $s>\delta$, enough to show there are no resonances with Re $s\geq\alpha$, $|\operatorname{Im} s|\gg1$
- Take $s = \alpha + \frac{i}{h}$ where $\alpha > \frac{1}{2} \beta$ and $0 < h \ll 1$
- Recall that s is a resonance iff $I \mathcal{L}_s$ is not invertible. Assume that $\mathcal{L}_s u = u$ for some $u \in \mathcal{H}(D)$; we will show that u = 0
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $u|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h) = \Lambda_{\Gamma} + [-h, h]$
- Step 3: use FUP to get $\|u|_{\Lambda_{\Gamma}(h)}\|_{L^2} \le Ch^{\alpha-\frac{1}{2}+\beta}\|u|_{\Lambda_{\Gamma}(h)}\|_{L^2}$ which gives u=0
- Note: some notation is different from D-Zworski '20

- Since resonances form a discrete set and there are none with Re $s>\delta$, enough to show there are no resonances with Re $s\geq\alpha$, $|\operatorname{Im} s|\gg1$
- Take $s = \alpha + \frac{i}{h}$ where $\alpha > \frac{1}{2} \beta$ and $0 < h \ll 1$
- Recall that s is a resonance iff $I \mathcal{L}_s$ is not invertible. Assume that $\mathcal{L}_s u = u$ for some $u \in \mathcal{H}(D)$; we will show that u = 0
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $u|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h) = \Lambda_{\Gamma} + [-h, h]$
- Step 3: use FUP to get $\|u|_{\Lambda_{\Gamma}(h)}\|_{L^2} \leq Ch^{\alpha-\frac{1}{2}+\beta}\|u|_{\Lambda_{\Gamma}(h)}\|_{L^2}$ which gives u=0
- Note: some notation is different from D-Zworski '20

- Since resonances form a discrete set and there are none with Re $s>\delta$, enough to show there are no resonances with Re $s\geq\alpha$, $|\operatorname{Im} s|\gg1$
- Take $s = \alpha + \frac{i}{h}$ where $\alpha > \frac{1}{2} \beta$ and $0 < h \ll 1$
- Recall that s is a resonance iff $I \mathcal{L}_s$ is not invertible. Assume that $\mathcal{L}_s u = u$ for some $u \in \mathcal{H}(D)$; we will show that u = 0
- Step 1: get a rough bound on how fast u oscillates
- Step 2: get finer information on the frequency localization of u and write it in terms of $u|_{\Lambda_{\Gamma}(h)}$ where $\Lambda_{\Gamma}(h) = \Lambda_{\Gamma} + [-h, h]$
- Step 3: use FUP to get $\|u|_{\Lambda_{\Gamma}(h)}\|_{L^2} \leq Ch^{\alpha-\frac{1}{2}+\beta}\|u|_{\Lambda_{\Gamma}(h)}\|_{L^2}$ which gives u=0
- Note: some notation is different from D-Zworski '20

How fast does the solution $u = \mathcal{L}_s u$ oscillate?

Recall from Lecture 1 the picture for $\mathcal{L}_0 f(x) = \sum_{a \neq \bar{b}} f(\gamma_a(x)), x \in I_b$:

- $\mathcal{L}_s f$ oscillates less than f when s is bounded
- Thus for $u = \mathcal{L}_s u$ and s bounded, u should be very smooth

$$\mathcal{L}_s f(x) = \sum_{a \neq \bar{b}} (\gamma_a'(x))^s f(\gamma_a(x)), \quad x \in I_b$$

 $u=\mathcal{L}_s u$ oscillates at frequencies $\lesssim h^{-1}$, owing to the factor $e^{\frac{i}{h}\log\gamma_a'(\mathsf{x})}$

$$\mathcal{L}_s f(x) = \sum_{a \neq \bar{b}} (\gamma'_a(x))^s f(\gamma_a(x)), \quad x \in I_b$$

 $u = \mathcal{L}_s u$ oscillates at frequencies $\lesssim h^{-1}$, owing to the factor $e^{\frac{i}{h} \log \gamma_a'(x)}$

$$\mathcal{L}_s f(x) = \sum_{a \neq \overline{b}} (\gamma'_a(x))^s f(\gamma_a(x)), \quad x \in I_L$$

 $u = \mathcal{L}_s u$ oscillates at frequencies $\lesssim h^{-1}$, owing to the factor $e^{\frac{i}{h} \log \gamma_a'(x)}$

$$\mathcal{L}_s f(x) = \sum_{a \neq \bar{b}} (\gamma'_a(x))^s f(\gamma_a(x)), \quad x \in I_b$$

 $u = \mathcal{L}_s u$ oscillates at frequencies $\lesssim h^{-1}$, owing to the factor $e^{\frac{i}{h}\log \gamma_a'(x)}$

$$\mathcal{L}_s f(x) = \sum_{a \neq \bar{b}} (\gamma_a'(x))^{\alpha} e^{\frac{i}{h} \log \gamma_a'(x)} f(\gamma_a(x)), \quad x \in I_b$$

 $u=\mathcal{L}_s u$ oscillates at frequencies $\lesssim h^{-1}$, owing to the factor $e^{\frac{i}{h}\log\gamma_a'(\mathbf{x})}$

Getting a frequency bound

We prove that u oscillates at frequencies $\lesssim h^{-1}$, starting with

Lemma (Interpolated bound)

Let
$$D := \bigsqcup_{a \in \mathcal{A}} D_a \subset \mathbb{C}$$
, $I := D \cap \mathbb{R}$, $\widetilde{D} := \bigsqcup_{a \in \mathcal{W}^2} D_a \subseteq D$, $D_{\pm} := D \cap \{\pm \operatorname{Im} z > 0\}$, $\widetilde{D}_{\pm} := \widetilde{D} \cap \{\pm \operatorname{Im} z > 0\}$. Then $\exists c > 0$:
$$\sup_{\widetilde{D}_{\pm}} |f| \leq \left(\sup_{I} |f|\right)^{c} \left(\sup_{D_{\pm}} |f|\right)^{1-c} \quad \text{for all} \quad f \in \mathcal{H}(D_{\pm}).$$

Proof

- Let $F_{\pm}: D_{\pm} \to [0,1]$ be harmonic with $F_{\pm}|_{I} \equiv 1$, $F_{\pm}|_{\partial D_{\pm}\setminus I} \equiv 0$.
- $\log |f| \le (\log \sup_I |f|) F_{\pm} + (\log \sup_{D_{\pm}} |f|) (1 F_{\pm})$ since this is true on ∂D_{\pm} and $\log |f|$ is subharmonic. Put $c := \min_{\widetilde{D}_{\pm}} F_{\pm} > 0$.

Getting a frequency bound

We prove that u oscillates at frequencies $\lesssim h^{-1}$, starting with

Lemma (Interpolated bound)

Let
$$D := \bigsqcup_{a \in \mathcal{A}} D_a \subset \mathbb{C}$$
, $I := D \cap \mathbb{R}$, $\widetilde{D} := \bigsqcup_{a \in \mathcal{W}^2} D_a \in D$, $D_{\pm} := D \cap \{\pm \operatorname{Im} z > 0\}$, $\widetilde{D}_{\pm} := \widetilde{D} \cap \{\pm \operatorname{Im} z > 0\}$. Then $\exists c > 0$:
$$\sup_{\widetilde{D}_{\pm}} |f| \leq \left(\sup_{I} |f|\right)^{c} \left(\sup_{D_{\pm}} |f|\right)^{1-c} \text{ for all } f \in \mathcal{H}(D_{\pm}).$$

Proof

- Let $F_{\pm}: D_{\pm} \to [0,1]$ be harmonic with $F_{\pm}|_{I} \equiv 1$, $F_{\pm}|_{\partial D_{+}\setminus I} \equiv 0$.
- $\log |f| \le (\log \sup_I |f|) F_{\pm} + (\log \sup_{D_{\pm}} |f|) (1 F_{\pm})$ since this is true on ∂D_{\pm} and $\log |f|$ is subharmonic. Put $c := \min_{\widetilde{D}_{\pm}} F_{\pm} > 0$.

For holomorphic functions, oscillating at frequencies $\leq L$ on $\mathbb R$ is roughly equivalent to being bounded by $e^{L|\operatorname{Im} z|}$ in $\mathbb C$. Define the weight

$$w_K(z) := e^{-K|\operatorname{Im} z|/h}$$
 where $K = K(\Gamma) \gg 1$.

Lemma (A priori bound in the complex)

Let
$$u \in \mathcal{H}(D)$$
, $u = \mathcal{L}_s u$, $s = \alpha + \frac{i}{h}$. Then $\sup_D |w_K u| \leq C \sup_I |u|$.

Proof

- Assume that $\sup_{D_b} |\gamma_a'| \leq \frac{1}{2}$ for all $a \neq \overline{b}$. (If not, use $\mathcal{L}_s^n u = u$ and that $|\gamma_a'| \leq Ce^{-\theta n}$ for all $a \in \mathcal{W}^n$.)
- For $z \in D_b$ and $a \neq \bar{b}$ we have $|\operatorname{Im} \gamma_a(z)| \leq \frac{1}{2} |\operatorname{Im} z|$. Now write

$$(w_K u)(z) = \sum_{a \neq \overline{b}} \frac{w_K(z)}{w_K(\gamma_a(z))} (\gamma_a'(z))^s (w_K u) (\gamma_a(z)).$$

For
$$K\gg 1$$
 get $\frac{w_K(z)}{w_K(\gamma_a(z))}|(\gamma_a'(z))^s|\leq Ce^{-\frac{K|\operatorname{Im}z|}{2h}}e^{-\frac{\arg\gamma_a'(z)}{h}}\leq C$

For holomorphic functions, oscillating at frequencies $\leq L$ on \mathbb{R} is roughly equivalent to being bounded by $e^{L|\operatorname{Im} z|}$ in \mathbb{C} . Define the weight

$$w_{K}(z) := e^{-K|\operatorname{Im} z|/h} \quad \text{where} \quad K = K(\Gamma) \gg 1.$$

Lemma (A priori bound in the complex)

Let $u \in \mathcal{H}(D)$, $u = \mathcal{L}_s u$, $s = \alpha + \frac{i}{h}$. Then $\sup_D |w_K u| \leq C \sup_I |u|$.

Proof

- Assume that $\sup_{D_b} |\gamma_a'| \leq \frac{1}{2}$ for all $a \neq \overline{b}$. (If not, use $\mathcal{L}_s^n u = u$ and that $|\gamma_a'| \leq C e^{-\theta n}$ for all $\mathbf{a} \in \mathcal{W}^n$.)
- For $z \in D_b$ and $a \neq \bar{b}$ we have $|\operatorname{Im} \gamma_a(z)| \leq \frac{1}{2} |\operatorname{Im} z|$. Now write

For
$$K\gg 1$$
 get $\frac{w_K(z)}{w_K(\gamma_a(z))}|(\gamma_a'(z))^s|\leq Ce^{-\frac{K\lceil \operatorname{Im} z\rceil}{2h}}e^{-\frac{\operatorname{arg}\gamma_a(z)}{h}}\leq C$

For holomorphic functions, oscillating at frequencies $\leq L$ on $\mathbb R$ is roughly equivalent to being bounded by $e^{L|\operatorname{Im} z|}$ in $\mathbb C$. Define the weight

$$w_K(z) := e^{-K|\operatorname{Im} z|/h}$$
 where $K = K(\Gamma) \gg 1$.

Lemma (A priori bound in the complex)

Let
$$u \in \mathcal{H}(D)$$
, $u = \mathcal{L}_s u$, $s = \alpha + \frac{i}{h}$. Then $\sup_D |w_K u| \le C \sup_I |u|$.

Proof

- Assume that $\sup_{D_b} |\gamma_a'| \leq \frac{1}{2}$ for all $a \neq \overline{b}$. (If not, use $\mathcal{L}_s^n u = u$ and that $|\gamma_a'| \leq C e^{-\theta n}$ for all $a \in \mathcal{W}^n$.)
- For $z \in D_b$ and $a \neq \bar{b}$ we have $|\operatorname{Im} \gamma_a(z)| \leq \frac{1}{2} |\operatorname{Im} z|$. Now write

$$(w_{\mathcal{K}}u)(z) = \sum_{a \neq \bar{b}} \frac{w_{\mathcal{K}}(z)}{w_{\mathcal{K}}(\gamma_a(z))} (\gamma_a'(z))^s (w_{\mathcal{K}}u)(\gamma_a(z)).$$

For
$$K\gg 1$$
 get $\frac{w_K(z)}{w_K(\gamma_a(z))}|(\gamma_a'(z))^s|\leq Ce^{-\frac{K|\operatorname{Im}z|}{2h}}e^{-\frac{\operatorname{arg}\gamma_a'(z)}{h}}\leq C$

For holomorphic functions, oscillating at frequencies $\leq L$ on \mathbb{R} is roughly equivalent to being bounded by $e^{L|\operatorname{Im} z|}$ in \mathbb{C} . Define the weight

$$w_K(z) := e^{-K|\operatorname{Im} z|/h}$$
 where $K = K(\Gamma) \gg 1$.

Lemma (A priori bound in the complex)

Let
$$u \in \mathcal{H}(D)$$
, $u = \mathcal{L}_s u$, $s = \alpha + \frac{i}{h}$. Then $\sup_D |w_K u| \leq C \sup_I |u|$.

Proof

- Assume that $\sup_{D_b} |\gamma_a'| \leq \frac{1}{2}$ for all $a \neq \overline{b}$. (If not, use $\mathcal{L}_s^n u = u$ and that $|\gamma_a'| \leq Ce^{-\theta n}$ for all $\mathbf{a} \in \mathcal{W}^n$.)
- For $z \in D_b$ and $a \neq \bar{b}$ we have $|\operatorname{Im} \gamma_a(z)| \leq \frac{1}{2} |\operatorname{Im} z|$. Now write

$$(w_{K}u)(z) = \sum_{a \neq \overline{b}} \frac{w_{K}(z)}{w_{K}(\gamma_{a}(z))} (\gamma'_{a}(z))^{s} (w_{K}u)(\gamma_{a}(z)).$$

For
$$K\gg 1$$
 get $\frac{w_K(z)}{w_K(\gamma_a(z))}|(\gamma_a'(z))^s|\leq Ce^{-\frac{K|\operatorname{Im} z|}{2h}}e^{-\frac{\operatorname{arg}\gamma_a'(z)}{h}}\leq C$

- Recall: $u \in \mathcal{H}(D)$, $u = \mathcal{L}_s u$, and $\sup_D |e^{-K|\operatorname{Im} z|/h}u| \leq C \sup_I |u|$
- Semiclassical Fourier transform: $\mathcal{F}_h f(\xi) = (2\pi h)^{-\frac{1}{2}} \widehat{f}(\xi/h)$

Lemma (Fourier localization to frequencies $\leq 2K/h$)

Fix
$$\chi \in C_c^{\infty}(I)$$
. Then $\forall N$, $|\mathcal{F}_h(\chi u)(\xi)| \leq C_N h^N |\xi|^{-N} \sup_I |u|$ for $|\xi| \geq 2K$.

In particular this implies $\sup |\chi u| \le Ch^{-1/2} ||\chi u||_{L^2} + C_N h^N \sup_I |u|$

Proof

• Let $\widetilde{\chi} \in C_{\rm c}^{\infty}(D)$ be an almost analytic extension of χ : $\widetilde{\chi}|_{\mathbb{R}} = \chi$, $|\bar{\partial}_z \widetilde{\chi}(z)| \leq C_N |\operatorname{Im} z|^N$. By Green's Theorem on $D_- = D \cap \{\operatorname{Im} z < 0\}$

$$\widehat{\chi}u(\xi/h) = \int_{\partial D_{-}} u(z)e^{-\frac{i}{h}z\xi}\widetilde{\chi}(z) dz = \int_{\operatorname{Im} z < 0} u(z)e^{-\frac{i}{h}z\xi}\overline{\partial}_{z}\widetilde{\chi}(z) dz \wedge d\overline{z}$$

• For $\xi \geq 2K$, bound $|u(z)e^{-\frac{i}{h}z\xi}\bar{\partial}_z\widetilde{\chi}(z)| \leq C_N e^{-\frac{\xi |\operatorname{Im} z|}{h}}|\operatorname{Im} z|^N \sup_I |u|$ and integrate. For $\xi \leq -2K$, integrate instead over $\{\operatorname{Im} z > 0\}$.

- Recall: $u \in \mathcal{H}(D)$, $u = \mathcal{L}_s u$, and $\sup_D |e^{-K|\operatorname{Im} z|/h}u| \leq C \sup_I |u|$
- Semiclassical Fourier transform: $\mathcal{F}_h f(\xi) = (2\pi h)^{-\frac{1}{2}} \widehat{f}(\xi/h)$

Lemma (Fourier localization to frequencies $\leq 2K/h$)

Fix
$$\chi \in C_c^{\infty}(I)$$
. Then $\forall N$, $|\mathcal{F}_h(\chi u)(\xi)| \leq C_N h^N |\xi|^{-N} \sup_I |u|$ for $|\xi| \geq 2K$.

In particular this implies $\sup |\chi u| \le Ch^{-1/2} ||\chi u||_{L^2} + C_N h^N \sup_I |u|$

Proof

• Let $\widetilde{\chi} \in C_c^{\infty}(D)$ be an almost analytic extension of χ : $\widetilde{\chi}|_{\mathbb{R}} = \chi$, $|\bar{\partial}_z \widetilde{\chi}(z)| \leq C_N |\operatorname{Im} z|^N$. By Green's Theorem on $D_- = D \cap \{\operatorname{Im} z < 0\}$

$$\widehat{\chi u}(\xi/h) = \int_{\partial D_{-}} u(z) e^{-\frac{i}{h}z\xi} \widetilde{\chi}(z) \, dz = \int_{\operatorname{Im} z < 0} u(z) e^{-\frac{i}{h}z\xi} \bar{\partial}_{z} \widetilde{\chi}(z) \, dz \wedge d\bar{z}$$

• For $\xi \geq 2K$, bound $|u(z)e^{-\frac{i}{h}z\xi}\bar{\partial}_z\widetilde{\chi}(z)| \leq C_N e^{-\frac{\xi|\operatorname{Im}z|}{h}}|\operatorname{Im}z|^N\sup_I|u|$ and integrate. For $\xi \leq -2K$, integrate instead over $\{\operatorname{Im}z>0\}$.

- Recall: $u \in \mathcal{H}(D)$, $u = \mathcal{L}_s u$, and $\sup_D |e^{-K|\operatorname{Im} z|/h}u| \leq C \sup_I |u|$
- Semiclassical Fourier transform: $\mathcal{F}_h f(\xi) = (2\pi h)^{-\frac{1}{2}} \widehat{f}(\xi/h)$

Lemma (Fourier localization to frequencies $\leq 2K/h$)

Fix
$$\chi \in C_c^{\infty}(I)$$
. Then $\forall N$, $|\mathcal{F}_h(\chi u)(\xi)| \leq C_N h^N |\xi|^{-N} \sup_I |u|$ for $|\xi| \geq 2K$.

In particular this implies $\sup |\chi u| \le Ch^{-1/2} ||\chi u||_{L^2} + C_N h^N \sup_I |u|$

Proof

- Let $\widetilde{\chi} \in C_c^{\infty}(D)$ be an almost analytic extension of χ : $\widetilde{\chi}|_{\mathbb{R}} = \chi$, $|\overline{\partial}_z \widetilde{\chi}(z)| \leq C_N |\operatorname{Im} z|^N$. By Green's Theorem on $D_- = D \cap \{\operatorname{Im} z < 0\}$
 - $\widehat{\chi u}(\xi/h) = \int_{\partial D_{-}} u(z)e^{-\frac{i}{h}z\xi}\widetilde{\chi}(z) dz = \int_{\operatorname{Im} z < 0} u(z)e^{-\frac{i}{h}z\xi}\overline{\partial}_{z}\widetilde{\chi}(z) dz \wedge d\overline{z}$
- For $\xi \geq 2K$, bound $|u(z)e^{-\frac{i}{\hbar}z\xi}\bar{\partial}_z\widetilde{\chi}(z)| \leq C_N e^{-\frac{\xi |\operatorname{Im} z|}{\hbar}} |\operatorname{Im} z|^N \sup_I |u|$ and integrate. For $\xi \leq -2K$, integrate instead over $\{\operatorname{Im} z > 0\}$.

Large powers of transfer operators

Henceforth we only study u on $I = D \cap \mathbb{R}$.

Since $\mathcal{L}_s u = u$ we also have $\mathcal{L}_s^n u = u$ for all n, where

$$\mathcal{L}_{s}^{n}f(x) = \sum_{\mathbf{a} \in \mathcal{W}^{n}, \ \mathbf{a} \to b} (\gamma_{\mathbf{a}}'(x))^{s} f(\gamma_{\mathbf{a}}(x)), \quad x \in I_{b}$$

and $\mathbf{a} \to b$ means $b \neq \overline{a_n}$ where $\mathbf{a} = a_1 \dots a_n$.

Recalling that $s = \alpha + \frac{1}{h}$, rewrite this a

$$\mathcal{L}_s^n f(x) = \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} o b} (\gamma_\mathbf{a}'(x))^{lpha} e^{rac{i}{\hbar} arphi_\mathbf{a}(\mathbf{x})} f(\gamma_\mathbf{a}(x)), \quad x \in I_b$$

where the phase functions $\varphi_{\mathbf{a}}(x)$ are defined by

$$\varphi_{\mathbf{a}}(x) = \log \gamma_{\mathbf{a}}'(x), \quad x \in I_{b}$$

Large powers of transfer operators

Henceforth we only study u on $I = D \cap \mathbb{R}$.

Since $\mathcal{L}_s u = u$ we also have $\mathcal{L}_s^n u = u$ for all n, where

$$\mathcal{L}_{s}^{n}f(x) = \sum_{\mathbf{a} \in \mathcal{W}^{n}, \ \mathbf{a} \to b} (\gamma_{\mathbf{a}}'(x))^{s} f(\gamma_{\mathbf{a}}(x)), \quad x \in I_{b}$$

and $\mathbf{a} \to b$ means $b \neq \overline{a_n}$ where $\mathbf{a} = a_1 \dots a_n$.

Recalling that $s = \alpha + \frac{i}{h}$, rewrite this as

$$\mathcal{L}_s^n f(x) = \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} (\gamma_{\mathbf{a}}'(x))^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} f(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

where the phase functions $\varphi_{\mathbf{a}}(x)$ are defined by

$$\varphi_{\mathbf{a}}(x) = \log \gamma_{\mathbf{a}}'(x), \quad x \in I_b$$

$$u(x) = \mathcal{L}_s^n u(x) = \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} (\gamma_{\mathbf{a}}'(x))^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

- Composition $u \mapsto \gamma_{\mathbf{a}}^* u$, where $\gamma_{\mathbf{a}}'(x) \sim |I_{\mathbf{a}}| \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}$, $\gamma_{\mathbf{a}}^* u$ oscillates at frequencies $\lesssim h^{-1}|I_{\mathbf{a}}|$.
- Multiplication by weight $v \mapsto (\gamma_{\bf a}')^{\alpha}v$ where $(\gamma_{\bf a}')^{\alpha} \sim |I_{\bf a}|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- Phase shift $v\mapsto e^{\frac{i}{\hbar} arphi_{\mathbf{a}}} v$, with the result oscillating at frequencies $\lesssim \frac{1}{\hbar}$

We fix $\rho < 1$ close to 1 and choose n so that

$$|I_{\mathbf{a}}| \sim h^{
ho}$$
 for all $\mathbf{a} \in \mathcal{W}^n$

(Typically impossible, will discuss how to fix this at the end of the lecture.) To simplify, we put $\rho := 1$ and replace the weight $(\gamma'_a)^{\alpha}$ by h^{α}

$$u(x) = \mathcal{L}_s^n u(x) = \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} (\gamma_{\mathbf{a}}'(x))^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

- Composition $u \mapsto \gamma_{\bf a}^* u$, where $\gamma_{\bf a}'(x) \sim |I_{\bf a}| \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}$, $\gamma_{\bf a}^* u$ oscillates at frequencies $\lesssim h^{-1} |I_{\bf a}|$.
- Multiplication by weight $v \mapsto (\gamma_{\bf a}')^{\alpha}v$ where $(\gamma_{\bf a}')^{\alpha} \sim |I_{\bf a}|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- ullet Phase shift $v\mapsto e^{rac{i}{\hbar}arphi_{f a}}v$, with the result oscillating at frequencies $\lesssim rac{1}{\hbar}$

We fix ho < 1 close to 1 and choose \emph{n} so that

$$|I_{\mathbf{a}}| \sim h^{
ho}$$
 for all $\mathbf{a} \in \mathcal{W}^n$

(Typically impossible, will discuss how to fix this at the end of the lecture.) To simplify, we put $\rho:=1$ and replace the weight $(\gamma_{\bf a}')^{\alpha}$ by ${\it h}^{\alpha}$

$$u(x) = \mathcal{L}_s^n u(x) = \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} (\gamma_{\mathbf{a}}'(x))^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

- Composition $u \mapsto \gamma_{\bf a}^* u$, where $\gamma_{\bf a}'(x) \sim |I_{\bf a}| \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}$, $\gamma_{\bf a}^* u$ oscillates at frequencies $\lesssim h^{-1} |I_{\bf a}|$.
- Multiplication by weight $v \mapsto (\gamma_{\bf a}')^{\alpha}v$ where $(\gamma_{\bf a}')^{\alpha} \sim |I_{\bf a}|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- ullet Phase shift $v\mapsto e^{rac{i}{\hbar}arphi_{
 m a}}v$, with the result oscillating at frequencies $\lesssim rac{1}{\hbar}$

We fix $\rho < 1$ close to 1 and choose n so that

$$|I_{\mathbf{a}}| \sim h^{
ho}$$
 for all $\mathbf{a} \in \mathcal{W}^n$

(Typically impossible, will discuss how to fix this at the end of the lecture.) To simplify, we put $\rho:=1$ and replace the weight $(\gamma_a')^\alpha$ by h^α

$$u(x) = \mathcal{L}_s^n u(x) = \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} (\gamma_{\mathbf{a}}'(x))^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

- Composition $u \mapsto \gamma_{\bf a}^* u$, where $\gamma_{\bf a}'(x) \sim |I_{\bf a}| \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}$, $\gamma_{\bf a}^* u$ oscillates at frequencies $\lesssim h^{-1} |I_{\bf a}|$.
- Multiplication by weight $v \mapsto (\gamma_{\bf a}')^{\alpha}v$ where $(\gamma_{\bf a}')^{\alpha} \sim |I_{\bf a}|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- ullet Phase shift $v\mapsto e^{rac{i}{\hbar}arphi_a}v$, with the result oscillating at frequencies $\lesssim rac{1}{\hbar}$

We fix $\rho < 1$ close to 1 and choose n so that

$$|I_{\mathbf{a}}| \sim h^{
ho}$$
 for all $\mathbf{a} \in \mathcal{W}^n$

(Typically impossible, will discuss how to fix this at the end of the lecture.) To simplify, we put $\rho:=1$ and replace the weight $(\gamma_{\bf a}')^{\alpha}$ by ${\bf h}^{\alpha}$

$$u(x) = \mathcal{L}_s^n u(x) = \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} (\gamma_{\mathbf{a}}'(x))^{\alpha} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

- Composition $u \mapsto \gamma_{\mathbf{a}}^* u$, where $\gamma_{\mathbf{a}}'(x) \sim |I_{\mathbf{a}}| \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}$, $\gamma_{\mathbf{a}}^* u$ oscillates at frequencies $\lesssim h^{-1} |I_{\mathbf{a}}|$.
- Multiplication by weight $v \mapsto (\gamma_{\bf a}')^{\alpha}v$ where $(\gamma_{\bf a}')^{\alpha} \sim |I_{\bf a}|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- ullet Phase shift $v\mapsto e^{rac{i}{\hbar}arphi_{f a}}v$, with the result oscillating at frequencies $\lesssim rac{1}{\hbar}$

We fix $\rho < 1$ close to 1 and choose n so that

$$|I_{\mathbf{a}}| \sim h^{\rho}$$
 for all $\mathbf{a} \in \mathcal{W}^n$

(Typically impossible, will discuss how to fix this at the end of the lecture.) To simplify, we put $\rho:=1$ and replace the weight $(\gamma_a')^{\alpha}$ by h^{α}

$$u(x) = \mathcal{L}_s^n u(x) = \mathbf{h}^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

- Composition $u \mapsto \gamma_{\mathbf{a}}^* u$, where $\gamma_{\mathbf{a}}'(x) \sim |I_{\mathbf{a}}| \ll 1$ when $n \gg 1$. Since u oscillates at frequencies $\lesssim h^{-1}$, $\gamma_{\mathbf{a}}^* u$ oscillates at frequencies $\lesssim h^{-1} |I_{\mathbf{a}}|$.
- Multiplication by weight $v \mapsto (\gamma_{\bf a}')^{\alpha}v$ where $(\gamma_{\bf a}')^{\alpha} \sim |I_{\bf a}|^{\alpha}$. Does not change frequency localization much but changes the magnitude.
- ullet Phase shift $v\mapsto e^{rac{i}{\hbar}arphi_{a}}v$, with the result oscillating at frequencies $\lesssim rac{1}{\hbar}$

We fix $\rho < 1$ close to 1 and choose n so that

$$|I_{\mathbf{a}}| \sim h^{\rho}$$
 for all $\mathbf{a} \in \mathcal{W}^n$

(Typically impossible, will discuss how to fix this at the end of the lecture.) To simplify, we put $\rho:=1$ and replace the weight $(\gamma_a')^{\alpha}$ by h^{α}

$$u(x) = \mathcal{L}_s^n u(x) = h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

- ullet We know that each $\gamma_{f a}^* u$ oscillates at low frequencies $\lesssim h^{-1} |I_{f a}| \sim 1$
- What does the phase $\varphi_{\mathbf{a}}(x) = \log \gamma_{\mathbf{a}}'(x)$ look like?
- An elementary computation shows that up to an additive constant

$$arphi_{\mathbf{a}}(x) = -2\log(x - x_{\overline{\mathbf{a}}})$$
 where $x_{\overline{\mathbf{a}}} := \gamma_{\mathbf{a}}^{-1}(\infty) \in I_{\overline{\mathbf{a}}}$, $\overline{\mathbf{a}} := \overline{a_n} \dots \overline{a_1} \in \mathcal{W}^n$ is the inverse of $\mathbf{a} = a_1 \dots a_n$

$$u(x) = \mathcal{L}_s^n u(x) = h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

- ullet We know that each $\gamma_{f a}^* u$ oscillates at low frequencies $\lesssim h^{-1} |I_{f a}| \sim 1$
- What does the phase $\varphi_{\mathbf{a}}(x) = \log \gamma_{\mathbf{a}}'(x)$ look like?
- An elementary computation shows that up to an additive constant

$$\varphi_{\mathbf{a}}(x) = -2\log(x - x_{\overline{\mathbf{a}}}) \quad \text{where} \quad x_{\overline{\mathbf{a}}} := \gamma_{\mathbf{a}}^{-1}(\infty) \in I_{\overline{\mathbf{a}}},$$

$$\overline{\mathbf{a}} := \overline{a_n} \dots \overline{a_1} \in \mathcal{W}^n \quad \text{is the inverse of} \quad \mathbf{a} = a_1 \dots a_n$$

$$u(x) = \mathcal{L}_{s}^{n} u(x) = h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^{n}, \ \mathbf{a} \to b} e^{\frac{i}{h} \varphi_{\mathbf{a}}(x)} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_{b}$$

- ullet We know that each $\gamma_{f a}^* u$ oscillates at low frequencies $\lesssim h^{-1} |I_{f a}| \sim 1$
- What does the phase $\varphi_{\mathbf{a}}(x) = \log \gamma_{\mathbf{a}}'(x)$ look like?
- An elementary computation shows that up to an additive constant

$$arphi_{\mathbf{a}}(x) = -2\log(x - x_{\overline{\mathbf{a}}})$$
 where $x_{\overline{\mathbf{a}}} := \gamma_{\mathbf{a}}^{-1}(\infty) \in I_{\overline{\mathbf{a}}},$

$$\overline{\mathbf{a}} := \overline{a_n} \dots \overline{a_1} \in \mathcal{W}^n \text{ is the inverse of } \mathbf{a} = a_1 \dots a_n$$

$$u(x) = \mathcal{L}_s^n u(x) = h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} |x - \mathbf{x}_{\overline{\mathbf{a}}}|^{-\frac{2i}{h}} u(\gamma_{\mathbf{a}}(x)), \quad x \in I_b$$

- ullet We know that each $\gamma_{f a}^* u$ oscillates at low frequencies $\lesssim h^{-1} |I_{f a}| \sim 1$
- What does the phase $\varphi_{\mathbf{a}}(x) = \log \gamma_{\mathbf{a}}'(x)$ look like?
- An elementary computation shows that up to an additive constant

$$arphi_{\mathbf{a}}(x) = -2\log(x - x_{\overline{\mathbf{a}}})$$
 where $x_{\overline{\mathbf{a}}} := \gamma_{\mathbf{a}}^{-1}(\infty) \in I_{\overline{\mathbf{a}}},$

$$\overline{\mathbf{a}} := \overline{a_n} \dots \overline{a_1} \in \mathcal{W}^n \text{ is the inverse of } \mathbf{a} = a_1 \dots a_n$$

$$u(x) = \mathcal{L}_s^n u(x) = h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} v_{\mathbf{a}}(x), \quad x \in I_b$$

where
$$v_{\mathbf{a}}(x) := |x - x_{\overline{\mathbf{a}}}|^{-\frac{2i}{h}} \gamma_{\mathbf{a}}^* u(x), \quad x \in I \setminus I_{\overline{a_n}}$$

and $\gamma_{\mathbf{a}}^*u$ oscillates at bounded frequencies. Define the operator \mathcal{B}_h by

$$\mathcal{B}_h f(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} f(y) \, dy$$

then 'similarly' to ${\mathcal F}_h f(x) = (2\pi h)^{-rac12} \int_{\mathbb R} e^{-rac{t}{h} x y} f(y) \, dy$ we write

$$v_{\mathbf{a}} = \mathcal{B}_h w_{\overline{\mathbf{a}}}$$
 on $I \setminus I_{\overline{a_n}}$

for some $w_{\overline{a}}$ supported in $l_{\overline{a}}(Ch) = l_{\overline{a}} + [-Ch, Ch]$ and having L^2 norm

$$\|w_{\overline{a}}\|_{L^{2}} \sim \|v_{a}\|_{L^{2}} = \|\gamma_{a}^{*}u\|_{L^{2}} \sim h^{-\frac{1}{2}} \|u\|_{L^{2}(I_{a})}$$

where in the last estimate we recall that $\gamma_{\sf a}' \sim |{\it l}_{\sf a}| \sim {\it h}$ on ${\it l} \setminus {\it l}_{\overline{{\it a}_{\sf n}}}$ (Cheating here, in reality would need $\rho < 1$ and $\mathcal{O}({\it h}^{\infty})$ remainder...

$$u(x) = \mathcal{L}_s^n u(x) = h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} v_{\mathbf{a}}(x), \quad x \in I_b$$

where
$$v_{\mathbf{a}}(x) := |x - x_{\overline{\mathbf{a}}}|^{-\frac{2i}{h}} \gamma_{\mathbf{a}}^* u(x), \quad x \in I \setminus I_{\overline{\mathbf{a}_n}}$$

and $\gamma_{\mathbf{a}}^* u$ oscillates at bounded frequencies. Define the operator \mathcal{B}_h by

$$\mathcal{B}_h f(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} f(y) dy$$

then 'similarly' to $\mathcal{F}_h f(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{i}{h}xy} f(y) \, dy$ we write

$$v_{\mathbf{a}} = \mathcal{B}_h w_{\overline{\mathbf{a}}}$$
 on $I \setminus I_{\overline{a_n}}$

for some $w_{\overline{a}}$ supported in $l_{\overline{a}}(Ch) = l_{\overline{a}} + [-Ch, Ch]$ and having L^2 norm

$$\|w_{\overline{\mathbf{a}}}\|_{L^{2}} \sim \|v_{\mathbf{a}}\|_{L^{2}} = \|\gamma_{\mathbf{a}}^{*}u\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}(I_{\mathbf{a}})}$$

where in the last estimate we recall that $\gamma_{f a}' \sim |{\it I}_{f a}| \sim {\it h}$ on ${\it I} \setminus {\it I}_{\overline{\it a}_{f n}}$

(Cheating here, in reality would need ho < 1 and $\mathcal{O}(\mathit{h}^{\infty})$ remainder...

$$u(x) = \mathcal{L}_s^n u(x) = h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} v_{\mathbf{a}}(x), \quad x \in I_b$$

where
$$v_{\mathbf{a}}(x) := |x - x_{\overline{\mathbf{a}}}|^{-\frac{2i}{h}} \gamma_{\mathbf{a}}^* u(x), \quad x \in I \setminus I_{\overline{\mathbf{a}_n}}$$

and $\gamma_{\mathbf{a}}^*u$ oscillates at bounded frequencies. Define the operator \mathcal{B}_h by

$$\mathcal{B}_h f(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} f(y) dy$$

then 'similarly' to $\mathcal{F}_h f(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} e^{-\frac{i}{h}xy} f(y) dy$ we write

$$v_{\mathbf{a}} = \mathcal{B}_h w_{\overline{\mathbf{a}}}$$
 on $I \setminus I_{\overline{a_n}}$

for some $w_{\overline{a}}$ supported in $l_{\overline{a}}(Ch) = l_{\overline{a}} + [-Ch, Ch]$ and having L^2 norm

$$\|w_{\overline{\mathbf{a}}}\|_{L^{2}} \sim \|v_{\mathbf{a}}\|_{L^{2}} = \|\gamma_{\mathbf{a}}^{*}u\|_{L^{2}} \sim h^{-\frac{1}{2}}\|u\|_{L^{2}(I_{\mathbf{a}})}$$

where in the last estimate we recall that $\gamma_{\bf a}' \sim |{\it I}_{\bf a}| \sim {\it h}$ on ${\it I} \setminus {\it I}_{\overline{a_n}}$ (Cheating here, in reality would need $\rho < 1$ and ${\cal O}({\it h}^{\infty})$ remainder...)

End of the proof: applying FUP

$$\begin{split} u(x) &= \mathcal{L}_s^n u(x) = h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} v_{\mathbf{a}}(x), \quad x \in I_b, \\ v_{\mathbf{a}} &= |x - x_{\overline{\mathbf{a}}}|^{-\frac{2i}{h}} \gamma_{\mathbf{a}}^* u = \mathcal{B}_h w_{\overline{\mathbf{a}}}, \quad \text{supp } w_{\overline{\mathbf{a}}} \subset I_{\overline{\mathbf{a}}}(Ch), \quad \|w_{\overline{\mathbf{a}}}\|_{L^2} \sim h^{-\frac{1}{2}} \|u\|_{L^2(I_{\mathbf{a}})} \\ \mathcal{B}_h f(x) &= (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} f(y) \, dy \end{split}$$

Define $w := \sum_{\mathbf{a} \in \mathcal{W}^n} w_{\overline{\mathbf{a}}}$, then $u = h^{\alpha} \mathcal{B}_{\chi,h} w$ on I where

$$\mathcal{B}_{\chi,h}w(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x-y|^{-\frac{2l}{h}} \chi(x,y)w(y) \, dy,$$

$$\chi \in C_{c}^{\infty}(\mathbb{R}^{2}), \quad \operatorname{supp} \chi \cap \left(\bigsqcup_{a \in \mathcal{A}} I_{a} \times I_{a} \right) = \emptyset, \quad \chi = 1 \quad \text{on} \quad \bigsqcup_{a \neq b} I_{a} \times I_{b}$$

Since $|I_{\overline{a}}| \sim |I_{a}| \sim h$, get supp $w \subset \Lambda_{\Gamma}(Ch)$ and $||w||_{L^{2}} \sim h^{-\frac{1}{2}} ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))}$

End of the proof: applying FUP

$$\begin{split} u(x) &= \mathcal{L}_s^n u(x) = h^{\alpha} \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} v_{\mathbf{a}}(x), \quad x \in I_b, \\ v_{\mathbf{a}} &= |x - x_{\overline{\mathbf{a}}}|^{-\frac{2i}{h}} \gamma_{\mathbf{a}}^* u = \mathcal{B}_h w_{\overline{\mathbf{a}}}, \quad \text{supp } w_{\overline{\mathbf{a}}} \subset I_{\overline{\mathbf{a}}}(Ch), \quad \|w_{\overline{\mathbf{a}}}\|_{L^2} \sim h^{-\frac{1}{2}} \|u\|_{L^2(I_{\mathbf{a}})} \\ \mathcal{B}_h f(x) &= (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} f(y) \, dy \end{split}$$

Define $w := \sum_{\mathbf{a} \in \mathcal{W}^n} w_{\overline{\mathbf{a}}}$, then $u = h^{\alpha} \mathcal{B}_{\chi,h} w$ on I where

$$\mathcal{B}_{\chi,h}w(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x-y|^{-\frac{2i}{h}} \chi(x,y)w(y) \, dy,$$

$$\chi \in C_{c}^{\infty}(\mathbb{R}^{2}), \quad \operatorname{supp} \chi \cap \Big(\bigsqcup_{a \in \mathcal{A}} I_{a} \times I_{a}\Big) = \emptyset, \quad \chi = 1 \quad \text{on} \quad \bigsqcup_{a \neq b} I_{a} \times I_{b}$$

Since $|I_{\overline{\mathbf{a}}}| \sim |I_{\mathbf{a}}| \sim h$, get supp $w \subset \Lambda_{\Gamma}(Ch)$ and $\|w\|_{L^2} \sim h^{-\frac{1}{2}} \|u\|_{L^2(\Lambda_{\Gamma}(Ch))}$

End of the proof: applying FUP

$$\begin{split} u(x) &= \mathcal{L}_s^n u(x) = h^\alpha \sum_{\mathbf{a} \in \mathcal{W}^n, \ \mathbf{a} \to b} v_{\mathbf{a}}(x), \quad x \in I_b, \\ v_{\mathbf{a}} &= |x - x_{\overline{\mathbf{a}}}|^{-\frac{2i}{h}} \gamma_{\mathbf{a}}^* u = \mathcal{B}_h w_{\overline{\mathbf{a}}}, \quad \text{supp } w_{\overline{\mathbf{a}}} \subset I_{\overline{\mathbf{a}}}(Ch), \quad \|w_{\overline{\mathbf{a}}}\|_{L^2} \sim h^{-\frac{1}{2}} \|u\|_{L^2(I_{\mathbf{a}})} \\ \mathcal{B}_h f(x) &= (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} f(y) \, dy \end{split}$$

Define $w := \sum_{\mathbf{a} \in \mathcal{W}^n} w_{\overline{\mathbf{a}}}$, then $u = h^{\alpha} \mathcal{B}_{\chi,h} w$ on I where

$$\mathcal{B}_{\chi,h}w(x) = (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x-y|^{-\frac{2i}{h}} \chi(x,y)w(y) \, dy,$$

$$\chi \in C_{c}^{\infty}(\mathbb{R}^{2}), \quad \operatorname{supp} \chi \cap \Big(\bigsqcup_{a \in \mathcal{A}} I_{a} \times I_{a}\Big) = \emptyset, \quad \chi = 1 \quad \text{on} \quad \bigsqcup_{a \neq b} I_{a} \times I_{b}$$

Since $|I_{\overline{\mathbf{a}}}| \sim |I_{\mathbf{a}}| \sim h$, get supp $w \subset \Lambda_{\Gamma}(Ch)$ and $||w||_{L^2} \sim h^{-\frac{1}{2}} ||u||_{L^2(\Lambda_{\Gamma}(Ch))}$

$$\begin{split} u &= h^{\alpha} \mathcal{B}_{\chi,h} w \text{ on } I, \quad \text{supp } w \subset \Lambda_{\Gamma}(\mathit{Ch}), \quad \|w\|_{L^{2}} \sim h^{-\frac{1}{2}} \|u\|_{L^{2}(\Lambda_{\Gamma}(\mathit{Ch}))}, \\ \Lambda_{\Gamma}(\mathit{Ch}) &:= \Lambda_{\Gamma} + [-\mathit{Ch}, \mathit{Ch}], \\ \mathcal{B}_{\chi,h} w(x) &:= (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x-y|^{-\frac{2i}{h}} \chi(x,y) w(y) \, dy \end{split}$$

Now the Fractal Uncertainty Principle gives

$$\| \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \mathcal{B}_{\chi,h} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} \le Ch^{\beta}$$

so we estimate

$$||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} = ||h^{\alpha} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \mathcal{B}_{\chi,h} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} w||_{L^{2}(\mathbb{R})} \le Ch^{\alpha+\beta} ||w||_{L^{2}(\mathbb{R})}$$
$$\le Ch^{\alpha+\beta-\frac{1}{2}} ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} \ll ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))}$$

where we use that $lpha>rac{1}{2}-eta$ and $h\ll 1.$ This gives $u|_{\Lambda_{0}(Ch)}=0$ and thus u=0, finishing the proo

$$\begin{split} u &= h^{\alpha} \mathcal{B}_{\chi,h} w \text{ on } I, \quad \text{supp } w \subset \Lambda_{\Gamma}(Ch), \quad \|w\|_{L^{2}} \sim h^{-\frac{1}{2}} \|u\|_{L^{2}(\Lambda_{\Gamma}(Ch))}, \\ \Lambda_{\Gamma}(Ch) &:= \Lambda_{\Gamma} + [-Ch, Ch], \\ \mathcal{B}_{\chi,h} w(x) &:= (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} \chi(x, y) w(y) \, dy \end{split}$$

Now the Fractal Uncertainty Principle gives

$$\|\mathbf{1}_{\Lambda_{\Gamma}(Ch)}\mathcal{B}_{\chi,h}\mathbf{1}_{\Lambda_{\Gamma}(Ch)}\|_{L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})}\leq Ch^{\beta}$$

so we estimate

$$||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} = ||h^{\alpha} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \mathcal{B}_{\chi,h} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} w||_{L^{2}(\mathbb{R})} \le Ch^{\alpha+\beta} ||w||_{L^{2}(\mathbb{R})}$$
$$\le Ch^{\alpha+\beta-\frac{1}{2}} ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} \ll ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))}$$

where we use that $lpha>rac{1}{2}-eta$ and $h\ll 1$. This gives $u|_{\Lambda_{\Gamma}(Ch)}=0$ and thus u=0, finishing the proo

$$u = h^{\alpha} \mathcal{B}_{\chi,h} w \text{ on } I, \quad \text{supp } w \subset \Lambda_{\Gamma}(Ch), \quad \|w\|_{L^{2}} \sim h^{-\frac{1}{2}} \|u\|_{L^{2}(\Lambda_{\Gamma}(Ch))},$$

$$\Lambda_{\Gamma}(Ch) := \Lambda_{\Gamma} + [-Ch, Ch],$$

$$\mathcal{B}_{\chi,h} w(x) := (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} \chi(x, y) w(y) \, dy$$

Now the Fractal Uncertainty Principle gives

$$\|\mathbf{1}_{\Lambda_{\Gamma}(Ch)}\mathcal{B}_{\chi,h}\mathbf{1}_{\Lambda_{\Gamma}(Ch)}\|_{L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})}\leq Ch^{\beta}$$

so we estimate

$$||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} = ||h^{\alpha} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \mathcal{B}_{\chi,h} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} w||_{L^{2}(\mathbb{R})} \leq Ch^{\alpha+\beta} ||w||_{L^{2}(\mathbb{R})}$$
$$\leq Ch^{\alpha+\beta-\frac{1}{2}} ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} \ll ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))}$$

where we use that $\alpha>\frac{1}{2}-\beta$ and $h\ll 1$. This gives $u|_{\Lambda_{\Gamma}(Ch)}=0$ and thus u=0, finishing the proof

$$\begin{split} u &= h^{\alpha} \mathcal{B}_{\chi,h} w \text{ on } I, \quad \text{supp } w \subset \Lambda_{\Gamma}(Ch), \quad \|w\|_{L^{2}} \sim h^{-\frac{1}{2}} \|u\|_{L^{2}(\Lambda_{\Gamma}(Ch))}, \\ \Lambda_{\Gamma}(Ch) &:= \Lambda_{\Gamma} + [-Ch, Ch], \\ \mathcal{B}_{\chi,h} w(x) &:= (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} \chi(x, y) w(y) \, dy \end{split}$$

Now the Fractal Uncertainty Principle gives

$$\|\mathbf{1}_{\Lambda_{\Gamma}(Ch)}\mathcal{B}_{\chi,h}\mathbf{1}_{\Lambda_{\Gamma}(Ch)}\|_{L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})}\leq Ch^{\beta}$$

so we estimate

$$||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} = ||h^{\alpha} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \mathcal{B}_{\chi,h} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} w||_{L^{2}(\mathbb{R})} \leq Ch^{\alpha+\beta} ||w||_{L^{2}(\mathbb{R})}$$
$$\leq Ch^{\alpha+\beta-\frac{1}{2}} ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} \ll ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))}$$

where we use that $\alpha>\frac{1}{2}-\beta$ and $h\ll 1$. This gives $u|_{\Lambda_{\Gamma}(Ch)}=0$ and thus u=0, finishing the proof

$$u = h^{\alpha} \mathcal{B}_{\chi,h} w \text{ on } I, \quad \text{supp } w \subset \Lambda_{\Gamma}(Ch), \quad \|w\|_{L^{2}} \sim h^{-\frac{1}{2}} \|u\|_{L^{2}(\Lambda_{\Gamma}(Ch))},$$

$$\Lambda_{\Gamma}(Ch) := \Lambda_{\Gamma} + [-Ch, Ch],$$

$$\mathcal{B}_{\chi,h} w(x) := (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} \chi(x, y) w(y) \, dy$$

Now the Fractal Uncertainty Principle gives

$$\|\mathbf{1}_{\Lambda_{\Gamma}(Ch)}\mathcal{B}_{\chi,h}\mathbf{1}_{\Lambda_{\Gamma}(Ch)}\|_{L^{2}(\mathbb{R})\to L^{2}(\mathbb{R})}\leq Ch^{\beta}$$

so we estimate

$$||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} = ||h^{\alpha} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \mathcal{B}_{\chi,h} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} w||_{L^{2}(\mathbb{R})} \leq Ch^{\alpha+\beta} ||w||_{L^{2}(\mathbb{R})}$$
$$\leq Ch^{\alpha+\beta-\frac{1}{2}} ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} \ll ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))}$$

where we use that $\alpha > \frac{1}{2} - \beta$ and $h \ll 1$. This gives $u|_{\Lambda_{\Gamma}(Ch)} = 0$ and thus u = 0, finishing the proof

$$u = h^{\alpha} \mathcal{B}_{\chi,h} w \text{ on } I, \quad \text{supp } w \subset \Lambda_{\Gamma}(Ch), \quad \|w\|_{L^{2}} \sim h^{-\frac{1}{2}} \|u\|_{L^{2}(\Lambda_{\Gamma}(Ch))},$$

$$\Lambda_{\Gamma}(Ch) := \Lambda_{\Gamma} + [-Ch, Ch],$$

$$\mathcal{B}_{\chi,h} w(x) := (2\pi h)^{-\frac{1}{2}} \int_{\mathbb{R}} |x - y|^{-\frac{2i}{h}} \chi(x, y) w(y) \, dy$$

Now the Fractal Uncertainty Principle gives

$$\| \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \mathcal{B}_{\chi,h} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \|_{L^{2}(\mathbb{R}) \to L^{2}(\mathbb{R})} \leq Ch^{\beta}$$

so we estimate

$$||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} = ||h^{\alpha} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} \mathcal{B}_{\chi,h} \mathbf{1}_{\Lambda_{\Gamma}(Ch)} w||_{L^{2}(\mathbb{R})} \leq Ch^{\alpha+\beta} ||w||_{L^{2}(\mathbb{R})}$$
$$\leq Ch^{\alpha+\beta-\frac{1}{2}} ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))} \ll ||u||_{L^{2}(\Lambda_{\Gamma}(Ch))}$$

where we use that $\alpha > \frac{1}{2} - \beta$ and $h \ll 1$.

This gives $u|_{\Lambda_{\Gamma}(Ch)}=0$ and thus u=0, finishing the proof.

Adapted transfer operator

- As remarked above, it is typically impossible to fix n such that $|I_{\bf a}| \sim h^{\rho}$ for all words ${\bf a}$ of length n
- So we instead consider the adapted partition

$$Z = Z(h^{\rho}) := \{ \mathbf{a} \in \mathcal{W}^{\circ} \colon |\mathit{I}_{\mathbf{a}}| \leq h^{\rho} < |\mathit{I}_{\mathbf{a}'}| \}$$

Note that $\Lambda_{\Gamma} = \bigsqcup_{\mathbf{a} \in Z} (\Lambda_{\Gamma} \cap I_{\mathbf{a}}).$

• If $\mathcal{L}_s u = u$ then $\mathcal{L}_{\overline{Z},s} u = u$ where $\overline{Z} := \{\overline{\mathbf{a}} \mid \mathbf{a} \in Z\}$,

$$\mathcal{L}_{\overline{Z},s}f(x) = \sum_{\mathbf{a} \in \overline{Z}, \mathbf{a} \leadsto b} (\gamma'_{\mathbf{a}'}(x))^{s} f(\gamma_{\mathbf{a}'}(x)), \quad x \in I_{b},$$

for $\mathbf{a} = a_1 \dots a_n$, $\mathbf{a} \leadsto b$ means $a_n = b$, and $\mathbf{a}' := a_1 \dots a_{n-1}$

• Run the previous argument for this $\mathcal{L}_{\overline{Z},s}$, using that \overline{Z} is an approximate partition (bounded overlap of $I_{\mathbf{a}}$, $\mathbf{a} \in \overline{Z}$) and $|I_{\overline{\mathbf{a}}}| \sim |I_{\mathbf{a}}|$

Adapted transfer operator

- As remarked above, it is typically impossible to fix n such that $|I_{\bf a}| \sim h^{\rho}$ for all words ${\bf a}$ of length n
- So we instead consider the adapted partition

$$Z = Z(h^{\rho}) := \{ \mathbf{a} \in \mathcal{W}^{\circ} \colon |\mathit{I}_{\mathbf{a}}| \leq h^{\rho} < |\mathit{I}_{\mathbf{a}'}| \}$$

Note that $\Lambda_{\Gamma} = \bigsqcup_{\mathbf{a} \in Z} (\Lambda_{\Gamma} \cap I_{\mathbf{a}}).$

• If $\mathcal{L}_s u = u$ then $\mathcal{L}_{\overline{Z},s} u = u$ where $\overline{Z} := \{\overline{\mathbf{a}} \mid \mathbf{a} \in Z\}$,

$$\mathcal{L}_{\overline{Z},s}f(x) = \sum_{\mathbf{a} \in \overline{Z}, \mathbf{a} \leadsto b} (\gamma'_{\mathbf{a}'}(x))^s f(\gamma_{\mathbf{a}'}(x)), \quad x \in I_b,$$

for $\mathbf{a} = a_1 \dots a_n$, $\mathbf{a} \leadsto \mathbf{b}$ means $a_n = \mathbf{b}$, and $\mathbf{a}' := a_1 \dots a_{n-1}$

• Run the previous argument for this $\mathcal{L}_{\overline{Z},s}$, using that \overline{Z} is an approximate partition (bounded overlap of $I_{\mathbf{a}}$, $\mathbf{a} \in \overline{Z}$) and $|I_{\overline{\mathbf{a}}}| \sim |I_{\mathbf{a}}|$

Adapted transfer operator

- As remarked above, it is typically impossible to fix n such that $|I_{\bf a}| \sim h^{\rho}$ for all words ${\bf a}$ of length n
- So we instead consider the adapted partition

$$Z = Z(h^{\rho}) := \{ \mathbf{a} \in \mathcal{W}^{\circ} \colon |I_{\mathbf{a}}| \le h^{\rho} < |I_{\mathbf{a}'}| \}$$

Note that $\Lambda_{\Gamma} = \bigsqcup_{\mathbf{a} \in Z} (\Lambda_{\Gamma} \cap I_{\mathbf{a}}).$

• If $\mathcal{L}_s u = u$ then $\mathcal{L}_{\overline{Z},s} u = u$ where $\overline{Z} := \{\overline{\mathbf{a}} \mid \mathbf{a} \in Z\}$,

$$\mathcal{L}_{\overline{Z},s}f(x) = \sum_{\mathbf{a} \in \overline{Z}, \mathbf{a} \leadsto b} (\gamma'_{\mathbf{a}'}(x))^s f(\gamma_{\mathbf{a}'}(x)), \quad x \in I_b,$$

for $\mathbf{a} = a_1 \dots a_n$, $\mathbf{a} \leadsto \mathbf{b}$ means $a_n = \mathbf{b}$, and $\mathbf{a}' := a_1 \dots a_{n-1}$

• Run the previous argument for this $\mathcal{L}_{\overline{Z},s}$, using that \overline{Z} is an approximate partition (bounded overlap of $I_{\mathbf{a}}$, $\mathbf{a} \in \overline{Z}$) and $|I_{\overline{\mathbf{a}}}| \sim |I_{\mathbf{a}}|$

Thank you for your attention!