Worksheet 7: Linear transformations and matrix multiplication

$1-4$. Use the definition of a linear transformation to verify whether the given transformation T is linear. If T is linear, find the matrix A such that $T(\vec{x})=A \vec{x}$ for each vector \vec{x}.

$$
\begin{gather*}
T\left(x_{1}\right)=\left|x_{1}\right| \tag{1}\\
T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right) \tag{2}\\
T\left(x_{1}, x_{2}\right)=2 x_{1}+3 x_{2} \tag{3}\\
T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{2}-x_{3}, x_{1}+1, x_{2}\right) . \tag{4}
\end{gather*}
$$

Solution to problem 1: T is not linear, since it violates property (ii) of the definition. Indeed, $T((-1) 1)=T(-1)=1$ is not equal to $(-1) T(1)=$ -1 .

Solution to problem 2: T is linear. Indeed, for each $\vec{u}, \vec{v} \in \mathbb{R}^{2}$ and $c, d \in \mathbb{R}$,

$$
\begin{gathered}
T(c \vec{u}+d \vec{v}) \\
=T\left(c u_{1}+d v_{1}, c u_{2}+d v_{2}\right) \\
=\left(c u_{2}+d v_{2}, c u_{1}+d v_{1}\right) \\
=c\left(u_{2}, u_{1}\right)+d\left(v_{2}, v_{1}\right) \\
=c T(\vec{u})+d T(\vec{v}) .
\end{gathered}
$$

Now, we find

$$
T\left(\vec{e}_{1}\right)=T(1,0)=(0,1), T\left(\vec{e}_{2}\right)=T(0,1)=(1,0)
$$

therefore, the standard matrix of T is

$$
A=\left[\begin{array}{ll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .
$$

Solution to problem 3: T is linear. Indeed, for each $\vec{u}, \vec{v} \in \mathbb{R}^{2}$ and $c, d \in \mathbb{R}$,

$$
\begin{gathered}
T(c \vec{u}+d \vec{v}) \\
=T\left(c u_{1}+d u_{1}, c u_{2}+d u_{2}\right) \\
=2\left(c u_{1}+d u_{1}\right)+3\left(c u_{2}+d u_{2}\right) \\
=c\left(2 u_{1}+3 u_{2}\right)+d\left(2 v_{1}+3 v_{2}\right) \\
=c T(\vec{u})+d T(\vec{v}) .
\end{gathered}
$$

Now, we find

$$
T\left(\vec{e}_{1}\right)=T(1,0)=2, T\left(\vec{e}_{2}\right)=T(0,1)=3 ;
$$

therefore, the standard matrix of T is

$$
A=\left[\begin{array}{ll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
2 & 3
\end{array}\right]
$$

Solution to problem 4: T is not linear, as $T(0,0,0)=(0,1,0)$ is not equal to the zero vector.
5. Lay, 1.9.2.

Answer:

$$
A=\left[\begin{array}{lll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right) & T\left(\vec{e}_{3}\right)
\end{array}\right]=\left[\begin{array}{ccc}
1 & 4 & -5 \\
3 & -7 & 4
\end{array}\right]
$$

6. Lay, 1.9.6.

Answer:

$$
A=\left[\begin{array}{ll}
T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right)
\end{array}\right]=\left[\begin{array}{ll}
\vec{e}_{1} & \vec{e}_{2}+3 \vec{e}_{1}
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right]
$$

7. Lay, 1.9.9.

Solution: \vec{e}_{1} is mapped by the shear to \vec{e}_{1}, and then by the reflection to $-\vec{e}_{2} ; \vec{e}_{2}$ is mapped by the shear to $\vec{e}_{2}-2 \vec{e}_{1}$, and then by the reflection to $2 \vec{e}_{2}-\vec{e}_{1}$. Therefore, the standard matrix is

$$
A=\left[\begin{array}{cc}
-\vec{e}_{2} & 2 \vec{e}_{2}-\vec{e}_{1}
\end{array}\right]=\left[\begin{array}{cc}
0 & -1 \\
-1 & 2
\end{array}\right]
$$

8. Lay, 1.9.26.

Solution: The standard matrix of T was found in exercise 5 above; we perform row reduction and see that it has a pivot in each row, but not in each column. Therefore, T is onto, but not 1-to-1.
9. Lay, 1.9.31.

Solution: The matrix A has m rows and n columns. In order for T to be 1-to-1, A has to have a pivot in each column; therefore, it should have n pivot positions.
10. Lay, 1.9.36.

Solution: Define the mapping $T \circ S: \mathbb{R}^{p} \rightarrow \mathbb{R}^{m}$ by the rule $(T \circ S)(\vec{x})=$ $T(S(\vec{x}))$. In order to prove that $T \circ S$ is linear, it suffices to show that for each $\vec{u}, \vec{v} \in \mathbb{R}^{p}$ and each scalars c, d, we have

$$
\begin{equation*}
(T \circ S)(c \vec{u}+d \vec{v})=c(T \circ S)(\vec{u})+d(T \circ S)(\vec{v}) . \tag{5}
\end{equation*}
$$

Now,

$$
\begin{gathered}
(T \circ S)(c \vec{u}+d \vec{v})=T(S(c \vec{u}+d \vec{v})) \\
=T(c S(\vec{u})+d S(\vec{v}))(\text { since } S \text { is linear) } \\
=c T(S(\vec{u}))+d T(S(\vec{v}))(\text { since } T \text { is linear }) \\
=c(T \circ S)(\vec{u})+d(T \circ S)(\vec{v})
\end{gathered}
$$

and this proves (5).
11-13. Given the 2×2 matrices A and B, compute the product $A B$. Draw the vectors $\vec{e}_{1}=(1,0)$ and $\vec{e}_{2}=(0,1)$ on one set of axes, the vectors $B \vec{e}_{1}$ and $B \vec{e}_{2}$ on another set of axes, and the vectors $A\left(B \vec{e}_{1}\right)$ and $A\left(B \vec{e}_{2}\right)$ on a third set of axes.

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \\
& A=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right], B=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] \\
& A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right], B=\left[\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right] .
\end{aligned}
$$

Answers:

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]} \\
{\left[\begin{array}{cc}
0 & -1 \\
-1 & 0
\end{array}\right]} \\
{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] .}
\end{gathered}
$$

14.* Let

$$
R(\phi)=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]
$$

be the standard matrix of (counterclockwise) rotation by the angle ϕ.
(a) Use trigonometry to prove that for any two angles ϕ and $\psi, R(\phi)$. $R(\psi)=R(\phi+\psi)$. Find a geometric interpretation for this fact.
(b) Let

$$
A=R(\pi / 3)=\left[\begin{array}{cc}
1 / 2 & -\sqrt{3} / 2 \\
\sqrt{3} / 2 & 1 / 2
\end{array}\right]
$$

Use part (a) to prove that $A^{6}=I_{2}$. What is A^{3} ?
Solution: (a) We have

$$
\begin{gathered}
R(\phi) R(\psi)=\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right] \cdot\left[\begin{array}{cc}
\cos \psi & -\sin \psi \\
\sin \psi & \cos \psi
\end{array}\right] \\
=\left[\begin{array}{cc}
\cos \phi \cos \psi-\sin \phi \sin \psi & -\cos \phi \sin \psi-\sin \phi \cos \psi \\
\sin \phi \cos \psi+\cos \phi \sin \psi & -\sin \phi \sin \psi+\cos \phi \cos \psi
\end{array}\right] \\
=\left[\begin{array}{cc}
\cos (\phi+\psi) & -\sin (\phi+\psi) \\
\sin (\phi+\psi) & \cos (\phi+\psi)
\end{array}\right]=R(\phi+\psi) .
\end{gathered}
$$

The interpretation is as follows: the composition of rotation by angle ϕ and rotation by angle ψ is the rotation by the angle $\phi+\psi$.
(b) We have $A^{3}=R(\pi / 3) R(\pi / 3) R(\pi / 3)=R(\pi / 3+\pi / 3+\pi / 3)=R(\pi)$ is the matrix of the transformation $\vec{x} \mapsto-\vec{x}$:

$$
A^{3}=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]
$$

Then, $A^{6}=\left(A^{3}\right)^{2}$ is the identity matrix.

