Worksheet 9: Inverses, invertibility, and determinants

1. Find the inverse of the matrix

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]
$$

Answer:

$$
\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]
$$

$2-3$. Determine if the following matrices are invertible. Do not compute the inverses.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 4 & 5 \\
0 & 1 & 3 \\
0 & 2 & 1
\end{array}\right],} \\
& {\left[\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right] .}
\end{aligned}
$$

Answers: (2) Yes, as the matrix has 3 pivot positions (3) No, as it is not a square matrix
4. Assume that A and B are square matrices such that $A B=I$. Can you prove that $A B=B A$?

Solution: Yes. Indeed, by $\operatorname{IMT}(\mathrm{k})$, the matrix A is invertible. Multiplying both sides of the equation $A B=I$ by A^{-1} to the left, we get $B=A^{-1}$. Then $A B=B A=I$, so A and B commute.
5. Assume that A is a square matrix and the columns of A^{2} are linearly dependent. Prove that the columns of A are linearly dependent.

Solution: We argue by contradiction. Assume that the columns of A^{2} are linearly dependent, yet the columns of A are linearly independent. Then by IMT (e), the matrix A is invertible. Therefore, $A^{2}=A \cdot A$ is invertible; by IMT (e), the columns of A^{2} are linearly independent, a contradiction.
6. Lay, 2.3.23.

Solution: See the back of the book.
7. Compute $\operatorname{det} A$ and state whether A is invertible:

$$
A=\left[\begin{array}{ccc}
1 & -5 & -4 \\
0 & 3 & 4 \\
-3 & 6 & 0
\end{array}\right]
$$

Answer: Use the cofactor expansion along the second row:

$$
\begin{gathered}
\operatorname{det} A=-0 \cdot \operatorname{det}\left[\begin{array}{cc}
-5 & -4 \\
6 & 0
\end{array}\right]+3 \cdot \operatorname{det}\left[\begin{array}{cc}
1 & -4 \\
-3 & 0
\end{array}\right]-4 \cdot \operatorname{det}\left[\begin{array}{cc}
1 & -5 \\
-3 & 6
\end{array}\right] \\
=0-3 \cdot 12-4(-9)=0
\end{gathered}
$$

Therefore, A is not invertible.
8. Use determinants to find all t for which the vectors $(1,2)$ and $(t, t+3)$ are linearly independent.

Solution: The vectors in question are linearly independent if and only if

$$
0 \neq \operatorname{det}\left[\begin{array}{cc}
1 & t \\
2 & t+3
\end{array}\right]=3-t
$$

Therefore, the answer is $t \neq 3$.
9. Use determinants to find all λ for which the matrix

$$
\left[\begin{array}{ll}
1 & 2 \\
2 & 1
\end{array}\right]-\lambda I_{2}
$$

is not invertible.
Solution: The matrix in question is not invertible if and only if

$$
0=\operatorname{det}\left[\begin{array}{cc}
1-\lambda & 2 \\
2 & 1-\lambda
\end{array}\right]=\lambda^{2}-2 \lambda-3=(\lambda-3)(\lambda+1) .
$$

Therefore, the answer is $\lambda=-1,3$.
10. Compute the determinant of the 2×2 matrix with columns

$$
\vec{u}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], \vec{v}=\left[\begin{array}{l}
t \\
1
\end{array}\right] .
$$

Here $t \in \mathbb{R}$ is some number. Draw the vectors \vec{u} and \vec{v} and use plane geometry to compute the area of the parallelogram spanned by these vectors.

Answer: The determinant is equal to 1. To prove that the area is also equal to 1 , multiply the length of the side of the parallelogram between 0 and \vec{u} by the distance from \vec{v} to this side.
100.* (Neumann series) Let A be a square matrix and consider the series

$$
\sum_{j \geq 0} A^{j}=I+A+A^{2}+A^{3}+\ldots
$$

(a) Assume that the series converges to a matrix B (in the sense that each of its entries converges). Prove that $B=(I-A)^{-1}$.
(b) Assume that A is nilpotent; that is, $A^{m}=0$ for some positive integer m. Use part (a) to prove that $I-A$ is invertible.

