Worksheet 3: matrix-vector multiplication

1-2. Using Theorem 4 on page 43, verify whether the given sets of vectors $\operatorname{span} \mathbb{R}^{3}$:

$$
\begin{gather*}
\left\{\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}\right\}, \vec{a}_{1}=\left[\begin{array}{l}
1 \\
2 \\
1
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right], \vec{a}_{3}=\left[\begin{array}{l}
2 \\
1 \\
3
\end{array}\right] ; \tag{1}\\
\left\{\vec{a}_{1}, \vec{a}_{2}\right\}, \vec{a}_{1}=\left[\begin{array}{l}
2 \\
3 \\
0
\end{array}\right], \vec{a}_{2}=\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right] \tag{2}
\end{gather*}
$$

Solution to problem 1: We write

$$
A=\left[\begin{array}{lll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 2 \\
2 & -1 & 1 \\
1 & 2 & 3
\end{array}\right]
$$

then we need to find out whether A has a pivot position in each row. We perform row reductions to bring A to the following REF:

$$
\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & -3 & -3 \\
0 & 0 & 0
\end{array}\right] ;
$$

we see now that there is no pivot in row 3 . Therefore, the vectors $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ do not span the whole \mathbb{R}^{3}. (As a matter of fact, they span a plane. To understand why this is true, use the fact that $\vec{a}_{1}+\vec{a}_{2}=\vec{a}_{3}$.

Solution to problem 2: No, since two vectors can never span the whole \mathbb{R}^{3}. (A 3×2 matrix cannot have a pivot position in each row.)
3. Let

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \vec{u}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], \vec{v}=\left[\begin{array}{l}
1 \\
1
\end{array}\right] .
$$

Compute $A \vec{u}, A \vec{v}$, and $A(\vec{u}+\vec{v})$. Verify that $A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}$. Draw the vectors $\vec{u}, \vec{v}, \vec{u}+\vec{v}$ on one set of axes and the vectors $A \vec{u}, A \vec{v}, A(\vec{u}+\vec{v})$ on another set of axes.

Answer:

$$
A(\vec{u})=\left[\begin{array}{c}
-1 \\
0
\end{array}\right], A(\vec{v})=\left[\begin{array}{c}
-1 \\
1
\end{array}\right], A(\vec{u}+\vec{v})=\left[\begin{array}{c}
-2 \\
1
\end{array}\right]
$$

4. Lay, 1.4.2.

Answer: We cannot multiply because the number of columns in the matrix is not equal to the number of rows in the vector.
5. Compute the product

$$
\left[\begin{array}{ll}
2 & 1 \\
0 & 3
\end{array}\right]\left[\begin{array}{c}
2 \\
-1
\end{array}\right]
$$

first by representing the answer as a linear combinationof the columns of the matrix, and then by using the row-vector rule.

Solution: The answer is

$$
2\left[\begin{array}{l}
2 \\
0
\end{array}\right]+(-1)\left[\begin{array}{l}
1 \\
3
\end{array}\right]=\left[\begin{array}{c}
3 \\
-3
\end{array}\right]=\left[\begin{array}{l}
2 \cdot 2+1 \cdot(-1) \\
0 \cdot 2+3 \cdot(-1)
\end{array}\right]
$$

6. Lay, 1.4.10.

Answer:

$$
x_{1}\left[\begin{array}{l}
8 \\
5 \\
1
\end{array}\right]+x_{2}\left[\begin{array}{c}
-1 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] ;\left[\begin{array}{cc}
8 & -1 \\
5 & 4 \\
1 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
4 \\
1 \\
2
\end{array}\right] .
$$

7. Lay, 1.4.24.

Solution: (a) True, see Theorem 3
(b) True, see Example 2
(c) True, see Theorem 3
(d) True, see the box before Example 2
(e) False, see the warning after Theorem 4
(f) True, see Theorem 3
8. Let

$$
A=\left[\begin{array}{lll}
\vec{a}_{1} & \ldots & \vec{a}_{p}
\end{array}\right], \vec{e}_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] .
$$

Prove that $A \vec{e}_{1}=\vec{a}_{1}$.
Solution: Use the definition of $A \vec{e}_{1}$ as a linear combination of the columns of A.
9. Lay, 1.4.34. (Hint: think what the RREF of A should be.)

Solution: The RREF of A should have no free variables. Therefore, there should be a pivot in each of the 3 columns of A. However, since A has 3 rows, this implies that there is a pivot in each row; it remains to use Theorem 4 on page 43.
10. Lay, 1.4.35.

Solution: Put $\vec{x}=\vec{x}_{1}+\vec{x}_{2}$; then

$$
A \vec{x}=A\left(\vec{x}_{1}+\vec{x}_{2}\right)=A \vec{x}_{1}+A \vec{x}_{2}=\vec{y}_{1}+\vec{y}_{2}=\vec{w} .
$$

