Worksheet 28: Heat equation and review of PDE

1. Find the Fourier cosine series of the function $f(x)=x, 0<x<\pi$. (I believe I did it in class once - try to find it in your notes if you do not want to calculate.)

Answer:

$$
f(x) \sim \frac{\pi}{2}-\frac{4}{\pi} \sum_{j=1}^{\infty} \frac{\cos ((2 j-1) x)}{2 j-1}
$$

2. Use the result of problem 1 to find the formal solution for the following problem for the heat equation with inhomogeneous boundary conditions. What is the limit of this solution as $t \rightarrow+\infty$?

$$
\begin{gathered}
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<\pi, t>0 \\
u(0, t)=0, u(\pi, t)=1, t>0 \\
u(x, 0)=\sin (2 x)+5 \sin (3 x), x>0 .
\end{gathered}
$$

Answer:

$$
u(x, t)=\frac{x}{\pi}-\frac{4}{\pi^{2}} \sum_{j=1}^{\infty} \frac{\sin ((2 j-1) x)}{2 j-1}+e^{-4 t} \sin (2 x)+5 e^{-9 t} \sin (3 x) .
$$

3. Describe the function to which the Fourier cosine series of the function $f(x)=x, 0<x<\pi$, converges, and sketch its graph.

Solution: The 2π-periodic extension of the function $\tilde{f}(x)=|x|,-\pi \leq$ $x \leq \pi$.
4. Describe the function to which the Fourier sine series of the function $f(x)=x, 0<x<\pi$, converges, and sketch its graph.

Solution: The 2π-periodic extension of the function $\tilde{f}(x)=x,-\pi \leq$ $x \leq \pi$.

