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Control of eigenfunctions

Lower bound on mass

e (M, g) compact negatively curved surface

@ Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)

More precisely, we have the stable/unstable decomposition:
dpi(p)vu

geodesic flow ot
on unit cotangent bundle S*M

©i(p)
T

di(p)vs

Us
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Control of eigenfunctions

Lower bound on mass

e (M, g) compact negatively curved surface

@ Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)

e Eigenfunctions of the Laplacian —A, studied
by quantum chaos

(=g —X)u=0, [ullz =1
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Control of eigenfunctions

Lower bound on mass

e (M, g) compact negatively curved surface

@ Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)

e Eigenfunctions of the Laplacian —A, studied
by quantum chaos

(B —N)u=0, [ufz=1
Theorem 1

Let Q C M be a nonempty open set. Then there exists ¢ depending on
M, Q but not on A such that

ull2(@) = ¢ >0
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Control of eigenfunctions

Lower bound on mass

e (M, g) compact negatively curved surface

@ Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)

e Eigenfunctions of the Laplacian —A, studied
by quantum chaos

(B —N)u=0, [ufz=1
Theorem 1

Let Q C M be a nonempty open set. Then there exists ¢ depending on
M, Q but not on A such that

ull2(@) = ¢ >0

Constant curvature: D—Jin '18, using D-Zahl '16 and Bourgain—-D '18

Variable curvature: D—Jin—Nonnenmacher '19, using Bourgain-D '18
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Control of eigenfunctions

Lower bound on mass

e (M, g) compact negatively curved surface

@ Geodesic flow on M: a standard model
of classical chaos (perturbations diverge
exponentially from the original geodesic)

e Eigenfunctions of the Laplacian —A, studied
by quantum chaos

(B —N)u=0, [ufz=1
Theorem 1

Let Q C M be a nonempty open set. Then there exists ¢ depending on
M, Q but not on A such that

ull2(@) = ¢ >0

For bounded \ this follows from unique continuation principle

The new result is in the high frequency limit A — oo
May 31,2021 2/ 16



Control of eigenfunctions

Lower bound on mass

e (M, g) compact negatively curved surface

@ Geodesic flow on M: a standard model
of classical chaos (perturbations diverge

exponentially from the original geodesic)
e Eigenfunctions of the Laplacian —A, studied
by quantum chaos
(A —X)u=0, [ullz=1

Theorem 1

Let Q C M be a nonempty open set. Then there exists ¢ depending on
M, Q but not on A such that

ull2(@) > ¢ >0

The chaotic nature of geodesic flow is important

For example, Theorem 1 is false if M is the round sphere
May 31,2021 2 /16



Control of eigenfunctions

An illustration

Picture on the right courtesy of Alex Strohmaier, using Strohmaier—Uski '12

| A=5003.1509, Iy = 25,1 = 26,13 = 24,11 = 0,1 =04, 13 =02 |

Disk (Dirichlet b.c.) Hyperbolic surface
Whitespace in the middle No whitespace
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Control of eigenfunctions

Application to control theory [Jin '18]
Fix T > 0 and nonempty open Q2 C M. Then there exists C = C(T,Q) :

T .
HfH%z(M) < C/o /Q]e’mgf(x)]2 dxdt for all f € [2(M)

Control by any nonempty open set previously known only for flat tori:
Haraux '89, Jaffard '90, Burq—Zworski '04, Anantharaman—Macia '14. ..

Datchev—Jin WIP: an estimate on C(T, <), using Jin—Zhang '17
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Control of eigenfunctions

Application to control theory [Jin '18]
Fix T > 0 and nonempty open Q2 C M. Then there exists C = C(T,Q) :

T .
”fH%z(M) < C/o /Q]e'mgf(x)]2 dxdt for all f € [2(M)

Control by any nonempty open set previously known only for flat tori:
Haraux '89, Jaffard '90, Burq—Zworski '04, Anantharaman—Macia '14. ..

Datchev—Jin WIP: an estimate on C(T, <), using Jin—Zhang '17

Application to damped wave equation [Jin '17, D—Jin—Nonnenmacher '19]
Assume that b € C*°(M), b >0, b# 0. Then v > 0: every solution

v e C®([0,00) x M), (9% + b(x)0: — Ag)v(t,x) =0
to the damped wave equation has exponentially decaying energy:

/\8tv|2+|vxv|2dX:O(e_”t) as t— o0
M

v
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Microlocal control and semiclassical measures

Microlocal analysis

Localization in position and frequency using semiclassical quantization

a(x.€) € CX(T"M) > Opy(a) = a(x ?ax) L C(M) - C=(M)
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Microlocal control and semiclassical measures

Microlocal analysis

Localization in position and frequency using semiclassical quantization
h
a(x. &) € CX(T*M) = Opy(a) = a(x, ~0x ) : CX(M) = C=(M)

Properties of quantization in the semiclassical limit h — 0
e Opp(a) Op,(b) = Opp(ab) + O(h)
o Opy(a)* = Op,(a) + O(h)
o [Opy(a), Opp(b)] = —ih Opy({a, b}) + O(h?)
o supla| <oo = [ Opy(a)lliz—s2 = O(1)
o suppb C {a#0} = [ Opy(b)ul < C||Opy(a)ull +O(h)|[ul |
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Microlocal control and semiclassical measures

Microlocal analysis
Localization in position and frequency using semiclassical quantization
h
a(x,£) € C(T*M) s Opy(a) = a(x, f.ax> L CO(M) — C=(M)
i

Properties of quantization in the semiclassical limit h — 0
e Opp(a) Op,(b) = Opp(ab) + O(h)
o Opy(a)* = Op,(a) + O(h)
o [Opy(a), Opp(b)] = —ih Opy({a, b}) + O(h?)
o supla| <oo = [ Opy(a)lliz—s2 = O(1)
o suppb C {a#0} = [ Opy(b)ul < C||Opy(a)ull +O(h)|[ul |

Rescale (—Ag—M)u=0, )\ —
to obtain (—h*Ag —1)u=0, h=X\"'—=0
where - thg -1= Oph(P2 - 1)’ P(X,ﬁ) = |£|g

Semyon Dyatlov Minicourse on FUP, Lecture 1 May 31, 2021 5/ 16



Microlocal version of Theorem 1
Define the cosphere bundle S*M := {(x,£{) € T*M: [{|g = 1}

Theorem 1’

Let a € C°(T*M) satisfy a

s-m # 0. Then for h < 1 and all u € L2(M)
lull < C|| Opp(a)ull + EELA) | (—p2A, — 1)ull

where the constant C depends only on M, a, but not on h, u

Semyon Dyatlov Minicourse on FUP, Lecture 1
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Microlocal control and semiclassical measures

Microlocal version of Theorem 1

Define the cosphere bundle S*M := {(x,£{) € T*M: [{|g = 1}

Theorem 1’

Let a € C°(T*M) satisfy a

s-m # 0. Then for h < 1 and all u € L2(M)
lull < C|| Opp(a)ull + EELA) | (—p2A, — 1)ull

where the constant C depends only on M, a, but not on h, u

Remarks

o If (=h?’Ag; — 1)u = 0 then we get || Op,(a)ul| > c||u|| for some ¢ >0

o Implies Theorem 1: a=a(x) = Opy(a)u=au

o Sharp: alssy =0, (—h?A; —Lu=0 = | Opy(a)u|l < Ch|ul

e Cannot work for O(h/ log(1/h)) quasimodes: Brooks '15,
Eswarathasan—Nonnenmacher '17, Eswarathasan—Silberman '17

v

Semyon Dyatlov Minicourse on FUP, Lecture 1 May 31, 2021 6 /16



Microlocal control and semiclassical measures

Semiclassical measures

Take a high frequency sequence of Laplacian eigenfunctions
(—hiAg —1)uj =0, |ujllizy =1, hj—0
We say uj converges weakly to a measure ;1 on T*M if

Vae CX(T*M):  (Opy(a)yj, uj) 2 —>/ adp asj— oo
T*M

Call such limits p semiclassical measures
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Microlocal control and semiclassical measures

Semiclassical measures

Take a high frequency sequence of Laplacian eigenfunctions

(—hiAg —1)uj =0, |ujllizy =1, hj—0
We say uj converges weakly to a measure ;1 on T*M if
Vae C(T*M):  (Opp(a)uj uj)z — /T*Mad,u as j — oo
Call such limits p semiclassical measures
Basic properties
@ 4 is a probability measure, supppu C S*M

@ 4 is invariant under the geodesic flow ¢; : S*M — S*M

o Natural candidate: Liouville measure 1y ~ dvol (equidistribution)

o Natural enemy: delta measure 4, on a closed geodesic (scarring)
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Semiclassical measures and Theorem 1
(—h?Ag —1)uj =0, |lujllzmy =1, hj =0
Vae C(T*M):  (Opp(a)y), uj) 2 — / adu asj— oo
TM
Theorem 1" alssy 20 = [ Opp(a)yjlli2 > ¢ >0

Theorem 1”
Let 1 be a semiclassical measure on M. Then supp u = S*M J
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Microlocal control and semiclassical measures

Semiclassical measures and Theorem 1

(—h?Ag —1)uj =0, |lujllzmy =1, hj =0
Vae C(T*M):  (Opp(a)y), uj) 2 — / adp asj — oo
T*M
Theorem 1" alssy 20 = [ Opp(a)yjlli2 > ¢ >0

Theorem 1”

Let 1 be a semiclassical measure on M. Then supp u = S*M

Brief overview of history

@ Quantum Ergodicity [Shnirelman '74, Zelditch '87, Colin de
Verdiére '85]: p = u; for density 1 sequence of eigenfunctions
@ Quantum Unique Ergodicity conjecture [Rudnick—Sarnak '94]:
wu = g for all eigenfunctions, that is y; is the only semiclassical
measure. Proved in the arithmetic case [Lindenstrauss '06]

v
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Microlocal control and semiclassical measures

Semiclassical measures and Theorem 1

( h2A )UJ =0, ||ujHL2(I\/I) =1, hj —0

Vae C(T*M):  (Opp(a)y), uj) 2 — / adp asj— oo
T*M

Theorem 1" alsiy #0 == [ Opp(a)ujlliz > c >0

Theorem 1”7

Let 1 be a semiclassical measure on M. Then supp = S*M

Brief overview of history, continued

e Entropy bound [Anantharaman '08, A-Nonnenmacher '07]:
Hks () > % in particular i« # J,. Here Hks denotes
Kolmogorov-Sinai entropy. Note Hks(1) = 1 and Hks(d,) =0

@ Theorem 1”: between QE and QUE and ‘orthogonal’ to entropy
bound. There exist ¢;-invariant p with supp pu # S*M, Hgs(u) > 5
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Proof under GCC

Proof of Theorem 1’: first steps

@ In the remainder of these lectures, we will ‘prove’ Theorem 1’
@ We focus on the case when (—h?Ag — 1)u = 0 and show

alssmZ0 = |u]| < G| Opp(a)u|| for h<1
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Proof under GCC

Proof of Theorem 1’: first steps

@ In the remainder of these lectures, we will ‘prove’ Theorem 1’
@ We focus on the case when (—h?Ag — 1)u = 0 and show

alssmZ0 = |u]| < G| Opp(a)u|| for h<1

o We also assume that (M, g) is a hyperbolic surface (K = —1)
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Proof under GCC

Proof of Theorem 1’: first steps

@ In the remainder of these lectures, we will ‘prove’ Theorem 1’
@ We focus on the case when (—h?Ag — 1)u = 0 and show

dsm#0 = |u| < GlOpy(a)ul for h<1

o We also assume that (M, g) is a hyperbolic surface (K = —1)

Partition of unity
o Take aj,ap € C°(T*M\ 0; [0, 1]) such that

a1 +a>=1near S*M, suppa; C {a#0}, S*M\suppa; #0

v
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Proof under GCC

Proof of Theorem 1’: first steps

@ In the remainder of these lectures, we will ‘prove’ Theorem 1’
@ We focus on the case when (—h?Ag — 1)u = 0 and show

dsm#0 = |u| < GlOpy(a)ul for h<1

o We also assume that (M, g) is a hyperbolic surface (K = —1)

Partition of unity
o Take aj,ap € C°(T*M\ 0; [0, 1]) such that

a1 +a>=1near S*M, suppa; C {a#0}, S*M\suppa; #0

@ Define A; := Opy(aj). Then A; + Ay = I microlocally near S*M
o (—MPAg—1Nu=0 = u=(A1+A)u+Oh)ul
Will pretend that u = Aju + Asu

v
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Proof under GCC

Control and propagation
By ellipticity, since suppa; C {a # 0},

[Avul] < €[ Opp(a)ull + O(h™)]|ul]
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Proof under GCC

Control and propagation
By ellipticity, since suppa; C {a # 0},
[Arul| < C|[ Opp(a)ull + O(h™)]|uf
Conjugate by the half-wave propagator: for A: [2(M) — L?>(M) and t € R
A(t) := U(—t)AU(t), U(t) := exp(—it\/—Dg)
Since (—h?A, — 1)u = 0, we have U(t)u = e~*/"u and thus

[A1(t)ull = [[Arul| < C[| Opp(a)ull + O(h™)[|u]
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Proof under GCC

Control and propagation
By ellipticity, since suppa; C {a # 0},
[Arul[ < C[[ Opy(a)ull + O(h™)|[ull

Conjugate by the half-wave propagator: for A: [2(M) — L?>(M) and t € R

A(t) := U(—t)AU(t), U(t) := exp(—it\/—Dg)
Since (—h?A, — 1)u = 0, we have U(t)u = e~*/"u and thus

[AL(t)ull = [|Arul] < C[| Opy(a)ull + O(h™)|ull
Egorov's Theorem: if a € C°(T*M \ 0) and t is bounded then

U(—t) Opy(a)U(t) = Oppy(ac @) + O(h)

tH , .
where @, = e"léle : T*"M\ 0 — T*M \ 0 is the geodesic flow
May 31,2021 10/ 16



Sketch of the proof of Egorov's Theorem

° a€ CX(T*M\0), U(t):=exp(—%P), P:=./—hA,
o ¢, := ett is the Hamiltonian flow of p(x,¢&) = ¢,
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Sketch of the proof of Egorov's Theorem

0 ac CX(T*M\0), U(t):=exp(—%P), P:=,/—hA,

o ¢, := ett is the Hamiltonian flow of p(x,¢&) = ¢,

@ Microlocally on T*M\ 0, P = Op,(p) + O(h)

@ Define A; := Opp(ao ¢;), then, since 0:(ao ¢r) = {p,ao ¢},

[P, At] = —ihOpy({p, a0 ¢:}) + O(h*) = —ihd: A + O(h?)
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Sketch of the proof of Egorov's Theorem

0 ac CX(T*M\0), U(t):=exp(—%P), P:=,/—hA,

o ¢, := ett is the Hamiltonian flow of p(x,¢&) = ¢,

@ Microlocally on T*M\ 0, P = Op,(p) + O(h)

@ Define A; := Opp(ao ¢;), then, since 0:(ao ¢r) = {p,ao ¢},

[P, At] = —ihOpy({p, a0 ¢:}) + O(h*) = —ihd: A + O(h?)

Now Ag = Opy(a) and
e (U(H)AU(—1)) = U(t)(0:Ac — £[P, Ac]) U(—t) = O(h)
So U(t)A:U(—t) = Opp(a) + O(h), giving Egorov's Theorem:
U(—t) Op,(a) U(t) = Opp(ac ¢r) + O(h)
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Words

@ Recall: A; =O0pp(a1), A2 =0py(a2), A(t) := U(—t)AU(t)
e Words: W(N) := {w=wp...wy_1 | wo,...,wn_1 € {1,2}}
e For w € W(N), define

Aw = Awy_ (N = 1)+ Ay (1)Ang (0),  aw = H (aWj ° ©j)

Egorov's Theorem — A, = Op,(aw) + On(h)

Semyon Dyatlov Minicourse on FUP, Lecture 1 May 31, 2021
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Words

o Recall: A; =Opy(a1), Az =O0py(a2), A(t):= U(—t)AU(t)
e Words: W(N) := {w=wp...wy_1 | wo,...,wn_1 € {1,2}}
e For w € W(N), define

Aw = Ay s (N = 1) Ay (DA (0), aw = [ ] (aw 0 )

Egorov's Theorem — A, = Op,(aw) + On(h)
o We assumed Aju+ Axu = u, so A1(j)u + Ax(j)u = u for all j. Then

ZAU

weW(N)

@ Our proof will work by splitting this sum into 2 parts:
controlled (words with enough A; in them) and uncontrolled, but small
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Proof under GCC

Words for the cat map (for illustration only)

N—-1

dw = H(aWjo‘Pj)a w=wp...wy_1 € W(N)
j=0

Imagine that aj, ap were indicator functions: ay = 1y, S*M = V4 U V.

Then ay is the indicator function of the set , := ﬂjN:_ol ¢—j(Vi,;) and
S*M = |_|W€W(N) V. What do Vi, look like?

Semyon Dyatlov Minicourse on FUP, Lecture 1 May 31, 2021
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Proof under GCC

Words for the cat map (for illustration only)
N-1
aw = l_I(aWJ.O(pj)7 W=W0...WN_1€W(N)
j=0
Imagine that aj, ap were indicator functions: ay = 1y, S*M = V4 U V.
Then ay, is the indicator function of the set V, := ﬂjN:_ol ¢—j(Vi,;) and
S*M = |_|W€W(N) V. What do Vi, look like?

N=1

Replace ¢; by the Arnold cat map
©: T2 = T?, T?=R?/72

o(x) = <§ 1) x mod Z2
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Proof under GCC

Words for the cat map (for illustration only)
N-1
aw = l_I(aWJ.O(pj)7 W=W0...WN_1€W(N)
j=0
Imagine that aj, ap were indicator functions: ay = 1y, S*M = V4 U V.
Then ay, is the indicator function of the set V, := ﬂjN:_ol ¢—j(Vi,;) and
S*M = |_|W€W(N) V. What do Vi, look like?

N=2

Replace ¢; by the Arnold cat map
©: T2 = T?, T?=R?/72

o(x) = <§ 1) x mod Z2
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Words for the cat map (for illustration only)

N-1
aw = H(awjogoj), W:WO...WN_1€W(N)
j=0
Imagine that aq, ap were indicator functions: a; = 1y,, S*M = V, U V>.
Then a, is the indicator function of the set V,, := ﬂjN:_ol ¢—j(Vi,;) and
S*M = LleW(N) V. What do Vi, look like?

N=3

Replace ¢; by the Arnold cat map
@:T> = T? T?=R?/7? /
(21 »
o(x) = (1 1> x mod Z ///
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Words for the cat map (for illustration only)

N-1
aw = H(awjogoj), W:WO...WN_1€W(N)
j=0
Imagine that aq, ap were indicator functions: a; = 1y,, S*M = V, U V>.
Then a, is the indicator function of the set V,, := ﬂjN:_ol ¢—j(Vi,;) and
S*M = UweW(N) V. What do Vi, look like?

N=4

Replace ¢; by the Arnold cat map
©: T2 = T?, T?=R?/72

o(x) = (i i) x mod Z2
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Words for the cat map (for illustration only)

N-1
aw = H(aWjOng), W:WO...WN_1€W(N)
j=0
Imagine that aq, ap were indicator functions: a; = 1y,, S*M = V, U V>.
Then a, is the indicator function of the set V,, := ﬂjN:_ol ¢—j(Vi,;) and
S*M = UweW(N) V. What do Vi, look like?

N=5

Replace ¢; by the Arnold cat map
©: T2 = T?, T?=R?/72

o(x) = (i i) x mod Z2
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Proof under GCC

Words for the cat map (for illustration only)

N—-1

dw = H(awjoﬁoj)a W= Wwy...WN_1 eW(N)
j=0

Imagine that aj, ap were indicator functions: ay = 1y, S*M = V4 U V.

Then ay is the indicator function of the set , := ﬂjN:_ol ¢—j(Vi,;) and

S*M = |_|weW(N) V. What do Vi, look like?

Replace ¢; by the Arnold cat map

©: T2 = T?, T?=R?/72

o(x) = <§ i) x mod Z2

We see structure due to the hyperbolicity of ¢

Schwarz '21: Theorem 1' for quantum cat maps
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Proof under GCC

Geometric control condition (GCC)

In the rest of today's lecture we show Theorem 1':

(—h*Ag —u=0 = |ull < C|Opy(a)u]

in the simple case when {a # 0} satisfies a geometric control condition:

N-1

N>0: M c | Je j{a#0})
j=0

(This proof actually works on any compact Riemannian manifold.)
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Proof under GCC

Geometric control condition (GCC)

In the rest of today's lecture we show Theorem 1':
(—hDg—1u=0 = |ul < C||Opy(a)ul

in the simple case when {a # 0} satisfies a geometric control condition:
N—1
IN>0: S*M c |y j({fa#0})
j=0
(This proof actually works on any compact Riemannian manifold.)

Our partition a; + a» = 1 has S*M \ supp ap C suppa; C {a # 0}.
But we can choose the partition so that these sets are close to each other,
so S*M \ supp ay satisfies GCC.
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Proof under GCC

Geometric control condition (GCC)

In the rest of today's lecture we show Theorem 1':
(—hDg—1u=0 = |ul < C||Opy(a)ul

in the simple case when {a # 0} satisfies a geometric control condition:

N—-1
IN>0: S*M c |y j({fa#0})
j=0

(This proof actually works on any compact Riemannian manifold.)

Our partition a; + a» = 1 has S*M \ supp ap C suppa; C {a # 0}.
But we can choose the partition so that these sets are close to each other,
so S*M \ supp a satisfies GCC. Then, taking 2...2 € W(N),

N-1

ﬂ ¢_j(suppar) =0 = a.2=0
j=0
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Controlled/small partition under GCC

We decompose (using that v = Aju + Ayu)

u= Z Awu = Axu+ Ayu
weW(N)

@ Ay == Az 2 =A(N—1)---Ax(1)A2(0) is uncontrolled
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Controlled/small partition under GCC

We decompose (using that v = Aju + Ayu)

u= Z Awu = Axu+ Ayu
weW(N)

@ Ay == Az 2 =A(N—1)---Ax(1)A2(0) is uncontrolled
o Ayu =3 Ay(N — 1)+ Ao(j + 1)Ar(j)u where j-th term
corresponds to the words w such that w; =1, wj 1 = = wy_1 =2
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Controlled/small partition under GCC

We decompose (using that v = Aju + Ayu)

u= Z Awu = Axu+ Ayu
weW(N)
@ Ay == Az 2 =A(N—1)---Ax(1)A2(0) is uncontrolled
o Ayu =3 Ay(N — 1)+ Ao(j + 1)Ar(j)u where j-th term
corresponds to the words w such that w; =1, wj 1 = = wy_1 =2
e Ax = Opy(az..2) + O(h) = O(h) since a2 = 0 by the GCC
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Controlled/small partition under GCC

We decompose (using that v = Aju + Ayu)

u= Z Awu = Axu+ Ayu
weW(N)
Ay = A o = A2(N — 1) s A2(1)A2(0) is uncontrolled
Apu =S  Ao(N — 1) -+ Ay(j + 1) Ay (j)u where j-th term
corresponds to the words w such that w; =1, wj 1 = = wy_1 =2
Ax = Opp(az..2) + O(h) = O(h) since az._» = 0 by the GCC
Ayu is estimated via Opy(a)u:
N-1
|Ayull <2 || Au()ull < CN|| Opy(a)ull + O(h>)||ul|

j=0
Here we could take the constant 2 since ||Az|| < 1+ O(h)
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Controlled/small partition under GCC

We decompose (using that v = Aju + Ayu)

u= Z Awu = Axu+ Ayu
weW(N)
@ Ay == Az 2 =A(N—1)---Ax(1)A2(0) is uncontrolled
o Ayu =3 Ay(N — 1)+ Ao(j + 1)Ar(j)u where j-th term
corresponds to the words w such that w; =1, wj 1 = = wy_1 =2

e Ax = Opy(az..2) + O(h) = O(h) since a2 = 0 by the GCC

e Ayu is estimated via Opy(a)u:

N-1
|Ayull <2 || Au()ull < CN|| Opy(a)ull + O(h>)||ul|

Jj=0
Here we could take the constant 2 since ||Az|| < 1+ O(h)
@ So ||ul| < CN| Opy(a)ul| + O(h)||ul| and we remove O(h) for h < 1
which gives Theorem 1’
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Thank you for your attention!
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