What is quantum chaos?

Semyon Dyatlov (UC Berkeley/MIT/CMI)

November 16, 2017

- $M \subset \mathbb{R}^n$ bounded domain
- $-\Delta \ge 0$ Dirichlet Laplacian on M
- A sequence of eigenfunctions:

$$(-\Delta - \lambda_j^2)u_j = 0, \quad \lambda_j \xrightarrow[j \to \infty]{} \infty, \quad \|u_j\|_{L^2(M)} = 1$$

- How does the mass $|u_i|^2$ concentrate as $j \to \infty$?
- Do $|u_j|^2$ equidistribute, i.e. $\int_{\Omega} |u_j|^2 \to \text{vol}(\Omega)/\text{vol}(M)$ for all $\Omega \subset M$?
- Can it happen that $\int_{\Omega} |u_j|^2 o 0$ for some open nonempty $\Omega \subset M$?

- $M \subset \mathbb{R}^n$ bounded domain
- $-\Delta \ge 0$ Dirichlet Laplacian on M
- A sequence of eigenfunctions:

$$(-\Delta - \lambda_j^2)u_j = 0, \quad \lambda_j \xrightarrow[j \to \infty]{} \infty, \quad \|u_j\|_{L^2(M)} = 1$$

- How does the mass $|u_i|^2$ concentrate as $j \to \infty$?
- Do $|u_j|^2$ equidistribute, i.e. $\int_{\Omega} |u_j|^2 \to \text{vol}(\Omega)/\text{vol}(M)$ for all $\Omega \subset M$?
- Can it happen that $\int_{\Omega} |u_i|^2 \to 0$ for some open nonempty $\Omega \subset M$?

- $M \subset \mathbb{R}^n$ bounded domain
- $-\Delta \ge 0$ Dirichlet Laplacian on M
- A sequence of eigenfunctions:

$$(-\Delta - \lambda_j^2)u_j = 0, \quad \lambda_j \xrightarrow[j \to \infty]{} \infty, \quad \|u_j\|_{L^2(M)} = 1$$

- How does the mass $|u_i|^2$ concentrate as $j \to \infty$?
- Do $|u_j|^2$ equidistribute, i.e. $\int_{\Omega} |u_j|^2 \to \text{vol}(\Omega)/\text{vol}(M)$ for all $\Omega \subset M$?
- Can it happen that $\int_{\Omega} |u_j|^2 \to 0$ for some open nonempty $\Omega \subset M$?

- $M \subset \mathbb{R}^n$ bounded domain
- $-\Delta \ge 0$ Dirichlet Laplacian on M
- A sequence of eigenfunctions:

$$(-\Delta - \lambda_j^2)u_j = 0, \quad \lambda_j \xrightarrow[j \to \infty]{} \infty, \quad \|u_j\|_{L^2(M)} = 1$$

- How does the mass $|u_j|^2$ concentrate as $j \to \infty$?
- Do $|u_j|^2$ equidistribute, i.e. $\int_{\Omega} |u_j|^2 \to \text{vol}(\Omega)/\text{vol}(M)$ for all $\Omega \subset M$?
- Can it happen that $\int_{\Omega} |u_j|^2 \to 0$ for some open nonempty $\Omega \subset M$?

An example: two planar domains

An example: two planar domains

Eigenfunction concentration (picture on the left by Alex Barnett)

Equidistribution

No equidistribution

An example: two planar domains

Billiard ball dynamics

Chaotic

Completely integrable

A preview of results

(M,g) compact hyperbolic surface (Gauss curvature =-1)

The geodesic flow $\varphi_t: S^*M \to S^*M$ is strongly chaotic (hyperbolic)

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad \lambda_j \to \infty, \quad \|u_j\|_{L^2(M)} = 1$$

Quantum Ergodicity [Shnirelman '74, Zelditch '87, Colin de Verdière '85]

There exists a density 1 sequence of (λ_j, u_j) such that u_j equidistribute:

$$\int_M a|u_j|^2 \, d\operatorname{vol}_g \to \frac{1}{\operatorname{vol}(M)} \int_M a \, d\operatorname{vol}_g \quad \text{ for all } a \in C^\infty(M).$$

Arithmetic Quantum Unique Ergodicity [Lindenstrauss '06]

Assume $M = \Gamma \backslash \mathbb{H}^2$, $\Gamma \subset SL(2,\mathbb{R})$, is an arithmetic congruence compact hyperbolic surface (in particular $\{\operatorname{tr} \gamma \colon \gamma \in \Gamma\} \subset \operatorname{a finite extension of } \mathbb{Q}$). Then the entire sequence of (Hecke) eigenfunctions equidistributes.

A preview of results

(M,g) compact hyperbolic surface (Gauss curvature =-1)

The geodesic flow $\varphi_t: S^*M \to S^*M$ is strongly chaotic (hyperbolic)

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad \lambda_j \to \infty, \quad \|u_j\|_{L^2(M)} = 1$$

Quantum Ergodicity [Shnirelman '74, Zelditch '87, Colin de Verdière '85]

There exists a density 1 sequence of (λ_j, u_j) such that u_j equidistribute:

$$\int_M a|u_j|^2\,d\operatorname{vol}_g\to \frac{1}{\operatorname{vol}(M)}\int_M a\,d\operatorname{vol}_g\quad\text{ for all }a\in C^\infty(M).$$

Arithmetic Quantum Unique Ergodicity [Lindenstrauss '06]

Assume $M = \Gamma \backslash \mathbb{H}^2$, $\Gamma \subset SL(2,\mathbb{R})$, is an arithmetic congruence compact hyperbolic surface (in particular $\{\operatorname{tr} \gamma\colon \gamma\in\Gamma\}\subset a$ finite extension of \mathbb{Q}). Then the entire sequence of (Hecke) eigenfunctions equidistributes.

A preview of results

(M,g) compact hyperbolic surface (Gauss curvature = -1)

The geodesic flow $\varphi_t: S^*M \to S^*M$ is strongly chaotic (hyperbolic)

$$(-\Delta_g - \lambda_j^2)u_j = 0, \quad \lambda_j \to \infty, \quad \|u_j\|_{L^2(M)} = 1$$

Quantum Ergodicity [Shnirelman '74, Zelditch '87, Colin de Verdière '85]

There exists a density 1 sequence of (λ_j, u_j) such that u_j equidistribute:

$$\int_M a|u_j|^2\,d\operatorname{vol}_g\to \frac{1}{\operatorname{vol}(M)}\int_M a\,d\operatorname{vol}_g\quad\text{ for all }a\in C^\infty(M).$$

Arithmetic Quantum Unique Ergodicity [Lindenstrauss '06]

Assume $M = \Gamma \backslash \mathbb{H}^2$, $\Gamma \subset SL(2,\mathbb{R})$, is an arithmetic congruence compact hyperbolic surface (in particular $\{\operatorname{tr} \gamma\colon \gamma\in\Gamma\}\subset \operatorname{a}$ finite extension of \mathbb{Q}). Then the entire sequence of (Hecke) eigenfunctions equidistributes.

A recent result: lower bound on mass

Theorem [D-Jin '17]

Let M be any hyperbolic surface and $\Omega\subset M$ any open nonempty subset. Then there exist c_Ω depending on Ω such that for all j

$$\int_{\Omega} |u_j|^2 d\operatorname{vol}_g \geq c_{\Omega} > 0.$$

An application is observability for Schrödinger equation

Theorem [Jin '17]

Let M be a hyperbolic surface, $\Omega \subset M$ a nonempty open set, and T > 0. Then there exists $C = C(\Omega, T)$ such that for all $f \in L^2(M)$

$$\int_{M} |f|^{2} d \operatorname{vol}_{g} \leq C \int_{0}^{T} \int_{\Omega} |e^{it\Delta_{g}} f|^{2} d \operatorname{vol}_{g} dt.$$

Previously observability by any open set only known for flat tori Jaffard '90, Haraux '89, Anantharaman–Macia '14, Bourgain–Burg–Zworski '13

A recent result: lower bound on mass

Theorem [D-Jin '17]

Let M be any hyperbolic surface and $\Omega \subset M$ any open nonempty subset. Then there exist c_{Ω} depending on Ω such that for all j

$$\int_{\Omega} |u_j|^2 d\operatorname{vol}_g \geq c_{\Omega} > 0.$$

An application is observability for Schrödinger equation:

Theorem [Jin '17]

Let M be a hyperbolic surface, $\Omega \subset M$ a nonempty open set, and T > 0. Then there exists $C = C(\Omega, T)$ such that for all $f \in L^2(M)$

$$\int_{M} |f|^{2} d \operatorname{vol}_{g} \leq C \int_{0}^{T} \int_{\Omega} |e^{it\Delta_{g}} f|^{2} d \operatorname{vol}_{g} dt.$$

Previously observability by any open set only known for flat tori Jaffard '90, Haraux '89, Anantharaman–Macia '14, Bourgain–Burg–Zworski '13

Important tool: semiclassical pseudodifferential operators which can localize simultaneously in position and frequency. On \mathbb{R}^n :

- Localization in position: $u \mapsto au$, $a \in C^{\infty}(\mathbb{R}^n)$
- Localization in frequency: $u \mapsto a(D_x)u$, $D_x = \frac{1}{i}\partial_x$ Defined via the Fourier transform: $\mathcal{F}(a(D_x)u)(\xi) = a(\xi)\mathcal{F}u(\xi)$
- Localization in both: $u \mapsto a(x, D_x)u$, $a \in C^{\infty}(\mathbb{R}^{2n})$

•
$$a(x) = \sum_{\alpha} a_{\alpha}(x) \xi^{\alpha} \implies a(x, D_x) = \sum_{\alpha} a_{\alpha}(x) D_x^{\alpha}$$

On a manifold M, can define $a(x, D_x)$ for $a \in C^{\infty}(T^*M)$

$$a \in C^{\infty}(T^*M) \quad \mapsto \quad \operatorname{Op}_h(a) := a(x, hD_x) : C^{\infty}(M) \to C^{\infty}(M)$$

$$(-\Delta_g - \lambda^2)u = 0 \quad \Rightarrow \quad u \text{ lives at frequencies } \sim \lambda \quad \Rightarrow \quad \text{put } h := \lambda^{-1}$$

Important tool: semiclassical pseudodifferential operators which can localize simultaneously in position and frequency. On \mathbb{R}^n :

- Localization in position: $u \mapsto au$, $a \in C^{\infty}(\mathbb{R}^n)$
- Localization in frequency: $u \mapsto a(D_x)u$, $D_x = \frac{1}{i}\partial_x$ Defined via the Fourier transform: $\mathcal{F}(a(D_x)u)(\xi) = a(\xi)\mathcal{F}u(\xi)$
- Localization in both: $u \mapsto a(x, D_x)u$, $a \in C^{\infty}(\mathbb{R}^{2n})$

•
$$a(x) = \sum_{\alpha} a_{\alpha}(x) \xi^{\alpha} \implies a(x, D_{x}) = \sum_{\alpha} a_{\alpha}(x) D_{x}^{\alpha}$$

On a manifold M, can define $a(x, D_x)$ for $a \in C^{\infty}(T^*M)$

$$a \in C^{\infty}(T^*M) \quad \mapsto \quad \operatorname{Op}_h(a) := a(x, hD_x) : C^{\infty}(M) \to C^{\infty}(M)$$

$$(-\Delta_g - \lambda^2)u = 0 \quad \Rightarrow \quad u \text{ lives at frequencies } \sim \lambda \quad \Rightarrow \quad \text{put } h := \lambda^{-1}$$

Important tool: semiclassical pseudodifferential operators which can localize simultaneously in position and frequency. On \mathbb{R}^n :

- Localization in position: $u \mapsto au$, $a \in C^{\infty}(\mathbb{R}^n)$
- Localization in frequency: $u \mapsto a(D_x)u$, $D_x = \frac{1}{i}\partial_x$ Defined via the Fourier transform: $\mathcal{F}(a(D_x)u)(\xi) = a(\xi)\mathcal{F}u(\xi)$
- Localization in both: $u \mapsto a(x, D_x)u$, $a \in C^{\infty}(\mathbb{R}^{2n})$
- $a(x) = \sum_{\alpha} a_{\alpha}(x) \xi^{\alpha} \implies a(x, D_x) = \sum_{\alpha} a_{\alpha}(x) D_x^{\alpha}$

On a manifold M, can define $a(x, D_x)$ for $a \in C^{\infty}(T^*M)$

$$a \in C^{\infty}(T^*M) \quad \mapsto \quad \operatorname{Op}_h(a) := a(x, hD_x) : C^{\infty}(M) \to C^{\infty}(M)$$

$$(-\Delta_g - \lambda^2)u = 0 \quad \Rightarrow \quad u \text{ lives at frequencies } \sim \lambda \quad \Rightarrow \quad \text{put } h := \lambda^{-1}$$

Important tool: semiclassical pseudodifferential operators which can localize simultaneously in position and frequency. On \mathbb{R}^n :

- Localization in position: $u \mapsto au$, $a \in C^{\infty}(\mathbb{R}^n)$
- Localization in frequency: $u \mapsto a(D_x)u$, $D_x = \frac{1}{i}\partial_x$ Defined via the Fourier transform: $\mathcal{F}(a(D_x)u)(\xi) = a(\xi)\mathcal{F}u(\xi)$
- Localization in both: $u \mapsto a(x, D_x)u$, $a \in C^{\infty}(\mathbb{R}^{2n})$
- $a(x) = \sum_{\alpha} a_{\alpha}(x) \xi^{\alpha} \implies a(x, D_x) = \sum_{\alpha} a_{\alpha}(x) D_x^{\alpha}$

On a manifold M, can define $a(x, D_x)$ for $a \in C^{\infty}(T^*M)$

$$a \in C^{\infty}(T^*M) \quad \mapsto \quad \operatorname{Op}_h(a) := a(x, hD_x) : C^{\infty}(M) \to C^{\infty}(M)$$

$$(-\Delta_g - \lambda^2)u = 0 \quad \Rightarrow \quad u \text{ lives at frequencies } \sim \lambda \quad \Rightarrow \quad \text{put } h := \lambda^{-1}$$

Important tool: semiclassical pseudodifferential operators which can localize simultaneously in position and frequency. On \mathbb{R}^n :

- Localization in position: $u \mapsto au$, $a \in C^{\infty}(\mathbb{R}^n)$
- Localization in frequency: $u \mapsto a(D_x)u$, $D_x = \frac{1}{i}\partial_x$ Defined via the Fourier transform: $\mathcal{F}(a(D_x)u)(\xi) = a(\xi)\mathcal{F}u(\xi)$
- Localization in both: $u \mapsto a(x, D_x)u$, $a \in C^{\infty}(\mathbb{R}^{2n})$
- $a(x) = \sum_{\alpha} a_{\alpha}(x) \xi^{\alpha} \implies a(x, D_x) = \sum_{\alpha} a_{\alpha}(x) D_x^{\alpha}$

On a manifold M, can define $a(x, D_x)$ for $a \in C^{\infty}(T^*M)$

$$a \in C^{\infty}(T^*M) \quad \mapsto \quad \operatorname{Op}_h(a) := a(x, {}^hD_x) : C^{\infty}(M) \to C^{\infty}(M)$$

$$(-\Delta_g - \lambda^2)u = 0 \implies u \text{ lives at frequencies } \sim \lambda \implies \text{put } \frac{h}{h} := \lambda^{-1}$$

Classical	\leftrightarrow	Quantum
$a\in C^\infty(T^*M)$	\leftrightarrow	$\operatorname{Op}_h(a): C^\infty(M) \to C^\infty(M)$
$\sup a < \infty$	\leftrightarrow	$\ \operatorname{Op}_h(a)\ _{L^2(M) \to L^2(M)} \le C$
Product of symbols	\leftrightarrow	Composition of operators
$Op_h(a)Op_h$	(b) = Op	$h_h(ab) + \mathcal{O}(h)$
Poisson bracket $\{\bullet, \bullet\}$	\leftrightarrow	Commutator $[ullet,ullet]$
$[Op_h(a), Op_h(b)]$	= -ih O	$p_h(\{a,b\}) + \mathcal{O}(h^2)$
Geodesic flow	\leftrightarrow	Wave group
$\varphi_t: T^*M \to T^*M$		$U(t) = \exp(-it\sqrt{-\Delta_g})$

Classical	\leftrightarrow	Quantum
$a\in C^\infty(T^*M)$	\leftrightarrow	$\operatorname{Op}_h(a): C^\infty(M) \to C^\infty(M)$
$\sup a < \infty$	\leftrightarrow	$\ \operatorname{Op}_h(a)\ _{L^2(M) \to L^2(M)} \le C$
Product of symbols	\leftrightarrow	Composition of operators
$Op_h(a)Op_h$	(b) = Op	$h_h(ab) + \mathcal{O}(h)$
Poisson bracket $\{\bullet, \bullet\}$	\leftrightarrow	Commutator $[ullet,ullet]$
$[Op_h(a), Op_h(b)]$	= -ih O	$p_h(\{a,b\}) + \mathcal{O}(h^2)$
Geodesic flow	\leftrightarrow	Wave group
$\varphi_t: T^*M \to T^*M$		$U(t) = \exp(-it\sqrt{-\Delta_g})$

Classical	\leftrightarrow	Quantum		
$a\in C^\infty(T^*M)$	\leftrightarrow	$\operatorname{Op}_h(a): C^\infty(M) o C^\infty(M)$		
$\sup a < \infty$	\leftrightarrow	$\ \operatorname{Op}_h(a)\ _{L^2(M) \to L^2(M)} \le C$		
Product of symbols	\leftrightarrow	Composition of operators		
$\operatorname{Op}_h(a)\operatorname{Op}_h(b)=\operatorname{Op}_h(ab)+\mathcal{O}(h)$				
Poisson bracket {●,●}	\leftrightarrow	Commutator $[ullet,ullet]$		
$[Op_h(a), Op_h(b)]$	$[\operatorname{Op}_h(a),\operatorname{Op}_h(b)] = -ih\operatorname{Op}_h(\{a,b\}) + \mathcal{O}(h^2)$			
Geodesic flow	\leftrightarrow	Wave group		
$\varphi_t: T^*M \to T^*M$		$U(t) = \exp(-it\sqrt{-\Delta_g})$		

Classical	\leftrightarrow	Quantum	
$a\in C^\infty(T^*M)$	\leftrightarrow	$\operatorname{Op}_h(a): C^\infty(M) o C^\infty(M)$	
$\sup a < \infty$	\leftrightarrow	$\ \operatorname{Op}_h(a)\ _{L^2(M)\to L^2(M)}\leq C$	
Product of symbols	\leftrightarrow	Composition of operators	
$\operatorname{Op}_h(a)\operatorname{Op}_h(b) = \operatorname{Op}_h(ab) + \mathcal{O}(h)$			
Poisson bracket $\{\bullet, \bullet\}$	\leftrightarrow	Commutator $[ullet,ullet]$	
$[\operatorname{Op}_{\mathit{h}}(\mathit{a}),\operatorname{Op}_{\mathit{h}}(\mathit{b})] = -i\mathit{h}\operatorname{Op}_{\mathit{h}}(\{\mathit{a},\mathit{b}\}) + \mathcal{O}(\mathit{h}^2)$			
Geodesic flow	\leftrightarrow	Wave group	

Egorov's Theorem: $U(-t) \operatorname{Op}_h(a) U(t) = \operatorname{Op}_h(a \circ \varphi_t) + \mathcal{O}(h)$

Classical	\leftrightarrow	Quantum	
$a\in C^{\infty}(T^*M)$	\leftrightarrow	$\operatorname{Op}_h(a): C^\infty(M) o C^\infty(M)$	
$\sup a < \infty$	\leftrightarrow	$\ \operatorname{Op}_h(a)\ _{L^2(M)\to L^2(M)}\leq C$	
Product of symbols	\leftrightarrow	Composition of operators	
$\operatorname{Op}_h(a)\operatorname{Op}_h(b) = \operatorname{Op}_h(ab) + \mathcal{O}(h)$			
Poisson bracket $\{\bullet, \bullet\}$	\leftrightarrow	Commutator $[ullet,ullet]$	
$[Op_h(a),Op_h(b)] = -ihOp_h(\{a,b\}) + \mathcal{O}(h^2)$			
Geodesic flow	\leftrightarrow	Wave group	
$\varphi_t: T^*M \to T^*M$		$U(t) = \exp(-it\sqrt{-\Delta_g})$	
Egorov's Theorem: $U(-t)\operatorname{Op}_h(a)U(t)=\operatorname{Op}_h(a\circ arphi_t)+\mathcal{O}(h)$			

Rescale
$$(-\Delta_g - \lambda_j^2)u_j = 0$$
 using $h_j := \lambda_j^{-1}$
$$(-h_j^2\Delta_g - 1)u_j = 0, \quad h_j \to 0, \quad \|u_j\|_{L^2(M)} = 1$$

Definition

We say that u_j converges (weakly) to a measure μ on T^*M if

$$\langle \mathsf{Op}_{h_j}(a)u_j,u_j \rangle_{L^2(M)} o \int_{\mathcal{T}^*M} a\, d\mu \quad \text{for all } a \in C^\infty(\mathcal{T}^*M)$$

Semiclassical measures: weak limits of sequences of eigenfunctions

Note: $|u_j|^2 d \operatorname{vol}_g \to \pi_* \mu$ weakly, $\pi : T^*M \to M$

Properties of semiclassical measures

- \bullet μ probability measure
- ullet supp μ contained in the cosphere bundle S^*M
- ullet μ invariant under the geodesic flow $arphi_t$

Rescale
$$(-\Delta_g - \lambda_j^2)u_j = 0$$
 using $h_j := \lambda_j^{-1}$
$$(-h_j^2 \Delta_g - 1)u_j = 0, \quad h_j \to 0, \quad \|u_j\|_{L^2(M)} = 1$$

Definition

We say that u_j converges (weakly) to a measure μ on T^*M if

$$\langle \mathsf{Op}_{h_j}(a)u_j,u_j \rangle_{L^2(M)} o \int_{\mathcal{T}^*M} a \, d\mu \quad \text{for all } a \in C^\infty(\mathcal{T}^*M)$$

Semiclassical measures: weak limits of sequences of eigenfunctions

Note: $|u_j|^2 d \operatorname{vol}_g \to \pi_* \mu$ weakly, $\pi: T^*M \to M$

Properties of semiclassical measures

- \bullet μ probability measure
- supp μ contained in the cosphere bundle S^*M
- μ invariant under the geodesic flow φ_t

Rescale
$$(-\Delta_g - \lambda_j^2)u_j = 0$$
 using $h_j := \lambda_j^{-1}$
$$(-h_j^2 \Delta_g - 1)u_j = 0, \quad h_j \to 0, \quad \|u_j\|_{L^2(M)} = 1$$

Definition

We say that u_j converges (weakly) to a measure μ on T^*M if

$$\langle \mathsf{Op}_{h_j}(a)u_j,u_j \rangle_{L^2(M)} o \int_{\mathcal{T}^*M} a \, d\mu \quad \text{for all } a \in C^\infty(\mathcal{T}^*M)$$

Semiclassical measures: weak limits of sequences of eigenfunctions

Note: $|u_j|^2 d \operatorname{vol}_g \to \pi_* \mu$ weakly, $\pi: T^*M \to M$

Properties of semiclassical measures

- \bullet μ probability measure
- supp μ contained in the cosphere bundle S^*M
- μ invariant under the geodesic flow φ_t

Rescale
$$(-\Delta_g - \lambda_j^2)u_j = 0$$
 using $h_j := \lambda_j^{-1}$
$$(-h_j^2 \Delta_g - 1)u_j = 0, \quad h_j \to 0, \quad \|u_j\|_{L^2(M)} = 1$$

Definition

We say that u_i converges (weakly) to a measure μ on T^*M if

$$\langle \mathsf{Op}_{h_j}(a)u_j,u_j
angle_{L^2(M)} o \int_{\mathcal{T}^*M} a\,d\mu \quad \text{for all } a\in C^\infty(\mathcal{T}^*M)$$

Semiclassical measures: weak limits of sequences of eigenfunctions

Note: $|u_j|^2 d \operatorname{vol}_g \to \pi_* \mu$ weakly, $\pi: T^*M \to M$

Examples of φ_t -invariant probability measures

- μ_L the Liouville (volume) measure on S^*M : equidistribution
- ullet δ_{γ} the delta measure on a closed geodesic: scarring
- and lots of options in between

$$(-h_j^2\Delta_g-1)u_j=0, \quad h_j=\lambda_j^{-1}\to 0, \quad \|u_j\|_{L^2(M)}=1$$
 $\langle \operatorname{Op}_{h_j}(a)u_j,u_j \rangle_{L^2(M)} \to \int_{T^*M} a \, d\mu \quad \forall a \in C^\infty(T^*M)$

Assume the geodesic flow φ_t is ergodic on S^*M , that is all flow-invariant sets $A \subset S^*M$ have Liouville measure $\mu_L(A) = 0$ or $\mu_L(A) = 1$.

Then there exists a density 1 sequence of eigenvalues of $-\Delta_g$ such that the corresponding u_i converge to μ_L .

Shnirelman '74, Zelditch '87, Colin de Verdière '85 . . . Zelditch–Zworski '96

Ingredients of the proof

• Egorov's Theorem + equivariance of eigenfunctions under U(t) \Rightarrow

$$\langle \mathsf{Op}_{h_j}(\mathsf{a})u_j, u_j \rangle = \langle \mathsf{Op}_{h_j}(\langle \mathsf{a} \rangle_{\mathsf{T}})u_j, u_j \rangle + \mathcal{O}(h), \quad \langle \mathsf{a} \rangle_{\mathsf{T}} := \frac{1}{T} \int_0^T \mathsf{a} \circ \varphi_t \, dt$$

• L^2 ergodic theorem: $\langle a \rangle_T \to \int a \, d\mu_L$ on $L^2(S^*M)$ $\Rightarrow \langle \mathsf{Op}_{h_i}(\langle a \rangle_T)u_i, u_i \rangle \approx \int a \, d\mu_L$ for most eigenfunctions

$$(-h_j^2\Delta_g-1)u_j=0, \quad h_j=\lambda_j^{-1}\to 0, \quad \|u_j\|_{L^2(M)}=1$$
 $\langle \operatorname{Op}_{h_j}(a)u_j,u_j \rangle_{L^2(M)} \to \int_{T^*M} a \, d\mu \quad orall a \in C^\infty(T^*M)$

Assume the geodesic flow φ_t is ergodic on S^*M , that is all flow-invariant sets $A \subset S^*M$ have Liouville measure $\mu_L(A) = 0$ or $\mu_L(A) = 1$.

Then there exists a density 1 sequence of eigenvalues of $-\Delta_g$ such that the corresponding u_j converge to μ_L .

Shnirelman '74, Zelditch '87, Colin de Verdière '85 ... Zelditch-Zworski '96

Ingredients of the proof

ullet Egorov's Theorem + equivariance of eigenfunctions under U(t) \Rightarrow

$$\langle \mathsf{Op}_{h_j}(a)u_j, u_j \rangle = \langle \mathsf{Op}_{h_j}(\langle a \rangle_{\mathcal{T}})u_j, u_j \rangle + \mathcal{O}(h), \quad \langle a \rangle_{\mathcal{T}} := \frac{1}{\mathcal{T}} \int_0^T a \circ \varphi_t \, dt$$

• L^2 ergodic theorem: $\langle a \rangle_T \to \int a \, d\mu_L$ on $L^2(S^*M)$ $\Rightarrow \langle \mathsf{Op}_{h_i}(\langle a \rangle_T) u_j, u_j \rangle \approx \int a \, d\mu_L$ for most eigenfunctions

$$(-h_j^2\Delta_g-1)u_j=0, \quad h_j=\lambda_j^{-1} o 0, \quad \|u_j\|_{L^2(M)}=1$$
 $\langle \operatorname{Op}_{h_j}(a)u_j,u_j
angle_{L^2(M)} o \int_{T^*M}a\,d\mu \quad orall a\in C^\infty(T^*M)$

Assume the geodesic flow φ_t is ergodic on S^*M , that is all flow-invariant sets $A \subset S^*M$ have Liouville measure $\mu_L(A) = 0$ or $\mu_L(A) = 1$.

Then there exists a density 1 sequence of eigenvalues of $-\Delta_g$ such that the corresponding u_i converge to μ_L .

Shnirelman '74, Zelditch '87, Colin de Verdière '85 . . . Zelditch–Zworski '96

Ingredients of the proof

• Egorov's Theorem + equivariance of eigenfunctions under $U(t) \Rightarrow \langle \operatorname{Op}_{h_j}(a)u_j, u_j \rangle = \langle \operatorname{Op}_{h_j}(\langle a \rangle_T)u_j, u_j \rangle + \mathcal{O}(h), \quad \langle a \rangle_T := \frac{1}{T} \int_0^T a \circ \varphi_t \, dt$

• L^2 ergodic theorem: $\langle a \rangle_T \to \int a \, d\mu_L$ on $L^2(S^*M)$ $\Rightarrow \langle \operatorname{Op}_{h_i}(\langle a \rangle_T) u_j, u_j \rangle \approx \int a \, d\mu_L$ for most eigenfunctions

$$(-h_j^2 \Delta_g - 1)u_j = 0, \quad h_j = \lambda_j^{-1} \to 0, \quad \|u_j\|_{L^2(M)} = 1$$
$$\langle \operatorname{Op}_{h_j}(a)u_j, u_j \rangle_{L^2(M)} \to \int_{T^*M} a \, d\mu \quad \forall a \in C^{\infty}(T^*M)$$

Assume the geodesic flow φ_t is ergodic on S^*M , that is all flow-invariant sets $A \subset S^*M$ have Liouville measure $\mu_L(A) = 0$ or $\mu_L(A) = 1$.

Then there exists a density 1 sequence of eigenvalues of $-\Delta_g$ such that the corresponding u_i converge to μ_L .

Shnirelman '74, Zelditch '87, Colin de Verdière '85 . . . Zelditch–Zworski '96

Ingredients of the proof

• Egorov's Theorem + equivariance of eigenfunctions under $U(t) \Rightarrow (O_{T}(t)) = (O_$

$$\langle \mathsf{Op}_{h_j}(\mathsf{a})u_j, u_j \rangle = \langle \mathsf{Op}_{h_j}(\langle \mathsf{a} \rangle_{\mathsf{T}})u_j, u_j \rangle + \mathcal{O}(\mathsf{h}), \quad \langle \mathsf{a} \rangle_{\mathsf{T}} := \frac{1}{T} \int_0^T \mathsf{a} \circ \varphi_t \, dt$$

• L^2 ergodic theorem: $\langle a \rangle_T \to \int a \, d\mu_L$ on $L^2(S^*M)$ $\Rightarrow \langle \operatorname{Op}_{h_i}(\langle a \rangle_T) u_j, u_j \rangle \approx \int a \, d\mu_L$ for most eigenfunctions

Example with ergodic billiard flow: Bunimovich stadium

Theorem [Hassell '10]

For almost every choice of the parameter of the stadium there exists a sequence u_i which does not equidistribute

Example with ergodic billiard flow: Bunimovich stadium

Theorem [Hassell '10]

For almost every choice of the parameter of the stadium there exists a sequence u_i which does not equidistribute

Strongly chaotic systems

What if φ_t is hyperbolic, i.e. a small perturbation of the initial condition causes exponential divergence from the original trajectory?

Examples: surfaces of negative Gauss curvature and some billiards

Strongly chaotic systems

What if φ_t is hyperbolic, i.e. a small perturbation of the initial condition causes exponential divergence from the original trajectory?

Examples: surfaces of negative Gauss curvature and some billiards

Quantum Unique Ergodicity (QUE) conjecture [Rudnick-Sarnak '94]

If φ_t is hyperbolic, then the whole sequence of eigenfunctions equidistributes, i.e. μ_L is the only semiclassical measure.

True for (some) arithmetic surfaces: Lindenstrauss '06, Soundararajan '10

The general case is still very much open. Counterexamples in toy models: Faure–Nonnenmacher–de Bièvre '03, Anantharaman–Nonnenmacher '07

Between QE and QUE

What can we say about semiclassical measures? E.g. can we get $\mu = \delta_{\gamma}$? Specialize to the case of (M,g) hyperbolic surface

Entropy bound [Anantharaman-Nonnenmacher '07]

Each semiclassical measure μ has Kolmogorov–Sinai entropy $H_{\mathrm{KS}}(\mu) \geq 1/2$

Note: $H_{\rm KS}(\mu_L)=1$, $H_{\rm KS}(\delta_\gamma)=0$. Known for more general hyperbolic φ_t with 1/2 replaced by certain number >0

Anantharaman '08, Rivière '10, Anantharaman-Silberman '13

Lower bound on mass [D-Jin '17]

Each semiclassical measure μ has supp $\mu = S^*M$, that is $\mu(A) > 0$ for every open nonempty $A \subset S^*M$

Proof uses fractal uncertainty principle [D–Zahl '15, Bourgain–D '16]

Between QE and QUE

What can we say about semiclassical measures? E.g. can we get $\mu = \delta_{\gamma}$? Specialize to the case of (M,g) hyperbolic surface

Entropy bound [Anantharaman-Nonnenmacher '07]

Each semiclassical measure μ has Kolmogorov–Sinai entropy $H_{\mathrm{KS}}(\mu) \geq 1/2$

Note: $H_{\rm KS}(\mu_L)=1$, $H_{\rm KS}(\delta_\gamma)=0$. Known for more general hyperbolic φ_t with 1/2 replaced by certain number >0 Anantharaman '08, Rivière '10, Anantharaman-Silberman '13

Lower bound on mass [D–Jin '17]

Each semiclassical measure μ has supp $\mu = S^*M$, that is $\mu(A) > 0$ for every open nonempty $A \subset S^*M$

Proof uses fractal uncertainty principle [D-Zahl '15, Bourgain-D '16]

Fractal uncertainty principle

Definition

A set $X\subset [0,1]$ is ν -porous $(\nu>0)$ on scales h to 1 if for each interval I of size $h\leq |I|\leq 1$, there is an interval $J\subset I$ with $|J|=\nu|I|$ and $J\cap X=\emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{18}$ -porous on scales 0 to 1

Fractal uncertainty principle [Bourgain–D '16

Assume that $X, Y \subset [0,1]$ are ν -porous on scales h to 1. Then there exist $\beta > 0, C$ depending on ν but not on X, Y, h such that

$$f \in L^2(\mathbb{R}), \quad \operatorname{supp}(\mathcal{F}_h f) \subset X \quad \Longrightarrow \quad \|f\|_{L^2(Y)} \leq C h^{\beta} \|f\|_{L^2(\mathbb{R})}.$$

Here $\mathcal{F}_h:L^2(\mathbb{R}) o L^2(\mathbb{R})$ is the semiclassical Fourier transform:

$$\mathcal{F}_h f(\xi) = \int_{\mathbb{R}} e^{-ix\xi/h} f(x) \, dx$$

Fractal uncertainty principle

Definition

A set $X\subset [0,1]$ is ν -porous $(\nu>0)$ on scales h to 1 if for each interval I of size $h\leq |I|\leq 1$, there is an interval $J\subset I$ with $|J|=\nu|I|$ and $J\cap X=\emptyset$

Example: mid-third Cantor set $\mathcal{C} \subset [0,1]$ is $\frac{1}{18}$ -porous on scales 0 to 1

Fractal uncertainty principle [Bourgain-D '16]

Assume that $X,Y\subset [0,1]$ are ν -porous on scales h to 1. Then there exist $\beta>0,C$ depending on ν but not on X,Y,h such that

$$f \in L^2(\mathbb{R}), \quad \operatorname{supp}(\mathcal{F}_h f) \subset X \quad \Longrightarrow \quad \|f\|_{L^2(\frac{\mathbf{Y}}{\mathbf{Y}})} \leq Ch^{\beta} \|f\|_{L^2(\mathbb{R})}.$$

Here $\mathcal{F}_h: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ is the semiclassical Fourier transform:

$$\mathcal{F}_h f(\xi) = \int_{\mathbb{R}} e^{-ix\xi/h} f(x) dx$$

Fractal uncertainty principle [Bourgain-D '16]

Assume that $X,Y\subset [0,1]$ are ν -porous on scales h to 1. Then there exist $\beta>0,C$ depending on ν but not on X,Y,h such that

$$f \in L^2(\mathbb{R}), \quad \operatorname{supp}(\mathcal{F}_h f) \subset X \quad \Longrightarrow \quad \|f\|_{L^2(Y)} \le Ch^{\beta} \|f\|_{L^2(\mathbb{R})}$$

Interpretation: no quantum state can be localized on a porous set in both position and frequency

Thank you for your attention!