Worksheet 4: solution sets of matrix equations

$1-4$. For each of the matrices A below, decide (a) whether the equation $A \vec{x}=\vec{b}$ is consistent for each \vec{b}; (b) whether the equation $A \vec{x}=0$ has unique solution:

$$
\begin{gather*}
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right], \tag{1}\\
A=\left[\begin{array}{lll}
1 & 2 & 1 \\
0 & 3 & 5 \\
0 & 6 & 2
\end{array}\right], \tag{2}\\
A=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
1 & -1
\end{array}\right], \tag{3}\\
A=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & -1
\end{array}\right] . \tag{4}
\end{gather*}
$$

Answers: 1. (a) False (b) False 2. (a) True (b) True 3. (a) False (b) True 4. (a) True (b) False
5. Let

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1
\end{array}\right], \vec{b}=\left[\begin{array}{l}
0 \\
4
\end{array}\right]
$$

Describe the solution sets of the equations $A \vec{x}=0$ and $A \vec{x}=\vec{b}$ in the parametric form. Find geometric interpretations for these sets.

Solution: The matrix $[A \vec{b}]$ is row reduced to

$$
\left[\begin{array}{cccc}
1 & 0 & -1 & 2 \\
0 & 1 & 2 & -1
\end{array}\right]
$$

Therefore, the general solution of $A \vec{x}=\vec{b}$ has the form

$$
\left[\begin{array}{c}
2 \\
-1 \\
0
\end{array}\right]+c\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right], c \in \mathbb{R}
$$

and is a line (not passing through the origin). If we replace \vec{b} by zero, the general solution has the form

$$
c\left[\begin{array}{c}
1 \\
-2 \\
1
\end{array}\right], c \in \mathbb{R},
$$

and is a line passing through the origin and parallel to the previous line.
6. Lay, 1.5.18.

Solution: For the equation $x_{1}-3 x_{2}+5 x_{3}=4$, the general solution is given by $x_{1}=4+3 x_{2}-5 x_{3}$ with x_{2}, x_{3} free; therefore,

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4+3 x_{2}-5 x_{3} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
4 \\
0 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{l}
3 \\
1 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1
\end{array}\right] .
$$

This is a plane. The general solution of $x_{1}-3 x_{2}+5 x_{3}=0$ is given by the expression above without the vector $(4,0,0)$ and is a plane parallel to the previous plane.
7. Lay, 1.5.28.

Solution: No, it cannot. Indeed, if the solution set of $A \vec{x}=\vec{b}$ contained the origin, then we would have $A 0=\vec{b}$, which yields $\vec{b}=0$, a contradiction.
8. Lay, 1.5.37.

Answer:

$$
A=\left[\begin{array}{cc}
1 & -4 \\
0 & 0
\end{array}\right], \vec{b}=\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

The trick here is that the solution set of $A \vec{x}=\vec{b}$ is empty, while Theorem 6 assumes that the system $A \vec{x}=\vec{b}$ is consistent.
9. Lay, 1.5.38.

Solution: Since the equation $A \vec{x}=\vec{y}$ does not have a solution for some \vec{y}, the matrix A does not have a pivot in some row. Since A is a square matrix, this implies that it does not have a pivot in some column, producing a free variable. Therefore, whenever the system $A \vec{x}=\vec{z}$ is consistent, it has infinitely many solutions.

