Worksheet 5: linear independence

$1-4$. Is the following set of vectors linearly independent? If it is linearly dependent, find a linear dependence relation. For each vector in the set, find whether it lies in the set spanned by the other vectors.

$$
\begin{gather*}
\left\{\vec{a}_{1}, \vec{a}_{2}\right\}, \vec{a}_{1}=\left[\begin{array}{c}
-1 \\
4
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}
-2 \\
-8
\end{array}\right] ; \tag{1}\\
\left\{\vec{a}_{1}, \vec{a}_{2}\right\}, \vec{a}_{1}=\left[\begin{array}{c}
-1 \\
4
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}
2 \\
-8
\end{array}\right] ; \tag{2}\\
\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}, \vec{a}_{1}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right], \vec{a}_{3}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] ; \tag{3}\\
\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}, \vec{a}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{l}
2 \\
1
\end{array}\right], \vec{a}_{3}=\left[\begin{array}{l}
2 \\
4
\end{array}\right] . \tag{4}
\end{gather*}
$$

Answers: 1. Linearly independent; no vector is in the span of the other vector.
2. Linearly dependent, with a relation $2 \vec{a}_{1}+\vec{a}_{2}=0$. Therefore, $\vec{a}_{1}=$ $-\vec{a}_{2} / 2 \in \operatorname{Span}\left(\vec{a}_{2}\right)$ and $\vec{a}_{2}=-2 \vec{a}_{1} \in \operatorname{Span}\left(\vec{a}_{1}\right)$.
3. Linearly dependent, with a relation $\vec{a}_{1}-\vec{a}_{2}+\vec{a}_{3}=0$. Therefore, $\vec{a}_{1}=\vec{a}_{2}-\vec{a}_{3} \in \operatorname{Span}\left(\vec{a}_{2}, \vec{a}_{3}\right)$; similarly, both \vec{a}_{2} and \vec{a}_{3} lie in the span of other vectors.
4. Linearly dependent (for example, because there are more vectors than dimensions). The vectors \vec{a}_{1} and \vec{a}_{3} are multiples of each other, so $\vec{a}_{1} \in$ $\operatorname{Span}\left(\vec{a}_{2}, \vec{a}_{3}\right)$ and $\vec{a}_{3} \in \operatorname{Span}\left(\vec{a}_{1}, \vec{a}_{2}\right)$. However, $\vec{a}_{2} \notin \operatorname{Span}\left(\vec{a}_{1}, \vec{a}_{3}\right)$. (Drawing the three vectors could be helpful.)

5 . Consider the vectors

$$
\vec{u}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \quad \vec{v}=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

and let $A=[\vec{u} \vec{v}]$.
(a) Prove that for each \vec{b}, the equation $A \vec{x}=\vec{b}$ has unique solution.
(b) Use part (a) to prove that each $\vec{b} \in \mathbb{R}^{2}$ can be represented as a linear combination of \vec{u} and \vec{v} in a unique way. (A set $\{\vec{u}, \vec{v}\}$ with this property is called a basis.)

Solution: (a) Since A has a pivot in each row, the equation $A \vec{x}=\vec{b}$ can be solved for every \vec{b}. Since A has a pivot in each column, the solution to this equation is unique.
(b) We can rewrite $A \vec{x}=\vec{b}$ as $\vec{b}=x_{1} \vec{u}+x_{2} \vec{v}$. The statement we need to prove is now identical to (a).
6. True or false:
(a) If a set contains the zero vector, it is linearly dependent.
(b) If $\vec{z} \in \operatorname{Span}(\vec{x}, \vec{y})$, then $\{\vec{x}, \vec{y}, \vec{z}\}$ is linearly dependent.
(c) If a 2×2 matrix has linearly independent columns, then its columns $\operatorname{span} \mathbb{R}^{2}$.
(d) If $\vec{x}, \vec{y} \in \mathbb{R}^{3}$ and \vec{x} is not a multiple of \vec{y}, then $\{\vec{x}, \vec{y}\}$ is linearly independent.

Solution: (a) True, see Theorem 9
(b) True, see Theorem 7
(c) True, since the matrix has to have two pivot positions.
(d) False, as we can have $\vec{x} \neq 0$ and $\vec{y}=0$. (\vec{y} will be a multiple of \vec{x} in this case, so there is no contradiction with Theorem 7.)

