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Control of eigenfunctions

Lower bound on mass

(M, g) compact negatively curved surface
Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)

M

More precisely, we have the stable/unstable decomposition:

ρ

ϕt(ρ)vu

dϕt(ρ)vu

vs

dϕt(ρ)vs

geodesic flow ϕt

on unit cotangent bundle S∗M
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Control of eigenfunctions

Lower bound on mass

(M, g) compact negatively curved surface
Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)
Eigenfunctions of the Laplacian −∆g studied
by quantum chaos

M

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1
Let Ω ⊂ M be a nonempty open set. Then there exists c depending on
M,Ω but not on λ such that

‖u‖L2(Ω) ≥ c > 0

Constant curvature: D–Jin ’18, using D–Zahl ’16 and Bourgain–D ’18
Variable curvature: D–Jin–Nonnenmacher ’19, using Bourgain–D ’18
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Control of eigenfunctions

Lower bound on mass

(M, g) compact negatively curved surface
Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)
Eigenfunctions of the Laplacian −∆g studied
by quantum chaos

M

Ω

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1
Let Ω ⊂ M be a nonempty open set. Then there exists c depending on
M,Ω but not on λ such that

‖u‖L2(Ω) ≥ c > 0

For bounded λ this follows from unique continuation principle
The new result is in the high frequency limit λ→∞
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Control of eigenfunctions

Lower bound on mass

(M, g) compact negatively curved surface
Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)
Eigenfunctions of the Laplacian −∆g studied
by quantum chaos

M

Ω

(−∆g − λ2)u = 0, ‖u‖L2 = 1

Theorem 1
Let Ω ⊂ M be a nonempty open set. Then there exists c depending on
M,Ω but not on λ such that

‖u‖L2(Ω) ≥ c > 0

The chaotic nature of geodesic flow is important
For example, Theorem 1 is false if M is the round sphere
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Control of eigenfunctions

An illustration

Picture on the right courtesy of Alex Strohmaier, using Strohmaier–Uski ’12

Disk (Dirichlet b.c.) Hyperbolic surface
Whitespace in the middle No whitespace
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Control of eigenfunctions

Application to control theory [Jin ’18]

Fix T > 0 and nonempty open Ω ⊂ M. Then there exists C = C (T ,Ω) :

‖f ‖2L2(M) ≤ C

∫ T

0

∫
Ω
|e it∆g f (x)|2 dxdt for all f ∈ L2(M)

Control by any nonempty open set previously known only for flat tori:
Haraux ’89, Jaffard ’90, Burq–Zworski ’04, Anantharaman–Macia ’14. . .
Datchev–Jin WIP: an estimate on C (T ,Ω), using Jin–Zhang ’17

Application to damped wave equation [Jin ’17, D–Jin–Nonnenmacher ’19]

Assume that b ∈ C∞(M), b ≥ 0, b 6≡ 0. Then ∃ν > 0: every solution

v ∈ C∞([0,∞)×M), (∂2
t + b(x)∂t −∆g )v(t, x) = 0

to the damped wave equation has exponentially decaying energy:∫
M
|∂tv |2 + |∇xv |2 dx = O(e−νt) as t →∞
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Microlocal control and semiclassical measures

Microlocal analysis

Localization in position and frequency using semiclassical quantization

a(x , ξ) ∈ C∞(T ∗M) 7→ Oph(a) = a
(
x ,

h

i
∂x

)
: C∞(M)→ C∞(M)

Properties of quantization in the semiclassical limit h→ 0

Oph(a)Oph(b) = Oph(ab) +O(h)

Oph(a)∗ = Oph(a) +O(h)

[Oph(a),Oph(b)] = −ihOph({a, b}) +O(h2)

sup |a| <∞ =⇒ ‖Oph(a)‖L2→L2 = O(1)

supp b ⊂ {a 6= 0} =⇒ ‖Oph(b)u‖ ≤ C‖Oph(a)u‖+O(h∞)‖u‖

Rescale (−∆g − λ2)u = 0, λ→∞
to obtain (−h2∆g − 1)u = 0, h = λ−1 → 0

where − h2∆g − 1 = Oph(p2 − 1), p(x , ξ) = |ξ|g
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Microlocal control and semiclassical measures

Microlocal version of Theorem 1

Define the cosphere bundle S∗M := {(x , ξ) ∈ T ∗M : |ξ|g = 1}

Theorem 1′

Let a ∈ C∞c (T ∗M) satisfy a|S∗M 6≡ 0. Then for h� 1 and all u ∈ L2(M)

‖u‖ ≤ C‖Oph(a)u‖+ C log(1/h)
h ‖(−h2∆g − 1)u‖

where the constant C depends only on M, a, but not on h, u

Remarks

If (−h2∆g − 1)u = 0 then we get ‖Oph(a)u‖ ≥ c‖u‖ for some c > 0
Implies Theorem 1: a = a(x) =⇒ Oph(a)u = au

Sharp: a|S∗M ≡ 0, (−h2∆g − 1)u = 0 =⇒ ‖Oph(a)u‖ ≤ Ch‖u‖
Cannot work for O(h/ log(1/h)) quasimodes: Brooks ’15,
Eswarathasan–Nonnenmacher ’17, Eswarathasan–Silberman ’17
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Microlocal control and semiclassical measures

Semiclassical measures

Take a high frequency sequence of Laplacian eigenfunctions

(−h2
j ∆g − 1)uj = 0, ‖uj‖L2(M) = 1, hj → 0

We say uj converges weakly to a measure µ on T ∗M if

∀a ∈ C∞c (T ∗M) : 〈Ophj (a)uj , uj〉L2 →
∫
T∗M

a dµ as j →∞

Call such limits µ semiclassical measures

Basic properties
µ is a probability measure, suppµ ⊂ S∗M

µ is invariant under the geodesic flow ϕt : S∗M → S∗M

Natural candidate: Liouville measure µL ∼ d vol (equidistribution)
Natural enemy: delta measure δγ on a closed geodesic (scarring)
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Microlocal control and semiclassical measures

Semiclassical measures and Theorem 1

(−h2
j ∆g − 1)uj = 0, ‖uj‖L2(M) = 1, hj → 0

∀a ∈ C∞c (T ∗M) : 〈Ophj (a)uj , uj〉L2 →
∫
T∗M

a dµ as j →∞

Theorem 1′: a|S∗M 6≡ 0 =⇒ ‖Ophj (a)uj‖L2 ≥ c > 0

Theorem 1′′

Let µ be a semiclassical measure on M. Then suppµ = S∗M

Brief overview of history

Quantum Ergodicity [Shnirelman ’74, Zelditch ’87, Colin de
Verdière ’85]: µ = µL for density 1 sequence of eigenfunctions
Quantum Unique Ergodicity conjecture [Rudnick–Sarnak ’94]:
µ = µL for all eigenfunctions, that is µL is the only semiclassical
measure. Proved in the arithmetic case [Lindenstrauss ’06]
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Microlocal control and semiclassical measures

Semiclassical measures and Theorem 1

(−h2
j ∆g − 1)uj = 0, ‖uj‖L2(M) = 1, hj → 0

∀a ∈ C∞c (T ∗M) : 〈Ophj (a)uj , uj〉L2 →
∫
T∗M

a dµ as j →∞

Theorem 1′: a|S∗M 6≡ 0 =⇒ ‖Ophj (a)uj‖L2 ≥ c > 0

Theorem 1′′

Let µ be a semiclassical measure on M. Then suppµ = S∗M

Brief overview of history, continued

Entropy bound [Anantharaman ’08, A–Nonnenmacher ’07]:
HKS(µ) ≥ 1

2 , in particular µ 6= δγ . Here HKS denotes
Kolmogorov–Sinai entropy. Note HKS(µL) = 1 and HKS(δγ) = 0
Theorem 1′′: between QE and QUE and ‘orthogonal’ to entropy
bound. There exist ϕt-invariant µ with suppµ 6= S∗M, HKS(µ) > 1

2
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Proof under GCC

Proof of Theorem 1′: first steps

In the remainder of these lectures, we will ‘prove’ Theorem 1′

We focus on the case when (−h2∆g − 1)u = 0 and show

a|S∗M 6≡ 0 =⇒ ‖u‖ ≤ Ca‖Oph(a)u‖ for h� 1

We also assume that (M, g) is a hyperbolic surface (K = −1)

Partition of unity

Take a1, a2 ∈ C∞c (T ∗M \ 0; [0, 1]) such that

a1 + a2 = 1 near S∗M, supp a1 ⊂ {a 6= 0}, S∗M \ supp aj 6= ∅

Define Aj := Oph(aj). Then A1 + A2 = I microlocally near S∗M
(−h2∆g − 1)u = 0 =⇒ u = (A1 + A2)u +O(h∞)‖u‖
Will pretend that u = A1u + A2u
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Proof under GCC

Control and propagation

By ellipticity, since supp a1 ⊂ {a 6= 0},

‖A1u‖ ≤ C‖Oph(a)u‖+O(h∞)‖u‖

Conjugate by the half-wave propagator: for A : L2(M)→ L2(M) and t ∈ R

A(t) := U(−t)AU(t), U(t) := exp(−it
√
−∆g )

Since (−h2∆g − 1)u = 0, we have U(t)u = e−it/hu and thus

‖A1(t)u‖ = ‖A1u‖ ≤ C‖Oph(a)u‖+O(h∞)‖u‖

Egorov’s Theorem: if a ∈ C∞c (T ∗M \ 0) and t is bounded then

U(−t)Oph(a)U(t) = Oph(a ◦ ϕt) +O(h)

where ϕt = etH|ξ|g : T ∗M \ 0→ T ∗M \ 0 is the geodesic flow
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Proof under GCC

Sketch of the proof of Egorov’s Theorem

a ∈ C∞c (T ∗M \ 0), U(t) := exp(− it
hP), P :=

√
−h2∆g

ϕt := etHp is the Hamiltonian flow of p(x , ξ) = |ξ|g
Microlocally on T ∗M \ 0, P = Oph(p) +O(h)

Define At := Oph(a ◦ ϕt), then, since ∂t(a ◦ ϕt) = {p, a ◦ ϕt},

[P,At ] = −ihOph({p, a ◦ ϕt}) +O(h2) = −ih∂tAt +O(h2)

Now A0 = Oph(a) and

∂t
(
U(t)AtU(−t)

)
= U(t)

(
∂tAt − i

h [P,At ]
)
U(−t) = O(h)

So U(t)AtU(−t) = Oph(a) +O(h), giving Egorov’s Theorem:

U(−t)Oph(a)U(t) = Oph(a ◦ ϕt) +O(h)
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Proof under GCC

Words

Recall: A1 = Oph(a1), A2 = Oph(a2), A(t) := U(−t)AU(t)

Words: W(N) :=
{
w = w0 . . .wN−1 | w0, . . . ,wN−1 ∈ {1, 2}

}
For w ∈ W(N), define

Aw := AwN−1(N − 1) · · ·Aw1(1)Aw0(0), aw :=
N−1∏
j=0

(awj ◦ ϕj)

Egorov’s Theorem =⇒ Aw = Oph(aw) +ON(h)

We assumed A1u + A2u = u, so A1(j)u + A2(j)u = u for all j . Then

u =
∑

w∈W(N)

Awu

Our proof will work by splitting this sum into 2 parts:
controlled (words with enough A1 in them) and uncontrolled, but small
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Proof under GCC

Words for the cat map (for illustration only)

aw =
N−1∏
j=0

(awj ◦ ϕj), w = w0 . . .wN−1 ∈ W(N)

Imagine that a1, a2 were indicator functions: a` = 1V` , S
∗M = V1 t V2.

Then aw is the indicator function of the set Vw :=
⋂N−1

j=0 ϕ−j(Vwj ) and
S∗M =

⊔
w∈W(N) Vw. What do Vw look like?

Replace ϕj by the Arnold cat map

ϕ : T2 → T2, T2 = R2/Z2,

ϕ(x) =

(
2 1
1 1

)
x mod Z2

We see structure due to the hyperbolicity of ϕ
Schwarz ’21: Theorem 1’ for quantum cat maps

N = 1
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Proof under GCC

Words for the cat map (for illustration only)
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We see structure due to the hyperbolicity of ϕ
Schwarz ’21: Theorem 1’ for quantum cat maps

N = 3

Semyon Dyatlov Minicourse on FUP, Lecture 1 May 31, 2021 13 / 16



Proof under GCC

Words for the cat map (for illustration only)

aw =
N−1∏
j=0

(awj ◦ ϕj), w = w0 . . .wN−1 ∈ W(N)

Imagine that a1, a2 were indicator functions: a` = 1V` , S
∗M = V1 t V2.

Then aw is the indicator function of the set Vw :=
⋂N−1

j=0 ϕ−j(Vwj ) and
S∗M =

⊔
w∈W(N) Vw. What do Vw look like?

Replace ϕj by the Arnold cat map

ϕ : T2 → T2, T2 = R2/Z2,

ϕ(x) =

(
2 1
1 1

)
x mod Z2

We see structure due to the hyperbolicity of ϕ
Schwarz ’21: Theorem 1’ for quantum cat maps

N = 4

Semyon Dyatlov Minicourse on FUP, Lecture 1 May 31, 2021 13 / 16



Proof under GCC

Words for the cat map (for illustration only)
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Proof under GCC

Words for the cat map (for illustration only)

aw =
N−1∏
j=0

(awj ◦ ϕj), w = w0 . . .wN−1 ∈ W(N)

Imagine that a1, a2 were indicator functions: a` = 1V` , S
∗M = V1 t V2.

Then aw is the indicator function of the set Vw :=
⋂N−1

j=0 ϕ−j(Vwj ) and
S∗M =

⊔
w∈W(N) Vw. What do Vw look like?

Replace ϕj by the Arnold cat map

ϕ : T2 → T2, T2 = R2/Z2,

ϕ(x) =

(
2 1
1 1

)
x mod Z2

We see structure due to the hyperbolicity of ϕ
Schwarz ’21: Theorem 1’ for quantum cat maps

N = 6
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Proof under GCC

Geometric control condition (GCC)

In the rest of today’s lecture we show Theorem 1’:

(−h2∆g − 1)u = 0 =⇒ ‖u‖ ≤ C‖Oph(a)u‖

in the simple case when {a 6= 0} satisfies a geometric control condition:

∃N > 0 : S∗M ⊂
N−1⋃
j=0

ϕ−j({a 6= 0})

(This proof actually works on any compact Riemannian manifold.)

Our partition a1 + a2 = 1 has S∗M \ supp a2 ⊂ supp a1 ⊂ {a 6= 0}.
But we can choose the partition so that these sets are close to each other,
so S∗M \ supp a2 satisfies GCC. Then, taking 2 . . . 2 ∈ W(N),

N−1⋂
j=0

ϕ−j(supp a2) = ∅ =⇒ a2...2 = 0
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Proof under GCC

Controlled/small partition under GCC

We decompose (using that u = A1u + A2u)

u =
∑

w∈W(N)

Awu = AXu + AYu

AX := A2...2 = A2(N − 1) · · ·A2(1)A2(0) is uncontrolled
AYu =

∑N−1
j=0 A2(N − 1) · · ·A2(j + 1)A1(j)u where j-th term

corresponds to the words w such that wj = 1, wj+1 = · · · = wN−1 = 2
AX = Oph(a2...2) +O(h) = O(h) since a2...2 = 0 by the GCC
AYu is estimated via Oph(a)u:

‖AYu‖ ≤ 2
N−1∑
j=0

‖A1(j)u‖ ≤ CN‖Oph(a)u‖+O(h∞)‖u‖

Here we could take the constant 2 since ‖A2‖ ≤ 1 +O(h)

So ‖u‖ ≤ CN‖Oph(a)u‖+O(h)‖u‖ and we remove O(h) for h� 1
which gives Theorem 1’
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Thank you for your attention!

Semyon Dyatlov Minicourse on FUP, Lecture 1 May 31, 2021 16 / 16


	Control of eigenfunctions
	Microlocal control and semiclassical measures
	Proof under GCC

